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in perovskite solar cells with a XGBoost-based
machine learning approach

Basir Akbar,1 Hilal Tayara,2,5,* and Kil To Chong3,4,*
SUMMARY

Remarkable and intelligent perovskite solar cells (PSCs) have attracted substantial attention from re-
searchers and are undergoing rapid advancements in photovoltaic technology. These developments aim
to create highly efficient energy devices with fewer dominant recombination losses within the realm of
third-generation solar cells. Diverse machine learning (ML) algorithms implemented, addressing dominant
losses due to recombination in PSCs, focusing on grain boundaries (GBs), interfaces, and band-to-band
recombination. The extreme gradient boosting (XGBoost) classifier effectively predicts the recombination
losses.Ourmodel trainedwith7-fold cross-validation toensuregeneralizabilityandrobustness. Leveraging
Optuna and shapley additive explanations (SHAP) for hyperparameter optimization and investigate the
influence of features on target variables, achieved 85% accuracy on over 2 million simulated data, respec-
tively. Because of the input parameters (light intensity and open-circuit voltage), the performance evalua-
tion measures for the dominant losses caused by the recombination predicted by proposed model were
superior to those of state-of-the-art models.

INTRODUCTION

Inorganic and organic perovskites are considered emerging candidates and have attracted significant attention as alternatives to conven-

tional solar cell components owing to their superior properties and remarkable performance as light absorption/charge transport layers

for the development of photovoltaic technology.1 Perovskites solar cells (PSCs) have recently undergone significant developments to

enhance their power conversion efficiency and lower their production costs compared with conventional solar cells.2 Efforts are being

made to build machine learning (ML) tools for accurately predicting dominant recombination and analyzing PSCs data.3 ML has gained

considerable attention in various sectors, such as health, physics, finance, and transportation, to learn from data and enhance decision-mak-

ing abilities.4–7 ML algorithms and artificial intelligence (AI) can be used to reduce the production time frame and explore and discover novel

material structures and their physical properties for the efficient use of solar energy.8,9 Additionally, AI tools or ML algorithms can open new

horizons to reveal efficient and innovative techniques for identifying the compositions of various material structures to achieve maximum ef-

ficiency.10 Hence, ML has successfully proven its ability to identify the composition and characteristics of different materials, which is valuable

for exploring promising material structures and maximizing the PSCs efficiency.11,12 Additionally, ML tools can provide a new pathway for

researchers to efficiently identify the behavior of material data and predict the characteristics of novel explored materials.13–15 Salah et al.

used ML to reveal electron transport layer (ETL) doping’s critical influence on PSC efficiency across various dataset complexities.16 Nagaswa

et al. proposed a random forest (RF)-basedML screeningmethod using a dataset of known polymer characteristics to categorize and identify

the performance and applicability of conjugated polymers for solar cell applications.17 Lu et al. utilized ML to forecast perovskite solar cell

performance from experimental inputs, facilitating the creation of highly efficient cell.18

Additionally, the key phenomenon in PSCs that affects efficiency is recombination. In 2017, Sherkar et al. improved the stability and effi-

ciency of PSCs by focusing on the significance of grain boundaries (GBs), interface traps, and ions in the recombination process.19 Wolff

et al. recognized the essence of interfaces in the recombination process using energy-level alignments, charge transfer kinetics, and interfacial

defects to develop stable and efficient PSCs.20 However, the open-circuit voltage (Voc) is an important parameter for reducing the dominant

losses caused by recombination at the PSC interface. Juan-Pablo et al. demonstrated that PSCswith enhanced Vocminimize the losses caused

by recombination at the interface.21 Additionally, Guo et al. proposed highly efficient PSCs with superior reliability and high Voc by exploring

various parameters, including material quality, device layout, and interface engineering.22 Furthermore, doping significantly influences PSCs
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Figure 1. The mean AUC of the proposed model for band-to-band, GB, and interface on the test dataset
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efficiency, notably reducing recombination rates. Precisedopingconcentrations are crucial inboth transport layers (TLs), theelectron transport

layer (ETL) and the hole transport layer (HTL).23,24 Additionally, the ideality factor is the most important factor for finding the rate of recombi-

nation in PSCs.25 Furthermore, Jiangzhao et al. effectively showcased the recombination mechanism as their causative factor and potential

resolutions and also demonstrated the crucial role of the ideality factor in nonradioactive recombination.26 However, it is difficult to conclude

the dominant recombinationmechanism based on only ideality factor whether it is band-to-band, GB, or interface. Efforts have been directed

to minimize the recombination losses in PSCs considering the important factors Voc, light intensities, doping, mobilities and ideality factor,

which plays significant role in determining the recombination losses in PSCs.23 An urgent study is required to design an ML model to predict

the material characteristics and dominant losses from recombination in PSCs to produce efficient and long-lasting PSCs.

To predict the dominant loss in PSCs, ML techniques were used to predict the interface, GBs, and band-to-band recombination. Vincent

et al. proposed an approach to predict the dominant recombination losses in PSCs using a band-to-band recombination, GBs, and interface

considering important factors Voc, light intensity and ideality factor.27 This study focuses on effectively predicting the dominant loss in band-

to-band recombination compared with that in GB and interfaces. To reduce the dominant recombination losses and enhance PSC perfor-

mance, ML algorithms must be developed that can predict the dominant efficiency loss in material recombination or at solar cell interfaces

across various light intensities by analyzing their current voltage properties and accurately identifying the root cause of efficiency loss by eval-

uating the data.

This study implemented several ML algorithms, including RF, light gradient boosting machine (LightGBM), extreme gradient boosting

(XGBoost), CatBoost, neural network, and extra tree classifiers, to address the multi class classification problem. The objective was to

efficiently determine the dominant efficiency losses in GB recombination, interface, and band-to-band recombination using light intensity

measurements. The proposed algorithms were carefully trained and optimized considering important features, such as the ideality factor,

Voc, fill factor (FF), current density (Jsc), doping left, doping right, and mobilities. A drift diffusion (DD) simulation was used to create the pre-

vious dataset. The aforementioned ML model was trained using 7-fold cross-validation to ensure its generalizability. The XGBoost classifier

outperformed the other implementedMLmodels and achieved an impressive accuracy score of 85% because of the best Optuna hyperpara-

meter optimizer. The performances of the trained ML algorithms were evaluated using a performance evaluation matrix. The proposed

models were compared in terms of specificity, sensitivity, Matthews correlation coefficient (MCC), and accuracy. Additionally, the proposed

models were compared with previously reported models. Furthermore, our optimal ML model, validated with experimental data available in

previously published literatures. The result demonstrated a robust agreement between the model predictions and experimental outputs es-

tablishes itself as the more reliable and efficient ML model. Finally, the selected features of the trained models were validated using SHAP

analysis to demonstrate the importance of each feature for predicting the target variable. The proposed approach introduces an efficient

method for predicting dominant recombination losses in PSCs.

RESULTS AND DISCUSSION

This study used ML models to predict dominant recombination in PSCs. The models included RF, LightGBM, XGBoost, CatBoost, and extra

tree classifiers. To evaluate the performance of these models, four metrics were used: sensitivity, specificity, MCC, and accuracy.

We evaluated the proposed models using a 7-fold cross-validation approach. Figure 1 shows the performance of the XGBoost model in

terms of area under the curve (AUC) for each label, including ‘‘band-to-band,’’ ‘‘GB,’’ and ‘‘interface.’’ The mean AUC was calculated individ-

ually considering all labels. The mean band-to-band AUC was 1.0, indicating that the model accurately distinguished positive and negative

samples in this class. This implies that the model distinguished between the target classes; exceptionally well; similarly, the mean AUC for GB

was 0.94, indicating that the model was able to effectively distinguish positive and negative samples for the ‘‘GB’’. The mean AUC for the
2 iScience 27, 109200, March 15, 2024



Figure 2. Performance comparison of implemented models: average performance analysis
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interface was 0.92. Hence, the proposed model has a strong ability to effectively distinguish classes. Figure S1 (supplemental information)

shows the average AUC of the CatBoost classifier for each label, including band-to-band, GB, and interface. Each had an average AUC of

1.0, 0.92, and 0.90, respectively. Figure S2 (supplemental information) shows the average AUC of the extra tree for each label, including

the band-to-band, GB, and interface. Each had an average AUC of 0.99, 0.90, and 0.87, respectively. Finally, Figure S3 (supplemental infor-

mation) shows the average AUC of LGBM, including band-to-band, GB, and interface. Each had an average value of 0.99, 0.92, and 0.91,

respectively. To further investigate the performance consistency of the proposed model, the variation in the AUC values was examined.

The XGBoost model demonstrated reliable discriminatory power and consistent and robust performance across each fold. Overall, the

XGBoost classifier is a viable option for classifying prediction classes because of its previously mentioned stable and consistent behavior.

Based on these findings, XGBoost outperformed all other models used in this study in terms of predicting PSC recombination. Hyperpara-

meter optimization and to find influence of each feature on the target variable Optuna and SHAP were employed to further improve predic-

tion accuracy.

Figure 2 shows the performance of each model, highlighting its specificity, sensitivity, MCC, and accuracy scores after hyperparameter

optimization.

Figure 2 illustrates that, XGBoost outperformed all other models, achieving an impressive accuracy score of 85%. The average sensitivity

values were notably high for band-to-band (0.97), GB (0.85), and interface (0.71), indicating the model’s ability to correctly identify positive

instances. Similarly, the model demonstrated excellent band-to-band (0.96), GB (0.77), and interface (0.80) specificity, demonstrating its pro-

ficiency in correctly classifying negative instances. Furthermore, the MCC values were consistently favorable for the band-to-band (0.77), GB

(0.77), and interface (0.77). Collectively, these findings confirm that the XGBoost classifier outperformed the other models, making it the best

choice for this study.

Figure 2 compares the analysis of the proposed ML models. The performance of the developedML models was evaluated in terms of the

mean sensitivity, specificity,MCC, and accuracy score, as shown in Figure 2. Table 1 lists themean accuracy, sensitivity, specificity, andMCCof

each implemented model. However, the band-to-band, GB, and interface labels had mean sensitivities of 0.97, 0.85, and 0.72, respectively,

andmean specificities of 0.96, 0.77, and 0.80, respectively. The XGBoostmodel demonstrated a remarkablemeanMCCof 0.77, 0.77, and 0.77,

and an accuracy score of 0.85%. The XGBoost model outperformed the RF, LGBM, extra tree, and CatBoost models. According to the pre-

vious discussion , the XGBoost model demonstrated superior performance and is a potential candidate for predicting dominant recombina-

tion in PSCs.

Additionally, the results and detail of the neural network model was detailed in Table S1 (supplemental information) showing the training

and validation accuracies, alongside the corresponding and training and validation losses. Moreover, the Figures S4 and S5 (supplemental

information) illustrates the training and validation accuracy curves as well as the training and validation loss curves of the neural network.
Comparison with state-of-the-art studies

This study achieved a remarkable accuracy in predicting the dominant recombination band-to-band ratio with a correctness rate of 0.97.

Additionally, the model performed exceptionally well in classifying GB, achieving an accuracy rate of 0.85. Furthermore, it demonstrated
iScience 27, 109200, March 15, 2024 3



Table 1. Results of the model implemented in this study

Band to Band GB Interface

Models Mean Accuracy MCC Specificity Sensitivity MCC Specificity Sensitivity MCC Specificity Sensitivity

XGBoost 0.85 0.77 0.96 0.97 0.77 0.77 0.85 0.77 0.80 0.71

CatBoost 0.83 0.74 0.96 0.97 0.73 0.73 0.84 0.74 0.78 0.66

LightGBM 0.82 0.73 0.96 0.97 0.73 0.72 0.84 0.73 0.78 0.64

Extra tree 0.78 0.68 0.92 0.97 0.68 0.67 0.84 0.68 0.75 0.52

RF 0.82 0.73 0.96 0.97 0.73 0.72 0.83 0.73 0.77 0.64
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good predictive capabilities with an interface correctness rate of 0.76. Figure 3 shows a visual representation of the classification report

that highlights how well the XGBoost classifier performed. It presents essential evaluation metrics, including precision, recall (sensitivity),

and the F1 score, crucial for assessing the performance of an ML model. Precision is employed to assess the model’s proficiency in

correctly predicting positive outcomes among all instances that it identifies as positive. For band-to-band, GB, and interface, the precision

values are 0.97, 0.76, and 0.81, respectively. The F1 score, combining precision and recall, provides a balanced assessment of the model’s

overall performance. For band-to-band, GB, and interface, the F1 score values are 0.97, 0.81, and 0.76 correspondingly. Table 2 show com-

pares the proposed novel model and the previous approach for predicting the dominant loss in PSC recombination in terms of accuracy

and correct prediction across each label. A previous study found that the accuracy of the prediction of dominant losses was not ideal

owing to the mixed cases in the GB and interfaces to the overall recombination. Moreover, our study shows a remarkably correct predic-

tion of the GB and band-to-band recombination of the PSCs produced by our proposed model, as shown in Table 2. Figures S6–S8 (sup-

plemental information) show a visual representation of the classification report, which demonstrates the performance of the CatBoost, ex-

tra tree, and LGBM classifier.

Metal-halide PSCs have garnered significant attention within the research community, surpassing other alternatives. However, PSCs

experience significant non-negligible losses owing to different dominant recombination processes. Dominant recombination losses in

PSCs occur mainly at the interfaces and GB. Losses that occur mainly at the interfaces are highly dominant owing to electron-hole pair

recombination and reduce PSC efficiency.19,28 Many studies have been conducted to reduce the dominant losses at the interface and

GB. Hence, in this study, we computationally demonstrate that losses at the interface are dominant. However, the proposed model demon-

strated peak performance by accurately predicting the dominant recombination losses at the GBs, achieving a correct prediction rate of

0.85. The recombination losses in the GBs can reduce the efficiency and long term stability of the PSCs.29 Thus, the proposed computational

approach yielded superior predictions and provided a sustainable platform for predicting the dominant recombination losses at the GB to

fabricate efficient PSCs. Overall, our proposed model outperformed previous experimental approaches and yielded consistent results.

Consequently, our approach is a promising and effective method for predicting dominant recombination losses at the band-to-band,

GB, and interfaces.
Figure 3. Comprehensive performance analysis: classification report for band-to-band, GB, and interface classes on the test dataset

4 iScience 27, 109200, March 15, 2024



Table 2. Comparison of the proposed model with previously reported models

Models Accuracy Correct prediction band-to-band Correct prediction GB Reference

RF 0.82 0.97 0.74 Le Corre et al.27

XGBoost 0.85 0.97 0.85 Our work
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To further validate our analysis, we chose experimental values from previously published literatures that have the appropriate band gap,

indicating accurate perovskite composition. We selected the cases where dominant recombination losses are known, and sufficient features

are available to assess our model’s performance and compare it to the experimental results. We pass the experimental data as an input to our

optimal model, and Table S2 (supplemental information) demonstrates a robust agreement between our optimal ML model predictions and

the experimental output. Furthermore, majority of experimental findings from existing literatures underscores the recombination losses at

interface.19,24,30 Our optimal model prediction shows a strong agreement with the experimental findings by predicting the dominant recom-

bination losses at interface as depicted in Table S2 (supplemental information). This strengthens our confidence in the practical applicability

of our approach for predicting dominant recombination losses in PSCs.

In summary, the dominant losses in the recombination were investigated at the GB, interface, and band-to-band recombination of PSCs

using various ML algorithms. Among the various implemented models, the XGBoost classifier accurately predicted the dominant losses with

an accuracy score of 85% on the performance evaluation matrix (sensitivity, specificity, MCC, and accuracy score). To ensure the generaliz-

ability of the proposed models, a 7-fold cross-validation method was used. For the best hyperparameter optimization, Optuna was applied

to the proposed model, and SHAP analysis was implemented to determine the influence of the features. Furthermore, this study provides a

viable option for developing efficient and intelligent PSCs with minimal dominant recombination losses.
Limitations of the study

While the study successfully tackles dominant recombination in PSCs through ML models, a noteworthy limitation is the absence of a dedi-

cated computational web server. Such a tool would be instrumental in precisely identifying dominant recombination losses in PSCs, offering

an accessible user interface for the material science community.
Figure 4. An overview of the SHAP values, showing the 20most important features for the proposedmodel for predicting the dominant recombination

loss in PSCs

iScience 27, 109200, March 15, 2024 5
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8. Häse, F., Roch, L.M., and Aspuru-Guzik, A.
(2019). Next-Generation Experimentation
with Self-Driving Laboratories. Trends Chem.
1, 282–291. https://doi.org/10.1016/j.trechm.
2019.02.007.

9. Lampe, C., Kouroudis, I., Harth, M., Martin, S.,
Gagliardi, A., and Urban, A.S. (2023). Rapid
Data-Efficient Optimization of Perovskite
Nanocrystal Syntheses through Machine
Learning Algorithm Fusion. Adv. Mater. 35,
2208772.

10. Khan, A., Tayara, H., and Chong, K.T. (2023).
Prediction of organic material band gaps
using graph attention network. Comput.
Mater. Sci. 220, 112063. https://doi.org/10.
1016/j.commatsci.2023.112063.

11. Butler, K.T., Davies, D.W., Cartwright, H.,
Isayev, O., and Walsh, A. (2018). Machine
learning for molecular and materials science.
Nature 559, 547–555. https://doi.org/10.
1038/s41586-018-0337-2.

12. Ismail, Z.S., Sawires, E.F., Amer, F.Z., and
Abdellatif, S.O. Perovskites

https://doi.org/10.1016/j.isci.2024.109200
https://doi.org/10.1016/j.mattod.2014.07.007
https://doi.org/10.1016/j.mattod.2014.07.007
https://doi.org/10.1021/acs.chemrev.0c00107
https://doi.org/10.1021/acs.chemrev.0c00107
https://doi.org/10.1038/npjcompumats.2016.28
https://doi.org/10.1038/npjcompumats.2016.28
https://doi.org/10.1001/jama.2017.18391
https://doi.org/10.1001/jama.2017.18391
https://doi.org/10.1103/RevModPhys.91.045002
https://doi.org/10.1103/RevModPhys.91.045002
https://doi.org/10.1007/978-3-030-41068-1
https://doi.org/10.1007/978-3-030-41068-1
https://doi.org/10.1016/B978-0-12-809715-1.00012-2
https://doi.org/10.1016/B978-0-12-809715-1.00012-2
https://doi.org/10.1016/j.trechm.2019.02.007
https://doi.org/10.1016/j.trechm.2019.02.007
http://refhub.elsevier.com/S2589-0042(24)00421-8/sref9
http://refhub.elsevier.com/S2589-0042(24)00421-8/sref9
http://refhub.elsevier.com/S2589-0042(24)00421-8/sref9
http://refhub.elsevier.com/S2589-0042(24)00421-8/sref9
http://refhub.elsevier.com/S2589-0042(24)00421-8/sref9
http://refhub.elsevier.com/S2589-0042(24)00421-8/sref9
http://refhub.elsevier.com/S2589-0042(24)00421-8/sref9
https://doi.org/10.1016/j.commatsci.2023.112063
https://doi.org/10.1016/j.commatsci.2023.112063
https://doi.org/10.1038/s41586-018-0337-2
https://doi.org/10.1038/s41586-018-0337-2


ll
OPEN ACCESS

iScience
Article
informatics: Studying the impact of
thicknesses, doping, and defects on the
perovskite solar cell efficiency using a
machine learning algorithm. Int. J. Numer.
Model. Electron. Networks, Devices Fields.
37 e3164

13. Sanchez-Lengeling, B., Roch, L.M., Perea,
J.D., Langner, S., Brabec, C.J., and Aspuru-
Guzik, A. (2019). A Bayesian Approach to
Predict Solubility Parameters. Adv. Theory
Simul. 2, 1800069. https://doi.org/10.1002/
adts.201800069.

14. Wilbraham, L., Sprick, R.S., Jelfs, K.E., and
Zwijnenburg, M.A. (2019). Mapping binary
copolymer property space with neural
networks. Chem. Sci. 10, 4973–4984. https://
doi.org/10.1039/C8SC05710A.

15. Liu, Y., Tan, X., Liang, J., Han, H., Xiang, P.,
and Yan, W. (2023). Machine learning for
perovskite solar cells and component
materials: key technologies and prospects.
Adv. Funct. Mater. 33, 2214271.

16. Salah, M.M., Ismail, Z., and Abdellatif, S.
(2023). Selecting an appropriate machine-
learning model for perovskite solar cell
datasets. Mater. Renew. Sustain. Energy 12,
187–198.

17. Nagasawa, S., Al-Naamani, E., and Saeki, A.
(2018). Computer-Aided Screening of
Conjugated Polymers for Organic Solar Cell:
Classification by Random Forest. J. Phys.
Chem. Lett. 9, 2639–2646. https://doi.org/10.
1021/acs.jpclett.8b00635.

18. Lu, Y., Wei, D., Liu, W., Meng, J., Huo, X.,
Zhang, Y., Liang, Z., Qiao, B., Zhao, S., Song,
D., and Xu, Z. (2023). Predicting the device
performance of the perovskite solar cells from
the experimental parameters through
machine learning of existing experimental
results. J. Energy Chem. 77, 200–208.

19. Sherkar, T.S., Momblona, C., Gil-Escrig, L.,
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Optuna optimization framework

3.1.1
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RESOURCE AVAILABILITY

Lead contact

Formore details and the necessary requirements concerning additional resources, please direct your inquiries to Dr. Hilal Tayara (hilaltayara@

jbnu.ac.kr).

Materials availability

Discovery of unique materials was not part of this study, as it did not involve the use of any distinctive reagents.

Data and code availability

� The data and code are made available on GitHub at https://github.com/BasirAkbar/xgboost_perovskite.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

� GPU: Nvidia Titan-12 GB RAM.
� Hardware requirements: intel(R) Core (TM) i5-10500 CPU @ 3.10GHz 3.10 GHz.

EXPERIMENTAL MODEL AND STUDY PARTICIPANTS DETAILS

This study leveraged theML framework for predicting the dominant recombination losses in PSCs. Furthermore, the validity of our optimalML

model was confirmed through experimental data. A robust alignment was observed when comparing the ML model predictions with the

experimental outcomes. Consequently, we express confidence in our approach to predict dominant recombination losses in PSCs, as it

has proven itself to be a more reliable choice.

METHOD DETAILS

Data Set and features

The dataset was made available on PSCs along with the light intensity-dependent performance and the dominant recombination process (an

already known process) for every datum.27 This has demonstrated the ability to produce PSCs by creating various devices with different com-

positions and structures.37 In the dataset details, randomparameters, parasitic lumped series, and shunt resistance were selected in a specific

range. Therefore, a lumped series resistance was used instead of a distributed series resistance.Moreover, the band gap was fixed at approx-

imately 1.6 eV (MAPbI3).27 However, the interpretation is incomplete because various parameters that can influence the ideality factormust be

combined with other essential parameters, such as Voc,21 FF, mobilities,38 Jsc, and doping.24 In this study, ’doping left’ and ’doping right’
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represent the doping in both TLs. The assignment of ’left’ and ’right’ is based upon the arrangement of the HTL and ETL, varying in devices

with positive intrinsic negative (pin) or negative intrinsic positive (nip) based device structures. The dataset utilized in this study is applicable to

both nip and pin structured devices.27 Therefore, ’doping left’ denotes the doping in the leading transport layer where sunlight penetrates,

while ’doping right’ refers to the doping in the subsequent transport layer, based on whether it’s a nip or pin structured device. The dataset of

approximately 2.5 million data points were created by the computational simulations using the open source software SIMsalabim39 it pos-

sesses the capability to conduct both steady-state and time dependent simulations encompassing the various effects such as mobile ions,

recombination, trapping and dielectric mismatch31. In this study context, computationally numerical solution of DD equations was employed

for various parameters combinations and conditions. DD simulation has been widely applied in PSCs to comprehend their functioning and

replicate various devices characterized by perovskite compositions and structures.24,40 The simulation process involves repetitive computa-

tions while adjusting specific parameters that significantly affect the behavior of charges (electrons and holes). These parameters encompass

variations in dimensions, thickness, mobilities, doping concentrations, temperature, voltages, or light intensities. These parameters were

derived from previously published literature containing the experimental values.41 The process iterated multiple times using these experi-

mental values alongside different parameter combinations, resulting in a dataset comprising millions of data points. This dataset encapsu-

lates diverse scenarios and expected device conditions, effectively addressing recombination in PSCs. Next, to preprocess the data, the

dataset contained (2470491) simulation data. This study predicted three labels: band-to-band, GB, and interface using the given dataset.

The dataset was balanced between these labels to ensure that theML algorithmsworked efficiently. Therefore, the dataset was preprocessed

to eliminate duplicate and null values from the respective dataset to ensure that the dataset is completely balanced and more accurate. The

data were distributed equally among these labels to predict the dominant recombination loss in PSCs. Furthermore, 22 featureswere selected

for training by investigating their correlations with the target variable confirmed through the Pearson correlation coefficient. Furthermore,

Feature importance was investigated using a sklearn library and validated using the SHAP analysis method. An equal distribution of target

labels was demonstrated in ameticulously selected dataset of 823,497 samples, ensuring a balanced representation. Additionally, the dataset

was divided into 75% training and 25% testing datasets. To train the models efficiently, seven-fold cross-validation was used to divide the

training data into seven subgroups. Six of them were used for training and one for validation, which helped validate the proposed models

and achieve a more generalized model.
Methodology

The overarching goal of this multiclassification task is to precisely identify the input data and accurately predict the final output. The final

output encompasses three distinct categories: band-to-band recombination, GB, and interfaces. The primary aim of this study is to devise

a proficient model that can discern and classify input data into designated output categories with a remarkable level of accuracy. Conse-

quently, the hyperparameter optimization technique (Optuna) was used to meticulously select the hyperparameters for each implemented

model. The ability of the model to precisely differentiate and categorize input samples is crucial for the successful execution of this multiclas-

sification problem. A detailed overview of the ML classification algorithms used in this study is provided in the following sections.

Random Forest

RF is an ensemble-learning algorithm that merges multiple decision trees to make predictions.31 During the training process, the algorithm

randomly selects a subset of the input features and data to train each tree in the forest. This reduces overfitting by training each decision tree

on different data subsets. Overall, RF classification is a powerful ML algorithm that can be used to predict categorical output variables using

input features.

LightGBM

LightGBM is an open-source gradient boosting framework that uses a tree-based learning algorithm. The architecture constructs the decision

tree level-by-level, imitating the approach commonly employed by other gradient boosting algorithms.34 To obtain a robust and highly opti-

mized LGBM classifier with carefully selected parameters, such as a boosting type of ‘gbdt,’ a ‘multiclass’ objective and ‘multi-logloss’ metric

are critical aspects of this research. It allows effective classification and prediction of complex data, minimizes overfitting, and maximizes ac-

curacy. Furthermore, the incorporation of seven-fold cross-validation enhances the robustness and reliability of the model by evaluating its

performance across a diverse range of datasets. This approach provides a comprehensive assessment of themodel’s effectiveness. Addition-

ally, the inclusion of the feature fraction (0.5828) and bagging fraction (0.8719) collectively contributed to themodels’ capacity to capture intri-

cate details within the data. These measures effectively mitigate overfitting and enhance the ability of the model to generalize unseen data,

which boosts its overall performance and predictive capability. More detail about LightGBM can be seen in ML models description (supple-

mental information).

Extra tree classifier

The extra-tree classifier combines multiple results to make predictions and performs the final classification to construct multiple decision

trees.42 To ensure the models’ ability to efficiently generalize new and unseen data using seven-fold cross-validation, the input features

and their corresponding labels were used during the model training phase with an extra-tree classifier.
iScience 27, 109200, March 15, 2024 9
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CatBoost

The CatBoost classifier was trained on the dataset using seven-fold cross-validation. It uses a series of decision trees and special hyperpara-

meters to optimize its performance.33 The hyperparameters included the number of iterations (2128), learning rate (0.082), verbose level (129),

tree depth (16), L2 regularization parameter (5), random seed (76), number of iterations required to wait for the optimal solution (200), and

metric period (129). These hyperparameters were carefully selected to ensure the models’ ability to generalize new data and make accurate

predictions. Overall, the CatBoost classifier is a powerful and flexible algorithm that delivers excellent accuracy and provides accurate pre-

dictions. Therefore, the CatBoost classifier is a powerful and flexible algorithm. By carefully selecting hyperparameters and using techniques

such as cross-validation, excellent accuracy and accurate predictions can be achieved.

XGBoost

The XGBoost algorithm sequentially constructs a series of decision trees and combines their predictions to make a final classification.32 The

XGBoost algorithm is a valuable tool for accurate and reliable classification when dealing with multiclassification problems. XGBoost outper-

forms the above-mentioned models in terms of accuracy and predictive power. The XGBoost model was trained using a robust approach

known as seven-fold cross-validation, which ensures the generalizability of the model to the unseen data. The XGBoost model is further

enhanced using complex hyperparameters, such as the number of estimators, maximum depth, minimum child weight, learning rate, regu-

larization lambda, subsampling rate (subsample), number of parallel threads, and maximum number of bins. These hyperparameters were

carefully selected and fine-tuned to optimize the performance of the model and enable it to effectively capture complex patterns in the

data. Tuning the XGBoost hyperparameters can be challenging because of their interdependencies. To address this challenge, advanced

techniques, such as Optuna, were used to automatically search for the best combination of hyperparameters. Optuna employs optimization

algorithms to efficiently explore the hyperparameter space and determine the optimal configuration for maximizing model performance.

SHAP was used to predict the XGBoost model and identify the key features that contribute to model decisions. It provides valuable insights

into the underlying patterns and relationships in the data, helping to guide further analysis and decision-making. Overall, XGBoost can be

considered an optimized model to yield maximum accuracy compared with all models implemented in this study. Finally, it provides the

best prediction for the classification task compared with the other models. More detail about XGBoost can be seen in MLmodels description

(supplemental information). The implementation details of theMLmodels utilized in this study can be found in the supplemental information.
Performance evaluation

The performance of the classification model was investigated using the MCC, sensitivity, specificity, and accuracy scores to determine the

validity of the model43,44 and can be measured by the equation given below:

MCC =

�
tp � tn � fp � fn�

O
�
tp+fp

��
tp+fn

��
tn+fp

�ðtn+fnÞ
sensitivity =
tp

tp+fn
specificity =
tn

tn+fp
accuracy =
tp+tn

tp+tn+fp+fn

where tp, tn, fn, and fp denote true positive, true negative, false negative, and false positive, respectively. The detail of the evaluationmetrics

can be seen in supplemental information.
Hyperparameter optimization

The optimal hyperparameters were selected using the Optuna hyperparameter optimization technique.36 Optuna is a specialized software

framework for automatic hyperparameter optimization in ML. It leverages the Bayesian optimizationmethod, which was specifically designed

for fine-tuning the hyperparameters in ML models. Optuna was extensively used to exhaustively explore all potential hyperparameter com-

binations to achieve exceptional performance on our uniquedataset. The objectivewas to identify the ideal hyperparameter configurations to

optimize the performance of our model. Thus, to effectively use this hyperparameter optimization method, we applied this approach to the

XGBoost classifier, and all models implemented during this study. This allowed us to achieve the best hyperparameter combination, which

directly influenced the performance of the proposedmodel on the target variable. Moreover, insufficient hyperparameter tuning can result in

suboptimal performance in ML and deep-learning models. Hyperparameter optimization is critical for determining the output and overall

effectiveness of an ML model. Table S3 (supplemental information) shows the optimal hyperparameter settings derived from Optuna opti-

mization. It provides details of the XGBoostmodel, search space, and optimal combination achieved. The best hyperparameter combinations
10 iScience 27, 109200, March 15, 2024
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is used to train the proposed model, which tends to achieve an accuracy score of 85%. Tables S4–S6 (supplemental information) list the

respective models, search space, and optimal combinations achieved using Optuna.
Feature importance

This section discusses how each feature affects the prediction of the target variables. SHAP was implemented to assess the importance and

contribution of the features.35 A SHAP analysis methodology is similar to that of a parametric analysis in that variables are altered while other

variables are kept constant to observe the impact of varying variables on the target variable. The XGBoost model was selected for the SHAP

analysis because it outperformed the other models in terms of accuracy. Initially, we evaluated the significance of the input variables to

understand their influence on the prediction of the target variable. Figure 4 shows the importance of each input variable. The SHAP analysis

provided compelling evidence of the robustness of the XGBoost classifier’s performance in accurately predicting the dominant recombina-

tion in PSC. Notably, the ideality factor (N), FF (0.18), VOC (0.10), and VOC 0.32 emerged as highly influential features for determining the target

variable. These features demonstrate that they are significantlymore important in predicting all three classes than the other features, as shown

in Figure 4. Comprehensive SHAP analysis provides invaluable insights into the relative significance and contribution of each feature in pre-

dicting the target variable, thereby enhancing our understanding of the underlying relationships within the dataset. Additionally, Figures S9–

S11 (supplemental information) outline separate SHAP analysis for individual classes, highlighting the importance of features for each class.
QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis were employed to assess and identify the most optimal ML model in our study. Various performance evaluation metrics

were utilized, and the models were meticulously compared. Additionally, Receiver Operating Characteristic (ROC) curves were generated

for each model to scrutinize their discriminatory capabilities between positive and negative classes. Furthermore, a classification report

was generated for each ML model to provide a comprehensive assessment of their overall performance in this study.
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