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A guided multiverse study of neuroimaging
analyses
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For most neuroimaging questions the range of possible analytic choices makes it unclear how

to evaluate conclusions from any single analytic method. One possible way to address this

issue is to evaluate all possible analyses using a multiverse approach, however, this can be

computationally challenging and sequential analyses on the same data can compromise

predictive power. Here, we establish how active learning on a low-dimensional space cap-

turing the inter-relationships between pipelines can efficiently approximate the full spectrum

of analyses. This approach balances the benefits of a multiverse analysis without incurring

the cost on computational and predictive power. We illustrate this approach with two

functional MRI datasets (predicting brain age and autism diagnosis) demonstrating how a

multiverse of analyses can be efficiently navigated and mapped out using active learning.

Furthermore, our presented approach not only identifies the subset of analysis techniques

that are best able to predict age or classify individuals with autism spectrum disorder and

healthy controls, but it also allows the relationships between analyses to be quantified.
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Typically, the research questions of neuroimaging studies are
clearly specified (e.g., quantifying differences in functional
connectivity measured with functional MRI (fMRI)

between different groups or individuals), while the specific details
of the analysis pipeline are not. For example, the analysis might
vary in how the functional MRI data is processed to remove
unwanted noise (e.g., which kernel, smoothing factor or type of
motion correction to use), how the data is parcellated (e.g., ana-
tomically, functionally defined reference brain atlases or data-
driven approaches), or what specific analysis metric is selected to
define connectivity (e.g., correlation, partial correlation) or
quantify the data (e.g., which graph theory metric). Accordingly, it
is now well recognized that a single research question can be
addressed using a wide range of different analytic pipelines, often
yielding slightly different answers1–3. In fledgling research areas,
such as functional neuroimaging, in which many of the ground
truths are yet to be discovered, analytic exploration is an una-
voidable aspect of the scientific process. A central conceptual
question facing the community, therefore, is how to balance the
data exploration needed for scientific progress with the analytical
rigor necessary to minimize the number of such discoveries that
are false positives. To highlight this issue ref. 4 asked 70 inde-
pendent teams to analyze the same dataset and test nine pre-
defined hypotheses. Although all teams used different workflows
to test these hypotheses and showed relatively high variability in
the specific answers, a meta-analysis showed reasonable agreement
among the broad results. The degree of consensus in studies such
as this are important because different approaches can yield
broadly similar answers and this, in turn, provides confidence that
these conclusions are not tied to a specific analytic approach5.

Multiverse analyses are not only useful for finding consensus
but for mapping interrelationships between pipelines more gen-
erally; in this article, we establish how mapping the inter-
relationships between analyses can help understand homogeneity
across different pipelines but also understand heterogeneity. Our
study builds on prior studies that map the performance of dif-
ferent algorithms on different datasets6; in our study, we build a
low dimensional representation of the analytic space of different
pipelines. In the low-dimensional space, analytic pipelines that
are closer produce similar outputs and therefore exhibit a more
similar performance than pipelines that are further away in space.
This structure helps build confidence in the conclusions drawn
from specific analysis since it helps us understand how dependent
specific results are on idiosyncratic aspects of the analytic
approach. Exploring the space has other potential advantages; by
combining pipelines (i.e., creating ensembles) that are further
away in the multiverse space, the researcher can combine the
strengths of different analysis pipelines. A better understanding of
the space also allows a more informed characterization of the data
as the researcher will be able to find areas where method devel-
opments may be needed.

Our analysis characterizes the multiverse as a low-dimensional
space, which has important pragmatic benefits, in particular, it
facilitates efficient search. There are near limitless potential
analysis approaches and their combinations (i.e., pipelines), each
with trade-offs between computational and time restrictions, as
such fully mapping out the analysis space will not only impair the
power of scientific inference but it can quickly become compu-
tational unfeasible. In a traditional approach, additional analyses
reduce the sensitivity of statistical tests since it is important to
correct for family wise errors that result from many comparisons.
Mapping out the space in a low dimensional manner, while
controlling the number of analyses sampled, has the potential for
maintaining statistical power to detect effects. In our proposed
multiverse approach, the trade-off between mapping the space
efficiently and the number of analyses sampled is controlled by

the researcher using the κ parameter (higher κ values result in a
more detailed mapping of the space at the cost of computational
and statistical power, lower κ values aim to find the best point in
as few samples although will be more affected by local optima).
The choice of this parameter will depend on the problem at hand
and the desire to fully map the space or to obtain the best pipeline
using only a few samples.

In summary, we present a framework that aims to map out the
space of analysis pipelines efficiently, and that can maintain the
sensitivity of inferential statistics and generalizability to out of
sample data. Our approach allows us to explore many different
features of the universe of pipelines and approaches, allowing
many choices to be empirically compared without the need for
exhaustive sampling. It does this through building a low-
dimensional space across analysis pipelines, which is then map-
ped using Bayesian optimization7. This machine learning
approach is flexible and the choice of how exploratory (mapping
the space in detail) or exploitative (finding the best workflow with
as few samples as possible) can be adapted depending on the
research objective. We illustrate the utility of our multiverse
approach in two contexts (1) a regression problem predicting
age from functional connectivity obtained from adolescent and
young adult participants8; and (2) a classification problem, pre-
dicting autism diagnosis from functional MRI. The motivation for
using functional connectivity (FC) for this is two-fold: (i) FC
applied to fMRI data is a useful technique for exploring the
interrelationships between brain regions9; (ii) such approaches
have also been shown to be highly sensitive to preprocessing steps
such as motion correction, data parcellation, and analysis
metric10,11. Moreover, there are dependencies between different
types of measures (see ref. 12 for an example involving graph
theory) such that the optimal analysis approach for any given
dataset or question is typically unknown a priori. Focusing on the
regression and classification problems allow us to evaluate the
utility of the multiverse approach under a range of different
conditions. We note, however, that the approach could be applied
more generally to many different types of neuroimaging problems
(both functional and structural) or indeed other types of data
(e.g., univariate and multivariate analyses), and ultimately be
applied to a range of basic scientific and clinical research.

Results
Regression analysis. The first step is to construct a low-
dimensional space from the analytic space. Figure 1 illustrates
the space obtained using MDS. However, we also explored the
obtained space using six additional embedding algorithms; the
results are presented in the Supplementary Material (Fig. S1). All
embedding algorithms demonstrate considerable structure in the
position of the different approaches (e.g., similar types of motion
correction, thresholding, graph metric are generally proximal).
This suggests that the low-dimensional space captures the intended
similarity between the approaches. We used a dissimilarity score to
assess how much the different embedding algorithms preserved the
topological information (i.e., similar pipelines should stay close to
each other after the embedding; see the Supplementary Material).
After varying number of k-Neighbors, multi-dimensional scaling
(MDS) better maintained the neighborhood of the original space
when k > 150. In addition, MDS displayed a relatively even spread
of approaches across the whole space, especially when contrasted
with Local-Linear-Embedding (LLE) and Spectral Entropy (SE).
An approximately even spread across the space is desirable for the
subsequent active learning and Gaussian process regression. As
such, MDS was used in subsequent analyses.

There are two objectives for the use of active learning on
the MDS-defined space of different pipelines: (i) finding an
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approximately optimal analysis approach efficiently and control-
ling for the number of multiple comparisons; while, (ii)
approximately estimating performance on the multiverse of
approaches without exhaustive sampling. These two objectives
can be observed in Figs. 2–4 where age-prediction models were
trained and evaluated for different pipelines selected by active
learning. As visible from Fig. 2, the range of predictions for all
pipelines ranged between (MAE (years) [−2.62, −2.22]; (mean ±
std =−2.39 ± 0.050)).
Figure 2 describes the result of the Gaussian process regression

after 50 iterations of active learning. Based on the 50 different
analysis approaches sampled, GP regression estimates perfor-
mance across all 544 approaches (Fig. 2a); this identifies areas
predicted to have higher age-prediction performance (in warm
colors) including the optimum, as well as approaches which
perform worse (in cooler colors). For comparison, the ground
truth of performance across the space (from exhaustive sampling
every approach) is presented in Fig. 2b. We observe a generally
good concordance between actual age prediction for each
approach and the estimated prediction across the whole space
(Spearman’s ρ= 0.397, p < 0.0001).

The evolution of the active sampling and Gaussian process
regression model is presented in Fig. 3. We initially observe a poor
GP estimation of the space based on the first 10 random burn-in
samples. As the sampling increases, the space is progressively
better estimated achieving increasingly higher correlations between
empirical and estimated spaces. Acquisition function parameters

strongly affect the active sampling; to illustrate this, the parameter
κ was varied to conduct both exploratory (κ= 10, Fig. 3a) and
exploitative versions of active sampling (κ= 0.1, Fig. 3b). The
exploratory version achieves a better estimation of the whole space,
while the exploitative version focuses on an estimated optimum
much more quickly, but the GP model changes much less
subsequently, resulting in a much lower correlation between
estimated and empirical accuracies across the space.

To investigate the reliability of the active sampling, the process
was repeated 20 times (using the more exploratory κ= 10) with
different random seeds (and so different initial random burn-in
sampling). In Fig. 4, the optima (i.e., model with the highest
empirical accuracy) of the 20 repetitions are represented by the
black dots, based both on the highest accuracy estimated using
the GP model (Fig. 4a) and for the actual sampled points
(Fig. 4b). Table 1 presents the optimal analysis approaches
selected by each iteration. We note that many of the optima
illustrated in Table 1 were obtained by using the Betweenness
centrality. The range of the mean absolute error for the different
optima selected versus the full range of mean absolute errors
across the whole space is presented in Fig. 4c and the range of
correlations between actual and estimated accuracies across the
whole space for the 20 replications is presented in Fig. 4d.

Classification analysis. We also explored how the multiverse
approach could be used when distinguishing between autistic
people and controls. Similar to the process used on the regression

Fig. 1 Regression analysis: low-dimensional embeddings of the different pipelines. Each point represents a combination of data accounting for noise
confounds, thresholding of connectivity weights and different graph theory metrics. In particular, the colors represent both motion correction methods used
to pre-process the data (i.e., motion regression (orange) and global signal regression (blue)), the color intensity represents the different thresholds used in
each analysis and every graph theory metric is represented by a different symbol. The lower dimension space was obtained using Multi-dimensional
scaling (MDS).
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analysis, the first step consisted of building a low-dimensional
space that contained the information. While the results for the
MDS approach are depicted in Fig. 5, the embedded space
obtained by using LLE, SE, t-SNE, and UMAP are shown in
Fig. S3 on the Supplementary Materials. Although all approaches
were able to identify structure within the space, we choose MDS
as it created an even spread across the space that is essential for
active learning and used this method in further analyses. Figure 5
illustrates how despite being agnostic of the different pipelines,

the approach identified the structure on the dataset and grouped
similar pipelines together (e.g., the same connectivity metric tends
to be clustered together).

The evolution of the search space is depicted in Fig. 6. Similar
to the regression analysis the choice of the acquisition function
(i.e., exploitative or exploratory sampling) greatly impacts the
obtained results. The exploratory sampling (Fig. 6a) achieves a
better estimation of the space compared to the exploitative
acquisition function (Fig. 6b). Stating the relevance of
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Fig. 3 Regression analysis: the evolution of the search across the space for both the exploratory and exploitative function. a A more exploratory
acquisition function (κ= 10); and, (b) a more exploitative acquisition function (κ= 0.1). Within each panel, the first column is the estimated Gaussian
process (GP) model after different numbers of samples; the second column is the variance of the GP model across the space, indicating which points have
been sampled; the third column is the estimated versus empirical predictions for all the pipelines in the space.
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Fig. 2 Regression analysis: learning the space and identification of the optimal analysis pipeline for age prediction. a After 50 iterations of Bayesian
optimization, the Gaussian process (GP) using an exploratory sampling (κ= 10) closely estimates the empirical space. b Empirical assessment of age
prediction across the whole space. The colors correspond to the negative mean absolute error (MAE) of each model in years. Values closer to zero
represent a more accurate prediction and are shown in red.
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pre-processing for prediction, the accuracy of the predictions on
the classification space (measured by the AUC) varied between
[0.4, 0.7] (0.65 ± 0.06−mean ± std).

We observe a good overlap between the empirical space and
the estimated space when using an exploratory approach (κ= 10)
(Figs. 7a, b). Similar to the regression analysis, we also
investigated the reliability of the activity sampling on the
classification problem (Figs. 7c, d). The range of the AUC for
optima found by the active learning is depicted in Fig. 7e and the
correlation between the actual and estimated in Fig. 7f.

Discussion
In this paper, we established that active sampling can be used to
map out a low-dimensional space of the multiverse of analytic

approaches allowing the processing pipelines with higher accu-
racy to be identified in an efficient manner. To understand the
flexibility of our approach we focused on two questions that are
often examined using resting state functional connectivity: a
regression problem (predicting brain age) and a classification
problem (distinguishing between individuals with autism spec-
trum disorder and controls). Since efficient exploratory research
is critical for neuroimaging in order for it to become a mature
scientific discipline, our multiverse approach is helpful because it
balances the need for rapid discovery with an analytic approach
that maps out the inter-relationships between the analyses in a
low-dimensional space. Our approach, therefore, establishes
multiverse approaches a cost effective method for balancing Type
I and II errors in a range of neuroimaging contexts.

Our analysis applied active sampling to predict age and classify
autism diagnosis from functional connectivity and by doing so
illustrated why the multiverse approach is helpful. Our main aim
was to showcase active sampling on a space of pipelines, rather
than identify (the) optimal combination(s) of processing steps in
general. Nevertheless, it is interesting to consider the general
themes that emerge from the family of approaches selected as
optimal by this approach. By repeating the active learning method
20 times, we see substantial consistency in processing steps across
the selected optima for both the regression and classification
situations. For the regression problem, motion regression con-
sistently outperforms the global signal regression; lower, but not
the lowest sparsities were also favored using a range of both
simple and complex graph theoretical metrics, with betweenness
centrality selected most frequently. These results are important
because global signal regression is one of the most debated fMRI
processing steps, with many arguments proposed both for and
against its inclusion in processing pipelines13,14. With respect to
thresholding we observed that most of the optima had a higher
threshold. This is in line with previous research that observed that
connections with lower edge weights (i.e., correlation) are more
likely to be spurious suggesting that connectomes thresholded to
lower densities might be less affected by noise11,15. Finally, as
many of the optima illustrated in Table 1 were obtained by using
the Betweenness centrality, this might suggest that this graph
theory metric is more robust to the usage of different pre-
processing choices. Betweenness centrality had previously
been found to perform well in network neuroimaging applica-
tions, including in machine learning applications16. For the
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Fig. 4 Regression analysis: performance of the optimization across different random starting conditions. For computational efficiency, only 20 iterations
of active sampling were performed. Black dots represent optima of the 20 iterations based on (a) the highest accuracy estimated using the GP model and
(b) the actual sampled points. c Range of negative mean absolute error for the optima versus negative mean absolute errors across the whole space.
d Correlations between actual and estimated accuracies across the whole space for the 20 replications.

Table 1 Regression Analysis: List of the data, threshold,
graph theory metric and obtained mean absolute error
(MAE) for the empirical optima obtained for the 20
iterations.

Data Regression Sparsities Graph Theory Metric Mae

Motion Regression 0.125 gateway degree −2.434
Motion Regression 0.060 betweennness centrality −2.531
Motion Regression 0.250 eigenvector centrality −2.442
Motion Regression 0.300 modularity (louvain) −2.591
Motion Regression 0.050 strength −2.419
Motion Regression 0.125 gateway degree −2.408
Motion Regression 0.125 gateway degree −2.408
Motion Regression 0.100 betweennness centrality −2.388
Motion Regression 0.300 modularity (louvain) −2.591
Motion Regression 0.100 betweennness centrality −2.388
Motion Regression 0.100 betweennness centrality −2.388
Motion Regression 0.100 betweennness centrality −2.388
Motion Regression 0.100 betweennness centrality −2.442
Motion Regression 0.100 betweennness centrality −2.388
Motion Regression 0.100 betweennness centrality −2.388
Motion Regression 0.100 betweennness centrality −2.388
Motion Regression 0.100 betweennness centrality −2.388
Motion Regression 0.020 module degree z-score −2.528
Motion Regression 0.020 module degree z-score −2.528
Motion Regression 0.020 module degree z-score −2.528
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classification dataset, both in the organization of the low-
dimensional space (Fig. 5) and the estimated optima (Fig. 7a),
we observe that the method used to infer connectivity was the
most salient organizing feature, with the tangent projection
showing a more robust classification performance and indepen-
dent of the other pre-processing steps using the tangent projec-
tion as the metric yielded better accuracy (consistent with what
has previously been observed17–19). Other factors such as how
the data was parcellated were more variable in terms of
performance20. However, by repeating the active learning method
20 times we noticed that only a few repetitions (3/20—Table 2)
were built using the tangent metric. This illustrates that there is
not a single component of the pipeline that is likely to be superior
across different goals, but that different questions may entail
different combinations of the analytic components that might
influence the pipeline’s performance in a specific context.

Fortunately, our multiverse approach is highly flexible and so
can be easily tailored to many different analytic goals. If a
researcher is interested in applying our method to a new dataset,
there are only two building blocks that need to be adapted: (1) It
is necessary to create a low-dimensional space that quantifies the
similarity of the different samples under analysis. We used the
cosine similarity to quantify the difference among FC, however,
different metrics could be used. The low-dimensional space does
not require that the analyses result in data of the same format; it
is possible to combine univariate and multivariate analyses (e.g.,
networks, single regions, or every voxel or vertex measured), and
also different modalities. These features allow our multiverse

approach to cover a very heterogeneous collection of approaches.
(2) An active learning approach is needed to navigate the low-
dimensional space. The active sampling component requires
every analysis to be evaluated by a common set of target mea-
sures. In a predictive context, a cost function (e.g., classification
accuracy, mean absolute error) can be used to evaluate pipelines;
however, our proposed approach can also be applied to non-
predictive measures, such as parameter estimates or standardized
measures (e.g., effect size or t-statistics). Active sampling may also
be applicable to a subset of non-supervised problems (e.g.,
without data labels/ group assignments). For example, a measure
of test-retest reliability (e.g., the interclass correlation coefficient
(ICC)) could be used as the target metric to navigate the space.
That is instead of using the mean absolute error or the classifi-
cation accuracy, as done in this paper, the researcher could use
the ICC as a cost function. However, this choice would require a
test and re-test acquisition of the dataset being used for the active
sampling. In addition, our proposed approach could also be
integrated with automated pipelines such as fMRIPrep21, to allow
controlled, efficient exploration of a much wider range of pre-
processing and analysis. As such, the approach is potentially
relevant for many questions in neuroimaging. However, if a single
target metric can not be defined (e.g., in descriptive or exploratory
data analysis) or when there are multiple, target metrics that
cannot be aggregated a priori into a single target metric then the
approach proposed in this paper will not be suitable.

In the current paper, the analysis space was developed from a
subset of the whole participant group; however, this need not be the

Fig. 5 Classification analysis: low-dimensional embeddings of the different pipelines. Each point represents a combination of data accounting for four
different function preprocessing steps (represented by the different hatch styles), processing strategy (the color intensity), ROIs (shapes) and connectivity
metrics (different colors). The image illustrates the space generated using MDS. Despite having no knowledge about the space, the embedding algorithm
was able to identify the structure of the space.
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case in all versions of this approach. A predefined space can be
constructed using an existing dataset, and subsequently applied, with
minimal computational cost, to different datasets. For example, large
open datasets such as the Human Connectome Project22 or UK
Biobank23 could be used to define analysis spaces which can then
be applied to smaller (e.g., clinical) datasets. This would mirror
the strategy taken with many deep learning approaches, which
are computationally expensive to train but not to apply to new data.
The success of such a strategy would depend on how much similarity
there is across datasets and how these intersect with the specific
analysis approaches taken. We note, however, that for active learning
to be efficient it does not require a perfectly organized space, but
rather the much weaker assumption that nearby points in the space
are similar in terms of the target function (e.g., classification accu-
racy). As such, even a relatively weak mapping from a space defined
on a larger dataset, may be sufficient for efficient sampling.

Furthermore, because the data was extensively cleaned before it
was used in the pre-processing pipelines, we did not add any
quality control checks to test if the pipelines lead to erroneous
connectivity matrices for specific subjects. However, quality
controls that either drop-out subjects or censure problematic time
points, will be an interesting avenue for future extensions of our
work. We note that a benefit of our approach is that it will not
converge on pipelines that fail for many subjects as those will
have a poor performance and will therefore not lie in the optimal
areas in the space. Therefore, the low-dimensional space could be
used to check the validity of a specific analysis step within a

pipeline; if all pipelines using a specific analysis produced erro-
neous connectivity matrices in all or a large proportion of par-
ticipants they will show high similarity and will be clustered
closer together away from the optima.

Performing multiverse analyses has the potential for increasing
the generalizability of results (e.g., ref. 24). As recently revisited by
Yarkoni25, when interpreting findings, we often go (both statis-
tically and verbally) far beyond what is justified by the restricted
nature of the data and quantitative analyses performed. Our
proposed approach helps overcome this problem by building
more generalizable results in two ways: (1) assessing the gen-
eralizability of a pipeline or specific step of a pipeline compared to
other pipelines. That is, how specific or general is the choice of a
particular parameter in influencing performance. A good example
would be the usage of the tangent connectivity matrix on the
classification analysis, where the tangent projection both clearly
clusters together (Fig. 5), and is associated with high performance
(Fig. 7a). (2) Assessing the generalizability of pipelines to out of
sample data and over different repetitions (Fig. 4 and Figs. 7c–f).
By efficiently sampling the space, there is less opportunity for
overfitting the data than exhaustively sampling all pipelines,
maintaining generalizability to out of sample data. In addition,
mapping out the space in this manner has other potential bene-
fits; it allows us to know which areas of the space are under-
sampled (as a guide to developing new approaches) and which are
oversampled or irrelevant to the problem. Furthermore, as the
low-dimensional space captures the variability in connectivity
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Fig. 6 Classification analysis: the evolution of the search across the space for. a A more exploratory acquisition function (κ= 10); and, (b) a more
exploitative acquisition (κ= 0.1) function. Within each panel, the first column is the estimated Gaussian Process (GP) model after different numbers of
samples; the second column is the variance of the GP model across the space, indicating which points have been sampled; the third column is the
estimated versus empirical predictions for all the pipelines in the space. After 50 iterations the exploratory analysis shows a good correlation (ρ= 0.55)
with the empirical space.
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maps, it is possible to identify more than one region in the low-
dimensional space with good performance. The methods in these
distinct areas are likely to capture different information on the
data and could be further combined into ensembles.

The efficiency of the multiverse approach rests in the way that
the same data is only used a limited number of times, reducing
the problems inherent in sequential analyses in terms of both
overfitting and false positives. In the extreme, it is possible to
perform each iteration of the active sampling on a different subset
of participants who are then not reused; as such, each suggestion
from the Bayesian optimization for the next point to be sampled
would involve out-of-sample prediction. How exploratory or
exploitative the acquisition function is, will affect the number of
samples and so the degree of possible over-fitting (and loss of
statistical power). Fortunately, as our paper demonstrates, the
choice of acquisition function can be motivated by the scientific
question and the degree to which optimization of prediction or
mapping out the analysis space is the objective.

Similarly to previous work using Bayesian optimization for the
navigation of predefined experimental spaces26–28, the method
presented here can help improve the poor reproducibility present
across much of (neuro)science. Sequential analysis as applied here
is highly formalized, quantifiable and controllable, and as such, it
can be readily combined with pre-registration29. Furthermore, the
route and samples taken by the analysis make it possible to
deduce what the hypothesis (encoded as the target function of the
optimization algorithm) was at the time of testing. If a different
target function was selected, then the algorithm would have taken
a different route through the analysis space (see ref. 29). This
means that questionable research practices such as SHARKing
may be more difficult to pursue30.

As with any analysis approach, using active sampling meth-
odologies comes with inherent trade-offs. Most notably, for more
exploitative problems, where the optimal analysis approach is
known (or approximately known) a priori or highly theoretically
constrained, then the additional costs (in terms of sequential
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analysis affecting statistical power and computational burden) are
a serious limitation. The optimization algorithm finding local
minima resulting in poor overall performance is another potential
limitation; this will depend heavily on the acquisition function
including the type used and hyperparameters controlling
exploration and exploitation as well as decisions regarding the GP
regression and types of kernels used to model the low-
dimensional space. A related issue is the creation of the low-
dimensional space itself; this will inevitably involve a trade-off
between capturing relevant variance and creating a relatively
simple search space, with few dimensions. We show that the
search space is coherent (in terms of the placement of similar
pipelines near each other—Fig. 1) and the GP regression is able to
capture regularities in the space efficiently (Fig. 2). However, for
other problems, e.g., involving lower signal-to-noise ratios, more
heterogeneous variability across individuals, or more hetero-
geneous analysis approaches, building a compact search space
may be more challenging. Future work is needed to find the most
useful acquisition function, GP regression and search spaces for
applying active sampling approaches to multiverse analyses.

In summary, we have presented a method for efficiently
exploring outcomes across multiple analyses by building a low-
dimensional space that captures the similarity of pipelines and
subsequently exploring it using active learning. This maintains
the sensitivity of inferential statistics and generalizability to out of
sample data while mapping out the multiverse of pipelines, and so
enhancing the efficiency of scientific discovery. Although we have
illustrated this analysis and its efficiency using FC data on both a
regression and classification problem, this approach could be
applied to different neuroimaging problems (both functional and
structural) or indeed other types of data.

Methods
While the proposed framework can be applied to many neuroimaging studies, we
focus on its capabilities in both a regression context to predict age, and in a
classification context, to distinguish between controls and autistic participants. We
chose these two problems to illustrate how the method could be applied in different

settings (i.e., two supervised problem scenarios), however, the multiverse approach
could be used to map the space of other problems and datasets depending on the
researcher’s interest. The framework consists of two main steps: (i) create a low-
dimensional continuous space of the different pipelines; (ii) an active learning
component that efficiently searches the created space to find the optimal
analysis pipeline and produces estimates of the performance of other pipelines.

All code used for analyses and figure generation is available on GitHub (https://
github.com/Mind-the-Pineapple/into-the-multiverse). In the next sections, we
describe the data, the range of approaches considered, how the analysis space was
constructed and finally, the active learning approach used to sample the space and
so be able to estimate brain age and classify controls and individuals with autism
spectrum disorder across the multiverse of pipelines without exhaustive testing.
Note that both datasets are available online and the ethics committee of the leading
institution of each study approved it.

Regression analysis. We first focused on predicting brain age as it has been
proposed as a useful biomarker of neurological and psychiatric health31,32 and is
predictive of a range of other factors, including mortality33. More generally, pre-
dicting age is a useful proof of principle for methodological demonstrations since
the participant’s age is known with certainty34 and a range of studies have shown
that functional connectivity from resting state correlates with age (e.g., refs. 8,35,36).

Functional connectivity data. The starting point for our regression analysis is a
functional MRI dataset of changes in functional connectivity across adolescence
from8. This dataset consists of 520 scans from 298 neurologically healthy indivi-
duals (age 14–26, mean age= 19.24, see8 for details). Here, we only performed
cross-sectional analyses and so only kept the first scan for each individual. The
dataset was split into three parts: (i) 50 individuals, selected at random, were used
to build the low-dimensional space; (ii) 198 individuals were subsequently used to
perform search and (iii) 50 individuals were used as a holdout dataset (or a “lock
box approach”37) to test the best pipeline selected by active learning on an inde-
pendent subset of the dataset.

High dimensional space of pipelines. There are many decisions necessary to conduct
a functional connectivity study, including choices regarding data acquisition, pre-
processing, summary metrics and statistical models. Here, for convenience, we use
already acquired data which has been pre-processed using extensive pipelines to
reduce many potentially confounding sources of non-neural artefacts. Usefully, two
preprocessed datasets were shared by ref. 8 with two different types of correction
for movement artefacts: (i) global signal regression and (ii) motion regression. The
preprocessed fMRI time series had been averaged within 346 regions of interest,
including 330 cortical regions from the Human Connectome Project multi-modal
parcellation38 (excluding 30 “dropout” regions with low signal intensity) and
16 subcortical regions from Freesurfer. The Pearson correlation coefficient was

Table 2 Classification analysis: list of the functional pre-processing, ROIs, processing strategy, connectivity metric and the
obtained score for the empirical optima obtained for the 20 repetitions.

Functional pre-processing ROIS Processing strategy Connectivity metrics Score

cpac rois_cc200 nofilt_noglobal correlation 0.720
ccs rois_cc400 filt_global correlation 0.740
ccs rois_cc400 filt_global correlation 0.740
dparsf rois_ho nofilt_global tangent 0.696
dparsf rois_ez filt_noglobal covariance 0.471
cpac rois_ho nofilt_global tangent 0.637
ccs rois_cc400 nofilt_global correlation 0.756
cpac rois_ez filt_noglobal correlation 0.670
cpac rois_ho filt_noglobal tangent 0.645
ccs rois_ez nofilt_global covariance 0.675
cpac rois_tt filt_noglobal correlation 0.687
dparsf rois_dosenbach160 filt_noglobal correlation 0.605
dparsf rois_dosenbach160 filt_noglobal covariance 0.474
cpac rois_ez filt_noglobal covariance 0.639
cpac rois_ez filt_noglobal covariance 0.639
cpac rois_ez filt_noglobal covariance 0.639
cpac rois_ez filt_noglobal covariance 0.639
cpac rois_ez filt_noglobal covariance 0.639
cpac rois_ez filt_noglobal covariance 0.639
cpac rois_ez filt_noglobal covariance 0.639

Abbreviations: ccs (Connectome Computation System); cpac (Configurable Pipeline for the Analysis of Connectomes); dparsf (Data Processing Assistant for Resting-State fMRI); filt (Band-pass filtering
(0.01–01 Hz); global and noglobal (Global signal regression and no global signal regression, respectively)); rois_cc200 (ROI extraction using the Craddock 200 parcellation); rois_cc400 (ROI extraction
using the Craddock 400 parcellation); rois_ho (ROI extraction using the Harvard-Oxford atlas); rois_ez (ROI extraction using the Eickhoff-Zilles atlas); rois_tt (ROI extraction using the Talaraich and
Tournoux atlas); rois_dosenbach160 (ROI extraction using the Dosenbach 160 atlas);
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used to calculate functional connectivity (FC) between these regions. For further
details regarding data pre-processing, see ref. 8.

In order to demonstrate the capabilities of the proposed method we consider
three distinct analysis pipeline choices. These are:

1. The nature of regression: we explored data from two types of data regression
—motion regression and global signal regression.

2. The choice of threshold for estimated functional connectivity matrices: we
consider 17 distinct threshold values ranging from 0.01 (resulting in highly
sparse networks) to 0.4 (resulting in dense networks).

3. The graph theoretical metric studied: we consider 16 distinct simple and
higher-level features of network organization (see the Supplementary
Material (Table S1) for a full list) that have been successfully employed in
previous neuroimaging studies. Metrics were calculated using the Python
implementation of the Brain Connectivity Toolbox39; only nodal metrics
were included. If prior community assignment information was required, we
used the well-known Yeo network parcellation of the brain into seven
networks40.

The full space of analysis options is presented in Table S1. Every single
evaluated pipeline was built by using one of the regression choices, one threshold
and one graph theory metric. Therefore, the analyzed multiverse space consisted of
2 × 16 × 17= 544 different pipelines.

Classification analysis. To further test the effectiveness of our proposed method,
we evaluated how well our estimated space could be used to distinguish between
controls and individuals with autism spectrum disorder using the ABIDE dataset41.
The already preprocessed dataset using different pipelines and parameters was
downloaded from the Preprocessed Connectome Project (http://preprocessed-
connectomes-project.org/abide). A detailed description of how the data was pro-
cessed can be found at (http://preprocessed-connectomes-project.org/abide/
Pipelines.html).

Functional connectivity data. The used dataset contained functional connectivity
data from 882 subjects (476 neurotypical controls and 406 autistic people; mean
age= 17.19). Similar to the regression analysis the dataset was split into: (i)
176 subjects to build the low-dimensional space; (ii) 529 subjects to search the
created space, and (iii) 177 individuals were held back as a lock box37. We used a
stratified split to ensure that the distribution between controls and individuals with
autism spectrum disorder was maintained throughout the splits.

High dimensional space of pipelines. Similar to the regression analysis described
above, we analyzed different pre-processing and post-processing steps and their
effects on prediction. The used dataset42 had been pre-processed in the following
ways:

1. Functional pre-processing: Four different functional pre-processing pipe-
lines were used: Connectome Computation System (CCS), Configurable
Pipeline for the Analysis of Connectomes (CPAC), Data Processing
Assistant for Resting-state fMRI (DPARSF), and Neuroimaging Analysis
Kit (NIADK)

2. Processing Strategies: Each pre-processing was followed up by the usage (or
not) of band-pass filtering and global signal correction. When applied a
band-pass filtering of 0.01–0.1 Hz was used.

3. Regions of Interest (ROIs): We analyzed the time series extracted from 6
different ROI (i.e., Dosenbach 160, Craddock 200, Craddock 400, Eickhoff-
Zilles, Harvard-Oxford, and Talaraich and Tournoux.)

4. Functional connectivity metric: We also explore four different ways to
compute the functional connectivity interaction: covariance, correlation,
tangent and partial correlation. These metrics were calculated using the
nilearn package43.

The full space was composed of 384 pipelines (4 × 4 × 6 × 4= 384; see Table S2
for an overview of the methods used).

Constructing a low-dimensional space of pipelines. The steps to construct a
low-dimensional space and search it are the same for the regression and classifi-
cation problem, so they will only be described once.

In order to efficiently sample across a large number of pipelines, we need
information about the general relationships between them. This is achieved by
building a low-dimensional space that quantifies the similarity between pipelines in
terms of a distance in the low-dimensional space (i.e., how similar is the obtained
functional connectivity between the different approaches). Although the low-
dimensional space should capture the similarity between approaches across a range
of different problems and potentially a range of different datasets, we assessed the
utility of building the space for two datasets using very different problem categories
(i.e, regression and classification). However, the same space could be used to query
different aspects of the dataset. For example, we used the regression space to ask
questions about age, but it could equally be used to ask about other sources of
individual variability (e.g., neuropsychiatric symptoms or cognitive ability).

To construct the low-dimensional space, we applied all pipelines (544 in the
regression analysis and 384 for the classification analysis) to a subset of the
participants’ individual FC data (50 randomly selected for the regression 176
individuals stratified by diagnosis for the classification analysis; Fig. 8). The aim was
to build a space to locate approaches in terms of how they capture individual
variability; therefore, for each approach, we calculated the cosine similarity matrix
between pairs of participants. These were subsequently reshaped into a 2D matrix
corresponding to between-participant distances (this led to a matrix of 1225
participant pairs by 544 pipelines for the regression analysis and a 15400 × 384 matrix
for the classification. Because we ignore the self-similarity between subjects, the
number of similarities can be computed by using n_subjects × (n_subjects− 1)/2).

Finally, the low-dimensional space was constructed with established embedding
algorithms; we explored seven different algorithms: local-linear embedding44,
spectral embedding45, t-distributed stochastic neighbor embedding (t-SNE)46,
Uniform Manifold Approximation and Projection (UMAP)47, Potential of Heat-
diffusion for Affinity-based Transition Embedding (PHATE)48, Principal
Component Analysis (PCA), and multi-dimensional scaling (MDS)49. The
objective of the embeddings was to create a space useful for active learning which
would both: (i) capture similarity between approaches in terms of continuous
distance in the space; as well as (ii) distribute approaches relatively evenly across
the space. Based on observations of the spaces resulting from the aforementioned
embedding algorithms, MDS was selected to use in subsequent active learning (see
Results).

Searching the space. Employing the low-dimensional space created using FC
from a subsample of the data, active learning was used with the remaining parti-
cipants, to sparsely sample the space in order to: (i) find the most successful
approaches for predicting participant age and identify controls and autistic indi-
viduals based on FC; and, (ii) estimate age prediction or diagnosis ability for all
models, including the large majority of models which were not sampled.

Active sampling is performed using closed-loop Bayesian optimization with
Gaussian processes50. This loop involves: selecting a point in the space to sample;
evaluating it in terms of 5-fold cross-validated predictive accuracy; fitting a
Gaussian process (GP) regression to the space; and, evaluating an acquisition
function using the GP regression to select the next point to sample. Although we
use Bayesian optimization, the parameter κ determines the extent to which the
sampling process is exploratory or exploitative; higher kappa values result in a
much more detailed mapping of the space (reducing uncertainty across the whole
space), versus finding best the point in the space.

When a point in the space is selected, the closest analysis approach to that point
in the space is selected and its predictive accuracy evaluated by using support
vector regression for the brain age prediction and a Logistic regression for the
distinction between controls and autistic individuals, respectively. Gaussian process
regression was implemented by the scikit-learn library51,52 using the RBF kernel
and the default parameters. It is important to highlight that despite the prediction
algorithm being constant, the input data varied depending on the selected analysis
pipeline which could have, for example used a different method for motion
correction, threshold or graph theory metric. We used split 2, to find the optimal
pipeline (using negative mean absolute error and area under the receiver operating
characteristic curve (AUC) for the regression and classification analysis,
respectively) and evaluated the performance of the model and best pipeline
obtained by evaluating it on split 3 (Fig. 8c). The metrics reported in Table 1 and
Table 2 correspond to the model’s performance using the best pipeline identified by
the active learning on the split 2 and evaluated on split 3 for 20 repetitions.

For the examples presented in the results, there was an initial burn-in phase in
which ten points in the space were randomly selected and evaluated before active
learning began. Bayesian optimization used the upper confidence bound (UCB)
acquisition function50. The Gaussian process regression model used a Matern
kernel combined with a white noise kernel, with kernel hyperparameters chosen in
each iteration by maximizing log marginal likelihood using the default optimizer.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data used for the regression analysis was previously released by Váša et al.8 and is
available on Figshare (https://doi.org/10.6084/m9.figshare.11551602). The pre-processed
ABIDE dataset used in this study for the classification analysis can be downloaded from
http://preprocessed-connectomes-project.org/abide/index.html. The data generated for
creating the Figures shown in this study are provided in the Source Data file and can be
obtained by running the provided code. Source data are provided with this paper.

Code availability
The code used for analyses and figure generation is available on GitHub (https://github.
com/Mind-the-Pineapple/into-the-multiverse) and can be run using Colab or jupyter
notebooks.
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