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Abstract: Veterinary antibiotics (VAs) released into the environment are a concern because of the
possibility for increasing antibiotic-resistance genes. The concentrations of six VAs, chlortetracycline,
oxytetracycline, tetracycline, sulfamethazine, sulfamethoxazole, and sulfathiazole, in manure-based
compost, soil, and crops were measured using liquid chromatography–tandem mass spectrometry.
Mass balance analysis was conducted based on the measured antibiotic concentration, cultivation
area, and amount of manure-based compost applied. The result showed that the detected mean
concentration of VAs ranges was 3.52~234.19 µg/kg, 0.52~13.08 µg/kg, and 1.05~39.57 µg/kg in
manure-based compost, soil, and crops, respectively, and the substance of VAs detected in different
media was also varied. Mass balance analysis showed that the VAs released from the manure-based
compost can remain in soil (at rates of 26% to 100%), be taken up by crops (at rates of 0.4% to 3.7%), or
dissipated (at rates of 9% to 73%) during the cultivation period. Among the six VAs, chlortetracycline
and oxytetracycline mainly remained in the soil, whereas sulfamethoxazole and sulfathiazole were
mainly dissipated. Although we did not verify the exact mechanism of the fate and distribution of
VAs in this study, our results showed that these can vary depending on the different characteristics of
VAs and the soil properties.

Keywords: crop; fate; manure; mass balance; soil; veterinary antibiotics

1. Introduction

Veterinary antibiotics (VAs) have been used for therapeutic purposes to treat and
prevent diseases caused by pathogenic bacteria, or for nontherapeutic purposes to promote
the growth of livestock [1]. According to a previous report [2], global antibiotic use
is expected to increase by 67% by 2030, and the increased usage of VAs could have a
detrimental effect on the ecosystem [3]. In general, 10–20% of VAs administered to livestock
are metabolized in the animal’s body, and the remaining 80–90% are excreted in urine and
manure [4]. Livestock manure and urine are generally utilized as manure-based compost
or liquid fertilizer and applied to soil for improving soil quality and supplying nutrients
to crops in agricultural environments [5]. This indicates that residuals of VAs remaining
in manure-based compost or liquid fertilizer can be retained in the soil [6] or transferred
to other environmental compartments via leaching into groundwater or runoff to surface
water [7,8]. VAs retained in the soil can also be accumulated in different parts of the crops,
causing growth inhibition [9–11]. In addition, released VAs can reduce the diversity and
activity of soil bacteria [12,13], as well as increasing antibiotic-resistant genes (ARGs) in the
agricultural environment [14,15].

Several countries, including the United States [16], European nations [17], Canada [18],
and China [19], have reported the occurrence of VAs in agricultural environments. The
highest concentrations of VAs in the different compartments of manure, soil, and crops
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were reportedly up to 143.97 mg/kg, 1.59 mg/kg, and 0.53 mg/kg, respectively. However,
many studies have focused on monitoring VAs in a single medium, and their distribution
in multiple agricultural environments, such as combinations of manure-based compost,
soil, and crop systems, is not fully understood. Mass balance analysis can be an effective
method to understand the fate and distribution in multiple media by comparing the relative
mass of VAs remaining in each medium [20]. A prior mass balance study showed that most
of the released antibiotics from manure remained in soil (about 65%), and less than 0.1%
of the antibiotics were accumulated in the plants [20]. This study clearly showed that the
fate of different antibiotics varied depending on the different properties of antibiotics and
uptake mechanisms of crops.

The fate of antibiotics is highly affected by soil properties such as soil pH, organic
carbon contents, and cation exchange capacity (CEC) [21]. Antibiotics are generally polar
and can be ionizable depending on pKa values and soil pH, resulting in cationic, anionic,
zwitterionic, and neutral species [22]. Park and Huwe (2022) evaluated the transport of
sulfonamide in agricultural soil and reported that the adsorption affinity of sulfonamide
was highest in the pH range of 4.0–8.0 [23]. The organic carbon contents also play an
important role in controlling the fate and transport of antibiotics, exerting hydrophobic
interactions. In addition, higher clay contents can increase the sorption of antibiotics
because of their large specific surface area and ion exchange capacity [21].

The objective of this study was to investigate the fate and distribution of VAs, in-
cluding tetracycline (TC) and sulfonamide (SA) antibiotics, in agricultural environments.
Antibiotics were analyzed in manure-based compost, soil, and crop samples collected
during the crop-growing period, and mass balance analysis was conducted to examine
their fate and distribution in the manure-based compost–soil–crop system.

2. Materials and Methods
2.1. Chemicals and Standards

Veterinary antibiotics were selected based on their sales in Korea, and included chlorte-
tracycline (CTC), oxytetracycline (OTC), tetracycline (TC), sulfamethazine (SMZ), sul-
famethoxazole (SMX), and sulfathiazole (STZ). All solvents used for pretreatment and
instrumental analyses were of HPLC-grade and purchased from JT Baker (Philipsburg, NJ,
USA). Sodium phosphate dibasic, formic acid, and Na2-EDTA were obtained from Sigma-
Aldrich (St. Louis, MO, USA), and citric acid was purchased from Daejung Chemicals &
Metals Co. (Gyeonggi, Korea). Standard solutions of CTC hydrochloride (64-72-2, ≥97.0%),
OTC hydrochloride (2058-46-0, ≥94.9%), TC hydrochloride (64-75-5, ≥95%), SMZ (57-68-1,
≥99%), SMX (723-46-6 ≥98%), and SZ (72-14-0, ≥98.0%) were prepared with standards
purchased from Sigma-Aldrich (St. Louis, MO, USA). The stock solution (100 mg/L) was
prepared by dissolving the antibiotic standard in methanol, and the working solution
was prepared by sequentially diluting the stock solution with methanol to an appropriate
concentration. In addition, simeton, an internal standard at a concentration of 1000 mg/L,
was purchased from AccuStandard (New Haven, CT, USA) and diluted with methanol.
Individual standard solutions and internal standards were stored in amber glass bottles
at −20 ◦C.

2.2. Site Description and Sample Collection

Manure-based compost, soil, and crop samples were collected from three sampling
sites located in Chungnam and Jeonbuk provinces in Korea. The experimental area of each
site was 100 m2 (10 m × 10 m, W × L) and 3 different crops—perilla (perilla frutescens),
maize (zea mays), and soybean (glycine max)—were cultivated from April to September.
The temperature and annual rainfall of the sampling sites during crop cultivation were
6.1–31.3 ◦C and 1191–1354 mm, respectively (Figure S1 in Supplementary Materials).

Commercially available manure-based compost was purchased from the market at
each sampling site. Although the exact mixing ratio between the livestock manure and
organic bedding material in each compost was not known, a mixing ratio of 70% livestock
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manure (swine, cattle, or poultry) and 30% organic bedding materials is common in
commercially available manure-based compost in Korea. From each sampling site, manure-
based compost was collected before applying it to the soil in March. Approximately 100 g of
manure-based compost was collected from 5 different packages and combined in a plastic
sample bag to make one representative sample for each sampling site. Then, manure-based
compost was applied in the field at an application rate of 1.5 ton/ha, as recommended by
the Rural Development Agency (RDA) in Korea.

Soil samples were collected at a depth of 0–20 cm using a hand auger after removing
crop residuals and stones on the surface of the soil. Similar to manure-based compost
sample collection, five soil samples were collected from the 5 different locations in each
sampling site and combined in a plastic sample bag to make one representative soil sample.

Crop samples were collected after harvesting in September. Three pieces of crop
samples were collected from 5 locations in each sampling site, separated by edible parts,
stems, and roots, and contained separately in a plastic sample bag. All samples were stored
in an iced cooler and transferred to a laboratory for analysis.

The soil and manure-based compost samples were oven-dried (JSOF-150, JSR, Tokyo,
Japan) at 105 ◦C for 24 h for physicochemical analyses. For residual VA analysis, air-dried
samples at 20 ◦C under dark conditions were used. Crop samples were freeze-dried using
a freeze-dryer (SFDSF12, SAMWON, Seoul, Korea), and finely pulverized with a mortar
for VA analysis.

2.3. Physicochemical Analysis of Samples

The soil bulk density was measured using 100 cm3 stainless-steel soil cores [24], and
the soil texture was classified using a hydrometer based on the United States Department
of Agriculture (USDA) triangle method. Soil pH and electrical conductivity (EC) were
measured at a soil:distilled water ratio of 1:5 (w/v), or manure-based compost:distilled
water ratio of 1:10 (w/v) using a pH meter (Orion Star™ A111, Thermo Fisher Scientific,
Waltham, MA, USA) and an EC meter (SevenCompact Conductivity Meter S230, Mettler
Toledo, Columbus, OH, USA), according to the Korean Standard Test Method (KSTM
ES 07302). Soil organic matter content (SOM) was analyzed using the Walkley–Black
method [25], and the organic content of compost was measured using a loss-on-ignition
method with a furnace (Lindberg/Blue M42.5 LC2 Moldatherm Box Furnace, Thermo
Fisher Scientific).

2.4. Antibiotic Extraction and Clean-Up Process

For antibiotic extraction, 1.0 g of compost and soil, or 0.1 g of crop sample, was
accurately weighed in a 50 mL centrifuge tube containing 20 mL of Na2EDTA-McIlvain
buffer (pH 4.0). The solution was mixed using an orbital shaker for 15 min, centrifuged at
4000× g rpm for 15 min, and the supernatant was transferred into 250 mL flasks. The same
sample was extracted again; in total, 40 mL of supernatant was combined, diluted to 120 mL
with ultrapure water, and filtered using a 0.22 µm cellulose acetate membrane filter. Solid-
phase extraction was performed using an Oasis HLB Extraction Cartridge (3 cc/60 mg,
Water, Milford, MA, USA) to purify the extracted sample. The cartridge was conditioned
with 3 mL of methanol, 3 mL of 0.5 M HCl, and 3 mL of purified water. The sample was
loaded into the cartridge at 4 mL/min. After all samples had passed through the cartridge,
it was washed with 9 mL of ultrapure water and dried under vacuum for 10 min. Finally,
the antibiotics were eluted with 5 mL of methanol into a 15 mL glass centrifuge tube, and
50 µL of 0.24 mg/L simeton, an internal standard, was added. The eluent was evaporated
using a nitrogen evaporator (12 Position N-EVAP Nitrogen Evaporator, Organization,
Berlin, MA, USA) at 50 ◦C and reconstituted with 120 µL of mobile phase A (0.1% formic
acid in HPLC water). The extract was placed in a 1.5 mL centrifuge tube (spin-x centrifuge
tube filter, Corning Incorporated, Corning, NY, USA) containing a 0.22 µm nylon filter and
centrifuged at 15,000× g rpm for 3 min. Finally, the filtered extract was transferred to a
2 mL amber glass vial and stored at −20 ◦C in a freezer until further analysis.
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2.5. Instrumental Analysis

The target antibiotics extracted from all the samples and standard antibiotic solu-
tions were determined and quantified using an Agilent 1290 Infinity II (Agilent, Santa
Clara, CA, USA) system coupled to a triple quadrupole mass spectrometer (6500 Qtrap,
SCIEX, Framingham, MA, USA) equipped with an electrospray ionization source (ESI);
all antibiotics were analyzed using multiple reaction monitoring (MRM) in positive ion
electrospray mode. The target antibiotics were separated using a reversed-phase Zorbax
Eclipse Plus-C18 column (4.6 × 150 mm, 3.5 µm, Agilent, Santa Clara, CA, USA); mobile
phase A (0.1% formic acid in HPLC-grade water) and mobile phase B (0.1% formic acid in
acetonitrile) were used for the gradient elution system. Detailed liquid chromatography–
tandem mass spectrometry (LC–MS/MS) conditions and MRM parameters are presented
in Tables S1 and S2, respectively, in Supplementary Materials.

2.6. Method Validation

The analytical method for residual antibiotics was validated in terms of the linearity,
accuracy, method detection limit (MDL), and limit of quantification (LOQ), following the
guidelines of the U.S. Environmental Protection Agency (USEPA) method 1694 [26]. The
calibration curve in the range of 0.01–1.00 mg/kg was generated by linear fit, and the
linearity of each antibiotic was evaluated by the coefficient of determination (R2). The R2

value for all antibiotics was above 0.99, indicating a good linearity for the calibration curves
of all target analytes.

The method accuracy was estimated as the percentage recovery (%) of antibiotics from
the manure-based compost, soil, and crop samples spiked with standard mixtures. The
blank samples containing no residual antibiotics for all three matrices were spiked to a
final concentration of 1.0 mg/kg, and antibiotic concentrations were measured following
the same procedure as the samples. Commercially available antibiotic-free manure-based
compost was used as a blank sample. In addition, blank samples of soil and crop (soybean)
were obtained from the upland field where only chemical fertilizer has been applied
for 40 years in the Rural Development Agency (RDA), Korea. All blank samples were
confirmed to contain no residual VAs after following the same measurement procedure as
the samples. Then, the recovery was expressed as a mean percentage of three replicates by
comparing the measured concentration with the actual spiked concentration. All measured
concentrations of VAs in samples were calculated based on recovery and no surrogate was
used for VAs analysis.

The method detection limit (MDL) and limit of quantification (LOQ) were evaluated
by analyzing replicate samples spiked at a low concentration level (0.01 mg/kg), using the
following formulae (Equations (1) and (2)):

MDL (ng/kg) = t (n−1, 1−α=0.98) × SD (1)

LOQ (ng/kg) = 10 × SD (2)

where t (n−1, 1−α=0.98) is the Student’s t distribution value at the 98% confidence level, n − 1
degrees of freedom, and SD is the standard deviation of replicate spiked samples (n = 7).
The LOQ was calculated as 10 times the standard deviation of the spiked sample. The
linearity, accuracy, MDL, and LOQ results in manure-based compost, soil, and crops are
presented in Table 1.
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Table 1. Recovery, method detection limit, and limit of quantification of 6 veterinary antibiotics in
manure-based compost, soil, and crop samples.

Veterinary
Antibiotics R2

Recovery
(%)

Method Detection Limit
(ng/kg)

Limit of Quantification
(ng/kg)

Manure-Based
Compost Soil Crop Manure-Based

Compost Soil Crop Manure-Based
Compost Soil Crop

CTC 0.9971 79.8 72.9 101.8 4.0 2.9 4.6 12.8 9.3 14.7
OTC 0.9992 105.8 110.0 89.9 10.4 8.7 4.0 33.0 27.6 12.8
TC 0.9982 66.3 111.9 105.9 3.3 8.2 1.5 10.5 26.3 4.7

SMZ 0.9995 108.5 81.4 80.3 2.1 2.9 1.2 6.5 9.2 3.7
SMX 0.9987 83.8 62.8 76.7 10.6 11.9 0.7 33.6 37.8 2.4
STZ 0.9993 59.1 58.8 64.4 4.5 3.6 1.1 14.3 11.3 3.2

Abbreviations of the 6 veterinary antibiotics are as follows: CTC, chlortetracycline; OTC, oxytetracycline; TC,
tetracycline; SMZ, sulfamethazine; SMX, sulfamethoxazole; STZ, sulfathiazole.

2.7. Mass Balance Analysis

The mass of antibiotics in the manure-based compost, soil, and crops was calculated
using Equations (3)–(5).

The equations are as follows:

Mcompost = Ccompost × A × F (3)

Msoil = Csoil × A × D × BD (4)

Mcrop = Ccrop × A × Y (5)

where Msample is the calculated mass of antibiotics in each sample (µg), Csample is the antibi-
otic concentration in each sample (µg/kg), A is the cultivation area (m2), F is the fertilizer
application amount (kg/m3), BD is the soil bulk density (kg/m3), D is the depth (m), and Y
is the crop yield (kg/m2).

The initial concentration of antibiotics before crop cultivation was calculated by adding
the antibiotic mass of the soil collected in March and manure-based compost applied to the
soil (Equation (6)).

Minitial = Mcompost + Msoil 1 (6)

Finally, the degrees of dissipation (Rdissipation), residue (Rresidue), and uptake in the soil
were calculated using the initial antibiotic concentration, the antibiotic concentration that
remained in the soil, and the total antibiotic concentration across different parts of the crop.

2.8. Statistical Analysis

Triplicate measurement values were averaged and statistical analysis was performed
using the Statistical Package for the Social Sciences, version 26.0 (IBM Corporation, Armonk,
NY, USA). One-way ANOVA and post hoc Duncan’s tests (p < 0.05) were used to compare
each sample’s physicochemical properties and antibiotic concentration.

3. Results and Discussion
3.1. Chemical Properties of Compost and Soil

The chemical properties of the manure-based compost are presented in Table 2. For
the three manure-based compost samples, the range of mean pH values was 8.71–9.90,
showing alkaline characteristics. The ranges of mean electrical conductivity (EC) values
and organic matter contents (OM) were 39.0–70.5 dS/m and 78.2–90.3%, respectively. A
previous study reported that the alkaline property and high values of EC and OM contents
are common for typical manure-based compost [27]. Generally, manure-based compost
showed neutral or alkaline properties due to it containing ammonium nitrate. Additionally,
high EC values (up to 80 dS/m) and OM contents (up to 93%) can be observed because of
the high salt content and mixed organic bedding material [27].
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Table 2. Chemical properties of manure-based compost in each sampling site.

Sampling Sites
pH EC OM

dS/m (%)

Site 1 9.90 ± 0.03 a 39.0 ± 0.66 c 90.3 ± 0.59 a

Site 2 8.71 ± 0.02 c 70.5 ± 0.68 a 78.7 ± 6.40 b

Site 3 9.68 ± 0.01 b 55.4 ± 1.85 b 78.2 ± 1.29 b

Values of each property are mean ± standard deviation; ANOVA test was conducted and different superscript
letters in the same column are significantly different at p < 0.05. EC and OM represent electrical conductivity and
organic matter, respectively.

The mean pH and EC values of manure-based compost in the sampling site were
significantly different and the OM content at sampling site 1 was much higher than those
at sampling sites 2 and 3. As we did not examine the manure source, organic bedding
materials, and the composting process of each manure-based compost in this study, there
was a limitation to reveal the exact reason for the difference in chemical properties in
manure-based compost. However, previous studies showed that the chemical properties of
manure-based compost can be changed depending on different livestock species, varied
organic bedding materials, and the composting process [27,28].

The chemical properties of soil collected in March and September are shown in Table 3.
Soil texture analysis showed that the soil was sandy loam in sampling sites 1 and 2, whereas
soil in sampling site 3 was classified as sandy clay loam. The mean pH and EC values and
OM content in soil collected in March were 5.10–6.25, 0.24–0.38 dS/m, and 1.91–2.65%,
respectively. After cultivation, the pH, EC, and OM contents of soil collected in September
were increased in all three sampling sites. The highest increase was observed in soil pH
(28.9%) and EC (154.1%) in sampling site 2, and in OM (58.1%) in sampling site 1. Previous
studies reported that applying manure-based compost can increase soil pH and EC because
of the increased CO2 and nutrient concentration [28–30]. When manure-based compost or
organic amendments (biochar) were applied to soil, the concentration of CO2 was increased
because of enhancing microbial activity [31]. In addition, nutrient solubility increased as
the soil pH increased [32,33]. Although we did not examine the microbial activity in this
study, we presumed that an increase in microbial activity can contribute to an increase in
soil pH and EC in the study plot.

Table 3. Chemical properties of soil in each sampling site collected in March and September.

Sampling
Sites Soil Texture Soil pH EC

dS/m
OM
(%)

March Spetember March Spetember March Spetember

Site 1 Sandy loam 5.10 ± 0.01 a 5.30 ± 0.05 a 0.24 ± 0.01 a 0.52 ± 0.01 b 2.10 ± 0.04 a 3.32 ± 0.06 b

Site 2 Sandy loam 5.43 ± 0.02 a 7.00 ± 0.02 b 0.37 ± 0.02 a 0.94 ± 0.04 b 2.65 ± 0.13 a 3.47 ± 0.04 b

Site 3 Sandy clay loam 6.25 ± 0.02 a 7.40 ± 0.09 b 0.38 ± 0.03 a 0.45 ± 0.02 b 1.91 ± 0.06 a 2.61 ± 0.04 b

Values of each property are mean ± standard deviation; ANOVA test was conducted for comparing the difference
in soil properties between March and September, and different superscript letters in March and September for
each soil property are significantly different at p < 0.05. EC and OM represent electrical conductivity and organic
matter, respectively.

3.2. Concentrations of Antibiotics in Manure-Based Compost and Soil

The concentrations of six VAs detected in manure-based compost are shown in Table 4.
In manure-based compost, all VAs were detected except for SMX. The highest concentra-
tion of all five detected VAs was observed at sampling site 3, and significantly different
concentrations of VAs were observed across the three sampling sites. Among them, the
highest mean concentration of CTC (234.19 µg/kg) was observed at sampling site 3, and
the lowest mean concentration of SMZ (3.52 µg/kg) was measured at sampling site 1.
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Table 4. Concentrations of veterinary antibiotics in manure-based compost.

Sampling Sites
Concentrations of Veterinary Antibiotics (Mean ± SD, µg/kg)

CTC OTC TC SMZ SMX STZ

Site 1 24.38 ± 1.55 b 8.06 ± 0.69 c 7.41 ± 0.72 b 3.52 ± 0.06 c BLD 27.94 ± 2.86 b

Site 2 7.85 ± 0.52 c 29.53 ± 1.30 b 4.87 ± 0.14 c 5.02 ± 0.72 b BLD 19.60 ± 1.85 c

Site 3 234.19 ± 1.80 a 38.08 ± 3.08 a 44.93 ± 2.49 a 28.14 ± 1.29 a BLD 187.49 ± 1.56 a

BLD denotes below the limit of detection. For explanations of CTC, OTC, TC, SMZ, SMX, and STZ, see the Table 3
caption. Different superscript letters in the same column are significantly different at p < 0.05.

The concentrations of VAs in manure-based compost are highly dependent on the
amount of antibiotics administrated to different livestock [29,30]. Zhang et al. [34] reported
that the average concentrations of CTC, OTC, TC, and SMZ in the refined commercial
compost made from livestock manure were 29.8 µg/kg, 138.6 µg/kg, 55.3 µg/kg, and
15.2 µg/kg, respectively. However, much higher mean concentrations of CTC (3585 µg/kg)
and SMZ (956 µg/kg) were detected in chicken-manure-based compost in Zhejiang province,
China [35]. Another study also measured concentrations of CTC and OTC in swine, chicken,
and cow manure and reported that the average concentration of CTC was in the order:
cow (2.22 mg/kg) > swine (1.15 mg/kg) > chicken (1.09 mg/kg), and swine (2.69 mg/kg)
> chicken (1.55 mg/kg) > cow (1.24 mg/kg) for OTC [36]. In addition, biological and abiotic
factors such as microbial activity and thermal processes can affect the degradation rates of
VAs remaining in livestock manure during the composting process [37–39].

Concentrations of VAs in soil are summarized in Table 5. In the soil samples, none of
SMZ, SMX, or STZ were quantified and only CTC, OTC, and TC were detected with the
mean concentration range of 2.54–13.08 µg/kg in March and 0.52–7.87 µg/kg in September.
The concentrations of CTC, OTC, and TC in soil collected in March were significantly
different between sampling sites, and the highest concentration of CTC, OTC, and TC was
observed at sampling site 3. A similar trend was observed for the detected VAs in soil
collected in September, showing that significantly higher mean concentrations of CTC,
OTC, and TC were observed at sampling site 3 compared to sampling sites 1 and 2.

Table 5. Concentrations of veterinary antibiotics in soil.

Date Sampling
Sites

Concentrations of Veterinary Antibiotics (Mean ± SD, µg/kg)

CTC OTC TC SMZ SMX STZ

March
Site 1 4.68 ± 0.54 c 2.54 ± 0.05 c 3.46 ± 0.49 c BLD BLD BLD
Site 2 8.03 ± 1.28 b 7.32 ± 0.31 b 5.09 ± 0.72 b BLD BLD BLD
Site 3 13.08 ± 0.14 a 10.56 ± 0.85 a 7.74 ± 0.55 a BLD BLD BLD

September
Site 1 2.64 ± 0.30 b 1.04 ± 0.06 b 0.66 ± 0.11 b BLD BLD BLD
Site 2 2.18 ± 0.19 b 0.99 ± 0.09 b 0.52 ± 0.01 b BLD BLD BLD
Site 3 5.23 ± 0.06 a 7.87 ± 0.33 a 4.29 ± 0.50 a BLD BLD BLD

BLD denotes below the limit of detection. For explanations of CTC, OTC, TC, SMZ, SMX, and STZ, see the Table 3
caption. ANOVA test was conducted separately for March and September and different superscript letters in the
same column are significantly different at p < 0.05.

We assumed that relatively high concentrations of VAs detected in the manure-based
compost at sampling site 3 (Table 6) and initial high concentrations of CTC, OTC, and TC in
soil collected in March may cause the high concentrations of CTC, OTC, and TC at sampling
site 3 in September. Residuals of CTC, OTC, and TC in manure-based compost from the
previous year could have remained in the soil and the addition of manure-based compost
containing a high concentration of CTC, OTC, and TC may increase the concentrations
of those VAs in soil. Previous studies also reported that the application of manure-based
compost containing high concentrations of tetracyclines increased residuals of tetracyclines
in the soil [40,41]. However, more detailed information such as analyzing the control
sample (crop cultivation without application of manure-based compost) and degradation
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rate of manure-based compost after applying in soil would be necessary to reveal the main
reason for high concentrations of CTC, OTC, and TC at sampling site 3 after cultivation.

Table 6. Concentrations of antibiotics in the edible parts, stems, and roots of crops.

Plant Part Crops
Antibiotic Concentrations (Mean ± SD, µg/kg)

CTC OTC TC SMZ SMX STZ

Edible parts
Perilla 24.71 ± 1.51 23.60 ± 0.46 39.57 ± 1.27 BLD BLD 4.85 ± 0.25
Maize BLD BLD BLD BLD BLD 1.88 ± 0.39

Soybean BLD 12.72 ± 0.84 BLD BLD BLD 3.72 ± 0.23

Stem
Perilla 9.62 ± 1.22 19.48 ± 3.23 34.50 ± 5.32 BLD BLD 2.91 ± 0.09
Maize BLD BLD BLD BLD BLD 1.30 ± 0.02

Soybean BLD 10.91 ± 1.78 BLD BLD BLD 3.13 ± 0.58

Root
Perilla 4.60 ± 0.31 6.75 ± 1.10 20.79 ± 3.67 BLD BLD 1.95 ± 0.56
Maize BLD BLD BLD BLD BLD 1.05 ± 0.07

Soybean BLD 9.90 ± 0.19 BLD BLD BLD 3.07 ± 0.47

BLD denotes below the limit of detection. For explanations of CTC, OTC, TC, SMZ, SMX, and STZ, see the
Table 3 caption.

Meanwhile, none of the SMZ, SMX, and STZ were detected in soil, although SMZ
and STZ were contained in manure-based compost. This result agrees with a previous
study that tetracycline antibiotics were detected at a concentration of 11.69–21.46 µg/kg,
whereas much lower concentrations of sulfonamide antibiotics were detected at the level
of 0.01–1.22 µg/kg in soil applying livestock-manure-based compost [42]. In addition,
Hamscher et al. [43] reported that the concentration of sulfonamide antibiotics in the liquid
manure was higher than that of tetracycline antibiotics, but no sulfonamide antibiotics were
found in soils continuously applied with liquid manure. Sulfonamide antibiotics are highly
mobile and showed low adsorption capacity in soil when the soil pH was at a range of
5.5–7.0. Sulfonamide antibiotics can be in nonionized forms under weak acidic conditions
in soil, and negatively charged characteristics are also produced when the soil pH is close
to the pKa2 value (7.5), causing a desorption of sulfonamide antibiotics from the soil [44].

3.3. Concentrations of Bioaccumulated Antibiotics in Crops

The concentrations of antibiotics in crops divided into three different parts are sum-
marized in Table 6. Among the six antibiotics, four antibiotics (CTC, OTC, TC, and STZ)
were detected in a mean concentration range of 1.05–39.57 µg/kg and none of the SMZ and
SMX were detected in all three crops. Among different crop species and parts, the edible
part of perilla had the highest mean concentration of CTC, OTC, TC, and STZ, whereas
the only antibiotic detected in maize was STZ (1.05–1.88 µg/kg) in three different parts.
In soybean, OTC (9.90–12.72 µg/kg) and STZ (3.07–3.72 µg/kg) were detected in all three
parts. Comparing different parts in each crop, the mean concentration levels were ordered:
edible part > stem > root for all detected antibiotics.

The bioaccumulation of antibiotics in crops has been reported by many researchers [4,45–48].
Concentrations of antibiotic residuals in crop tissue can vary depending on different antibiotics
and the crop species. Dolliver et al. (2007) reported the uptake of sulfamethazine at a con-
centration range from 0.1 to 1.2 mg/kg in corn, lettuce, and potato after the application of
manure, and concluded that leafy crops have more of a tendency to accumulate antibiotics
than root crops [49]. This result agrees with our study that a much higher concentration
of antibiotics in perilla leaf was measured than soybean or maize. Hu et al. (2010) also
measured antibiotics in organically cultivated vegetables, and reported them at a range of
0.1–532 µg/kg of VAs including tetracycline and sulfonamide antibiotics [50]. This study
revealed that the uptake and accumulation of antibiotics in crops are mainly controlled by
water transport and passive absorption. According to partition-limited model results, the
main uptake mechanism of TC is passive absorption, because TCs have low octanol-water
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partition coefficient (Kow) properties. Moreover, the main uptake mechanism for SA is
water transport, due to its high water solubility.

3.4. The Fate of Veterinary Antibiotics Based on Mass Balance Analysis in Soil

Mass balance analysis was performed to determine the fates of six VAs in soil. The
relative percentages of dissipation, residue, and crop uptakes of VAs in the soil were
calculated based on the mass of antibiotics in the samples (Figure 1).
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Dissipation percentages of the STZ and SMZ in the three sampling sites were 83.6–97.0%
and 100%, respectively, whereas CTC, OTC, and TC were 43.1–72.9%, 25.9–86.6%, and
46.1–90.8%, respectively. Antibiotics in the soil can be dissipated by various factors, such as
runoff after rainfall [51] or degradation by biological and chemical processes [52,53]. Runoff
and leaching during rainfall are the main dissipation routes of STZ and SMZ antibiotics
into agricultural environments [54,55]. Although we did not measure antibiotics in the
subsurface soil, we could assume that STZ and SMZ were leached into the sub-soil as a
result of the intensive rainfall from July to September in Korea (Supplementary Data S1).
Kivits et al. [56] also reported that sulfamethoxazole and sulfamethazine tend to leach into
the sub-soil and can be detected in groundwater at concentrations up to 18 ng/L.

As none of STZ, SMZ, and SMX were detected and only residues of CTC, OTC, and TC
were detected in soil, the mass balance of soil residuals and crop uptake was calculated for
CTC, OTC, and TC. Among them, CTC remained in the soil at rates from 27.1% to 55.4%,
and OTC and TC were in the ranges from 13.4% to 73.2% and 9.2% to 53.9%, respectively.
At sampling site 3, OTC and TC levels remained higher than those at sampling sites 1 and
2. However, there is a question remaining that a much higher dissipation was observed for
CTC in soil at sampling site 3 after cultivation despite a higher initial concentration of CTC
in soil collected in March (Table 5) and higher detected concentration of CTC in manure-
based compost at sampling site 3 than at sampling sites 1 and 2 (Table 4). Assuming that
the main source of detected veterinary antibiotics in soil was only manure-based compost,
properties of detected veterinary antibiotics and soil chemical properties may impact the
dissipation of veterinary antibiotics in soil apart from the released concentration from the
source into the soil.

Previous studies have reported that the soil residuals of different VAs can vary de-
pending on the VA properties, such as molecular structure, polarity, and degree of ioniza-
tion [57–59]. Depending on the pKa values of each VA and the soil pH, cationic, neutral, or
anionic forms of VAs can be present in soil. When the pKa value is low, the cationic form of
VAs is present in soil and sorption is increased. In contrast, desorption is dominant when
the pKa value of VAs is high because the anionic form of VAs is present in the soil. Soil
column experiments revealed that tetracycline antibiotics have high adsorption coefficient
(Kd) values, and remain in the soil by strongly adsorbing clay minerals and divalent cations,
whereas sulfonamide antibiotics have low Kd values and high mobility, and can easily be
transferred to surface water [60].
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In addition, soil physicochemical properties (e.g., soil texture, soil pH, organic matter,
and metal ion content) can affect the sorption or desorption of antibiotics in soil [61,62]. The
sorption of tetracycline was increased when the soil pH was acidic and OM or clay contents
were high in the soil [63]. Among those reasons affecting the sorption of tetracycline antibi-
otics, a high clay content can be one of the reasons for the high concentration of CTC, OTC,
and TC in sampling site 3. High concentrations of clay in the soil can increase tetracycline
retention, and several studies have reported higher CTC, OTC, and TC adsorption in soils
with higher clay contents [64,65].

The average uptake percentages of CTC, OTC, TC, and STZ were 0.4%, 0.5%, 1.2%,
and 2.5%, respectively. A recent study reported that only 0.1% of VAs is accumulated in
plants, with 65% of VAs retained and 33% of the VAs dissipated in soil [20]. Compared
with previous studies, a higher percentage of VAs was taken up by crops in this study. This
difference in crop uptake percentage can be contributed by different properties of VAs and
the uptake mechanism of varied crops. As mentioned in the previous section, the major
uptake mechanisms of antibiotics in crops are water transport and passive absorption.
In the case of sulfonamide antibiotics, water transport was preferential, whereas passive
absorption was the main uptake mechanism for tetracycline antibiotics [47,50]. The uptake
of VAs in soil can also vary depending on the different antibiotic classes, and the varied
uptake mechanism of the crops [48].

In a future study, a more detailed mass balance analysis should be conducted by
analyzing the control soil sample and antibiotic concentration in water samples to verify
the release of VAs from the manure-based compost and to consider runoff or leaching into
the groundwater. In addition, the degradation rate of released antibiotics in soil should be
considered for better understanding of the fate of released VAs in soil.

4. Conclusions

This study evaluated the distribution and fate of six veterinary antibiotics in agricul-
tural environments. Five of the six investigated antibiotics were detected in manure-based
compost, soil, and crops. In general, the antibiotic concentrations were higher in the
manure-based compost than those in soil and crops, and CTC, OTC, and TC were detected
more frequently than SMX, SMZ, and STZ were in all samples. Moreover, mass balance
analysis revealed the different distribution patterns and fates of each antibiotic class in the
agricultural environment. In particular, CTC and OTC had higher residual characteristics
in soil and crops than SMX, SMZ, and STZ did, indicating that tetracycline antibiotics can
exhibit potentially adverse ecological effects. Overall, this study addressed the occurrence,
fate, and distribution of VAs in soil after applications of manure-based compost for under-
standing the relationship of the manure-based compost–soil–crop system. Further studies
should be conducted to verify the mechanisms of the sorption or desorption, dissipation,
and uptake of VAs in soil.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/toxics10050213/s1, Table S1: LC-MS/MS parameters for the analysis
of antibiotics; Table S2: MRM parameters for the quantitative analysis of target antibiotics; Figure S1: Air
temperature and rainfall of two provinces during cultivation period (April–October) (A) Chungnam
and (B) Jenbuk province.
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