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Background. Aim of this bioinformatics study based on transcriptomic analysis was to reveal the cross-talk between periodontitis
(PD) and hypothyroidism (HT). Methods. The gene expression datasets GSE18152 and GSE176153 of HT and GSE10334,
GSE16134, and GSE173078 of PD were downloaded through the Gene Expression Omnibus (GEO) database. Differential
Expression Genes (DEG) between cases and controls in each microarray were assessed by using the “limma” (linear models for
microarray data) R package (|log2 fold change (FC)|>0 and P-value <0.05). To analyze the cross-talk effect between HT and
PD, the intersection of DEG of HT and PD was selected. To investigate the biological function of cross-talk genes, the gene
ontology (GO) functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were
applied. Protein-Protein Interaction (PPI) network was constructed using Cytoscape software. Top 10 cross-talk genes were
screened, and the expression values of these 10 genes were extracted. ROC analysis was performed by using the pROC package
and GGplot2 package of R language to predict the classification accuracy. Results. The overlapping DEG between HT and PD
were 107 cross-talk genes. The results revealed that developmental process (P-value =1.06E-21) was the most significantly
enriched biological process, followed by cell differentiation (P-value =8.49E-18) and immune system process (P-value =6.78E-
11). KEGG analysis showed that Complement and coagulation cascades (P-value =2.29E-05), Hematopoietic cell lineage (P-
value =2.66E-05), Phospholipase D signaling pathway (P-value =0.034367878) and Chemokine signaling pathway (P-value =
0.04946333) were significantly enriched. The top 10 genes with most connections were LCE1B, LCE2B, LCE2A, LCE2C,
LCE1C, LCE1F, ITGAM, C1QB, TREM2, and CD19. The AUC values of the two datasets of HT were both greater than 65%
(GSE18152 = 81.42%, GSE176153 = 68.75%). AUC values of three datasets of PD were all greater than 60% (GSE10334 =
69.23%, GSE16134 = 73.72%, GSE173078 = 81.6%). Conclusions. A genetic cross-talk between HT and PD was detected,
whereby LCE family genes appeared to play the most important role.

1. Background

Thyroid dysfunction is highly prevalent, as it is one of the
leading endocrine disorders; therefore, thyroid diseases are
a global health problem [1]. Thereby, hypothyroidism
(HT) is the most common thyroid dysfunction, with a prev-
alence range between 0 and 7% across European and US
populations [2]. Depending on its cause, primary, secondary,
tertiary, and peripheral HT can be distinguished. The symp-
toms of HT can be multifarious; most common clinical signs
are fatigue, lethargy, cold intolerance, weight gain, constipa-

tion, change in voice, and dry skin, what can potentially vary
between different age and gender groups [2].

Periodontal diseases (PD), i.e., the inflammatory,
biofilm-related destruction of the tooth surrounding tissues,
represent a multifactorial disease [3]. Thus, periodontal-
systemic interaction is an issue of scientific interest during
the past decades. Since the 70s of the last century, changes
in periodontal tissues related to HT were observed [4]. It
has been reported that a reduction in serum levels of thyroid
hormones, as clinically present in HT, increases the bone
loss related to periodontal inflammation in animal model
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[5]. Meanwhile, a clinical relationship between PD and HT
appears reasonable and is supported by the literature,
although the body of evidence is still weak [6]. This is sup-
ported by several findings in recent literature; on the one
hand, periodontal therapy was found to positively influence
the thyroid status, whereby Interleukin 6 and TNF alpha
were revealed as potential key players [7]. Moreover,
Shcherba et al. showed that HT would be related to PD
development and increased destruction of connective tissue
[8]. These data lead to the conclusion of a potential interlink
between PD and HT, although the molecular mechanisms
and pathophysiological interplay are not fully understood,
yet.

Recently, bioinformatics analysis was able to reveal dif-
ferent cross-talk mechanisms on transcriptomic level for
periodontal-systemic interactions, e.g., between PD and Alz-
heimer’s disease [9], PD and atherosclerosis [10], PD and
oral cancer [11], or periimplantitis and rheumatoid arthritis
[12]. This reasonable methodical approach has the potential
to get a deeper understanding of the topic and to generate
further hypotheses for clinical research questions. Therefore,
this current study applied bioinformatics analysis based on
publicly available datasets with the aim to reveal the cross-
talk between PD and HT. During the analysis process, differ-
ential expressed genes between the two diseases should be
detected and analyzed regarding their predictive potential
as cross-talk genes between PD and HT. It was hypothesized
that PD and HT share several cross-talk genes and related
pathways on transcriptomic level. Thereby, inflammation-
related genes might be of highest importance in this context.

2. Material and Methods

2.1. Data Search and Extraction. The gene expression data-
sets of hypothyroidism (HT) and periodontal diseases (PD)
were downloaded through the Gene Expression Omnibus
(GEO) database (http://www.ncbi.nlm.nih.gov/). We syste-
matically searched the microarray studies by using the
terms: “hypothyroidism,” periodontitis,” and “Homo
sapiens.”

For HT, samples with whole blood were available for
analysis. Hypothyroidism (HT) patients or Congenital
Hypothyroidism (CH) patients acted as cases, and the con-
trol (CTL) groups or healthy patients acted as controls for
analysis. Therefore, GSE18152 and GSE176153 of HT were
screened and included into analysis (Table 1).

For PD, samples with gingival tissue were available for
analysis. Both chronic and aggressive PD patients acted as
cases, while control groups or healthy patients acted as con-
trols. Finally, GSE10334, GSE16134, and GSE173078 of PD
were screened and included (Table 1). There were two
microarray datasets and one high throughput sequencing
dataset for PD. One microarray dataset and one high
throughout sequencing dataset for HT were included.

2.2. Dataset Preparation. First, the high throughput sequenc-
ing dataset, the gene expression matrix, and related annota-
tion platform for each dataset were downloaded from GEO
database. Corresponding platforms were used to map the

microarray probes to gene symbols. If multiple probes
mapped to the same symbol, the mean value was adopted.
There was no gene information for the platform GPL5114,
which was the corresponding annotation document of
GSE18152. Based on the hg19 genome of the UCSC table
tools (http://genome.ucsc.edu/), the samples of GPL5114
were mapped to genes. With the transformed platform of
GPL5114, the samples of GSE18152 were mapped to genes.
Second, when the number of zero in the cases or controls
for a gene exceeded half of total samples, the gene was
deleted from the expression matrix.

2.3. Differential Expression Analysis. For the microarray
datasets in PD and HT, the Differential Expression Genes
(DEG) were determined between cases and controls in each
microarray by using the “limma” (linear models for microar-
ray data) R package. For the high throughput sequencing
datasets in PD and HT, the DEG were determined between
cases and controls in each dataset by using the “DEseq2” R
package. The |log2 fold change (FC)|>0 and P-value <0.05
were regarded as the cut-off criteria to determine DEG.

2.4. Cross-Talk Genes. To identify the potential cross-talk
genes between HT and PD, DEG of each dataset for HT were
combined, and the combined DEG acted as the final DEG
for HT. Meanwhile, DEG of each dataset for PD were com-
bined, and the combined DEG acted as the final DEG for
PD. To analyze the cross-talk effect between HT and PD,
the intersection of DEG of HT and PD was selected, and
these intersection genes were considered the potential
cross-talk genes of HT and PD.

To investigate the biological function of cross-talk genes,
the gene ontology (GO) functional enrichment analysis and
Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
way analysis were applied. We uploaded the cross-talk genes
to investigate the potential functions with gProfiler (https://
biit.cs.ut.ee/gprofiler/gost). P-value <0.05 and false discovery
rate (FDR)<0.05 were regarded as the cut-off criteria.

2.5. Protein-Protein Interaction (PPI) Network Analysis for
Cross-Talk Genes. To analyze the role of cross-talk genes in
biological networks, the protein-protein interactions were
applied. The cross-talk genes were uploaded to the STRING
database (http://www.string-db.org/), then the PPI network
of cross-talk genes was constructed using Cytoscape soft-
ware. In the PPI network, each node represents a gene or
protein, and the edge between nodes represents the interac-
tion of the molecules. Hub genes are usually deemed to be
functionally critical and highly interconnected with other
genes. Cytohubba plugin of Cytoscape was applied to
explore the hub genes. Cytohubba identified important
nodes/hubs and fragile motifs in an interactome network
by several topological algorithms including Degree, Edge
Percolated Component (EPC), Maximum Neighborhood
Component (MNC), Density of Maximum Neighborhood
Component (DMNC), Maximal Clique Centrality (MCC),
and centralities based on shortest paths, such as Bottleneck
(BN), EcCentricity, Closeness, Radiality, Betweenness, and
Stress.
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2.6. Hub Genes Validation Study. In the analysis of network
topological properties of cross-talk genes, the larger the
MCC of the gene in the network is, the more important
the gene acts in the network. Top 10 cross-talk genes were
screened by the MCC, and the expression values of these
10 genes in each dataset of HT and PD were extracted. Based
on the gene expression value of genes in cases and controls,
ROC analysis was performed by using the pROC package
and GGplot2 package of R language to predict the classifica-
tion accuracy.

3. Results

3.1. Identification of DEG. All datasets were analyzed sepa-
rately in the process of differential expression analysis. The
DEG were screened out according to the cut-off criteria.
For the GSE10334, GSE16134, GSE173078, and GSE17615,
the genes with p-value <0.05 and |log2(FC)|>1 were the
DEG, while Log2(FC)>1 were the up-regulated genes and
log2(FC)< -1 were the down-regulated genes. For
GSE18152, the genes with p-value <0.05 and |log2(FC)|>0
were the DEG, whereby Log2(FC)>0 were up-regulated
and log2(FC)< -9 were down-regulated. The DEG counts
are listed in Table 2. The volcano plots of the datasets are
shown in Figure 1.

3.2. Cross-Talk Genes between HT and PD. After differential
expressed analysis, 3190 DEG were obtained for HT and 739
DEG for PD. The overlapping DEG between HT and PD
were the cross-talk genes, whereby 107 cross-talk genes were
acquired (Figure 2). To observe the changing trend of the
expression level of cross-talk genes in HT and PD, we used
pheatmap package of R language to display the expression
of cross-talk genes in HT and PD (Figures 3 and 4 ).

3.3. Biological Function Analysis of Cross-Talk Genes. We
uploaded the 107 cross-talk genes to perform the GO
(including biological process, molecular function, and cellu-
lar component) analysis and KEGG analysis. The results
revealed that developmental process (GO:0032502; P-value
=1.06E-21) was the most significantly enriched biological
process, followed by cell differentiation (GO:0030154; P
-value =8.49E-18) and immune system process
(GO:0002376; P-value =6.78E-11) (Figure 5(a)). Further-
more, KEGG pathway enrichment analysis showed that
Complement and coagulation cascades (KEGG:04610; P
-value =2.29E-05), Hematopoietic cell lineage (KEGG:04640;
P-value =2.66E-05), Phospholipase D signaling pathway
(KEGG:04072; P-value =0.034367878), and Chemokine sig-
naling pathway (KEGG:04062; P-value =0.04946333) were
significantly enriched (Figure 5(b)).

STRING database was used to perform PPI network
analysis of the cross-talk genes and 73 PPI for cross-talk
genes were acquired. Cytoscape software was adopted to
visualize the PPI network (Figure 6). In the PPI analysis,
the hub genes may play pivotal physiological regulatory
roles. Cytohubba was applied to identify the hub genes,
and the top 10 genes with most connections were identified
(LCE1B, LCE2B, LCE2A, LCE2C, LCE1C, LCE1F, ITGAM,
C1QB, TREM2, and CD19). Table 3 shows the topological
characteristics of top 10 genes in PPI network.

3.4. ROC Analysis for Hub Genes. In order to analyze the
prediction effect of hub genes on diseases, the sample values
of 10 hub genes in each dataset were extracted. Based on the
cases and controls, ROC analysis was performed on the
obtained datasets by using the pROC package and GGplot2
package of R language (Figure 7).

The results showed that LCE1B appeared in both HT
and PD datasets. The AUC values of the two datasets of

Table 2: The DEG counts of HT and PD.

PD HT
Datasets GSE10334 GSE16134 GSE173078 GSE18152 GSE176153

Analysis method Limma Limma DEseq2 Limma DEseq2

Pvalue P < 0:05 P < 0:05
|Log2(FC)| |Log2(FC)|>1 |Log2(FC)|>0 |Log2(FC)|>1
DEG up 152 188 90 1430 112

DEG down 42 48 473 1412 282

Total DEG 194 236 563 2842 394

Table 1: Datasets for HT and PD.

PD HT

Datasets GSE10334 GSE16134 GSE173078 GSE18152 GSE176153

Platform GPL570 GPL570 GPL20301 GPL5114 GPL17303

Experimental Array Array
High throughput

sequencing
Array

High throughput
sequencing

Case sample 183 241 12 74 4

Control sample 64 69 12 6 4

Total sample 247 310 24 80 8
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Figure 1: Volcano plots of HT ((a) and (b)) and PD ((c)–(e)). The abscissa is log2FoldChange and the ordinate is -log10 (P-value). The blue
dots represent down-regulated genes, the red dots represent up-regulated genes, and the gray dots represent genes that are not differentially
expressed.
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HT were both greater than 65% (GSE18152= 81.42%,
GSE176153= 68.75%). AUC values of three datasets of PD
were all greater than 60% (GSE10334= 69.23%,
GSE16134=73.72%, GSE173078=81.6%). Although the
prediction effect of the 10 hub genes was inconsistent across
all datasets in HT and PD, the genes interact with each other
to jointly influence disease progression. LCE1B interacts
with other hub genes (LCE2B, LCE2A, LCE2C, LCE1C,
and LCE1F), and the AUC of other hub genes (LCE2B,
LCE2A, LCE2C, LCE1C, and LCE1F) in HT and PD is
greater than 65%. The results showed that LCE family genes
play a cross-talk role in PD and hypothyroidism.

4. Discussion

Although the body of evidence is low, HT and PD appear to
be related to each other [6]. Thereby, one potential issue of
importance is the bone metabolism; thyroid hormones are
crucial for bone maintenance, whereby respective dysfunc-
tions like HT affect bone structure [13]. Because PD walks
along with progressive bone loss, this relationship appears
reasonable [5]. In this context, it is not surprising that
patients with HT show a pronounced destruction of respec-
tive connective tissues [8]. The second approach is the influ-
ence of HT on the PD-related immune response; in
experimental PD, thyroid dysfunction was found to foster
cytokine imbalance and severity of inflammation [14]. In

addition to that, a potential role of vitamin D in the interplay
between PD and HT was reported [15]. While those mecha-
nisms appear conceivable, the underlying mechanisms
remain poorly understood. This current study found several
potential cross-talk genes and related pathways between PD
and HT, which might serve as a basis for future research in
the field.

Based on the ROC analysis, the LCE family was found to
be the most relevant cross-talk genes in the interplay
between PD and HT. Late cornified envelope (LCE) protein
is important for epidermal differentiation, especially with
regard to keratinocytes [16]. The LCE cluster includes differ-
ent conserved genes, which encode stratum corneum pro-
teins [17]. Until now, the LCE family was neither found to
be associated with PD nor with HT. Accordingly, specific
hypotheses on the relevance of LCE genes in the interplay
between those two diseases cannot be formed and remain
speculative. LCE is reported to be related to psoriasis and
psoriatic arthritis [18]. Thereby, the LCE, although primarily
related to group 3, which was not identified in the current
study, is involved in inflammation repair of the skin [19].
Thus, LCE was related to (auto-) inflammation in context
of psoriasis [20]. Psoriasis is associated with PD, although
evidence is somewhat weak [21]. As a comorbidity of psori-
asis, PD has an immunomodulatory effect on psoriatic exac-
erbation [22]. Moreover, thyroid autoimmunity was also
found to be related to psoriasis [23]. Considering this, the
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Figure 2: Cross-talk genes between HT and PD.
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Figure 3: Expression level of cross-talk gene in HT.
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Figure 4: Continued.
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Figure 4: Expression level of cross-talk gene in PD.
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potential role of LCE family as cross-talk genes between PD
and HT would most likely indicate an increase of (auto-)
immunity; this is supported by the upper mentioned fact
that the thyroid dysfunction would foster cytokine imbal-
ance and severity of periodontal inflammation [14]. Further-
more, the biological processes immune system process and

complement, which were identified as potentially relevant
in the current study, would be in line with this hypothesis.

Most of the further identified potential cross-talk genes
support the hypotheses of increased (auto-) inflammation
to be relevant in the interplay between PD and HT. ITGAM
was found to be up-regulated in gingival tissues of periodon-
tal diseased patients [24]. Similarly, the complement C1QB
was related to periodontal inflammation [25, 26], while no
results for HT could be found in this respect. CD19 was
revealed to be strongly associated with pro-inflammatory
cytokines in PD [27]. Another study showed that CD19 pos-
itive B cells were one major B cell component in PD [28].
Similarly, CD19 was related to autoimmunity of the thyroid
[29]. All of these findings could support the (auto-) immune
relationship between PD and HT. Finally, triggering receptor
expressed on myeloid cells-2 (TREM2) was found to be a
cross-talk gene in the current study. TREM2 is an important
stimulator of osteoclast differentiation and bone loss in PD
[30]. Furthermore, TREM2 is crucial in osteoclastogenesis
within PD microenvironment [31]. TREM2 is regulated by
thyroid hormones [32]. Thus, the relationship between PD
and HT based on bone metabolism appears plausible.

This current bioinformatics study was comprehensive
and addressed a topic of clinical relevance. The underlying
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Figure 6: The PPI network of cross-talk genes. The more other nodes a node is connected to, the larger the node will be. The thicker the
edge between the two nodes, the larger their combined score will be.

Table 3: Topological characteristics of top 10 genes in PPI
network.

Gene MCC Degree DMNC MNC EPC BottleNeck

LCE1B 121 6 0.64826 5 5.832 3

LCE2B 121 6 0.64826 5 5.812 3

LCE2A 120 5 0.64826 5 5.723 1

LCE2C 120 5 0.64826 5 5.751 1

LCE1C 120 5 0.64826 5 5.722 1

LCE1F 120 5 0.64826 5 5.681 1

ITGAM 25 11 0.29157 8 11.86 24

C1QB 16 7 0.38896 5 11.228 1

TREM2 12 4 0.47366 4 10.196 1

CD19 11 7 0.23775 6 10.773 4
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approach of analyzing a systemic disease and its relationship
to periodontal diseases is reasonable and was repeatedly
applied in previous studies [9–12]. The main limitation is
the absence of a clinical validation, making all of the discus-
sions and derived conclusions speculative. Different hetero-
geneous patients and tissues were examined, what limits
the generalizability of the findings. Similarly, a high variety
of results was found, especially regarding potentially related
pathways and processes. Based on the limited body of liter-
ature, the importance of those findings is difficult to estimate
and a deeper discussion would be largely speculative at the
moment. Although the methodology appears reasonable,
the findings are only on transcriptomic level and can only
form a basis for future research in the field; the hypotheses
within this current study can be seen as a basis for clinical
studies.

5. Conclusions

A genetic cross-talk between HT and PD was detected,
whereby LCE family genes appeared to play the most impor-
tant role. Within the limitations of the data analysis, autoim-
munity and bone metabolisms seem to be the most relevant
pathways linking the two diseases.
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