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Simple Summary: A symbiotic relationship with the host gut microbiome influences the immune
system’s development, functions, and activities. In the mucosa, the gut microbiome mediates several
immune activities such as the induction of naïve T-cells differentiation, production of cytokines, and
myeloid cells activation. The gut-immune interaction and GI cancer development were investigated
more recently. Understanding the interaction’s underlying mechanism provides insight to use them
as potential anti-cancer targets. Even though multiple reports support the role of gut-immune
interactions in targeting cancer-related pathways such as inflammation, apoptosis, and cellular
proliferation, efforts are required to assess their interaction and impact on current treatment options.

Abstract: Gastrointestinal cancer (GI) is a global health disease with a huge burden on a patient’s
physical and psychological aspects of life and on health care providers. It is associated with multiple
disease related challenges which can alter the patient’s quality of life and well-being. GI cancer
development is influenced by multiple factors such as diet, infection, environment, and genetics.
Although activating immune pathways and components during cancer is critical for the host’s
survival, cancerous cells can target those pathways to escape and survive. As the gut microbiome
influences the development and function of the immune system, research is conducted to investigate
the gut microbiome–immune interactions, the underlying mechanisms, and how they reduce the risk
of GI cancer. This review addresses and summarizes the current knowledge on the major immune
cells and gut microbiome interactions. Additionally, it highlights the underlying mechanisms of
immune dysregulation caused by gut microbiota on four major cancerous pathways, inflammation,
cellular proliferation, apoptosis, and metastasis. Overall, gut-immune interactions might be a key to
understanding GI cancer development, but further research is needed for more detailed clarification.

Keywords: gut microbiome; immune system; immune–gut interaction; gastrointestinal cancer;
colorectal cancer; anti-cancer

1. Introduction
1.1. Gastrointestinal Cancer

Globally, cancers are a significant cause of death and disability [1]. They are charac-
terized by impaired homeostasis and cellular functions [2]. Cancers are classified based
on the organ, tissue of origin, or the cancer cell’s molecular characteristics [3] and the
development of cancers is influenced by environmental and genetic factors such as obesity,
diet, smoking, and infections with pathogenic agents [4]. Gastrointestinal cancers (GI) are
considered a major public health problem with challenging economic and medical burdens
due to their high prevalence and mortality rate [5]. The symptoms and signs of GI cancers
depend on the type of cancer (gastric cancer (GC), colorectal cancer (CRC), esophageal
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cancer (EC), pancreatic cancer (PC), and hepatocellular carcinoma (HCC)). They might
include weight loss, abdominal pain, dysphagia, and anorexia [6] and the progression of GI
cancers occurs in a multistage process. They result from uncontrolled cellular proliferation,
the loss of apoptotic functions through the intrinsic and extrinsic apoptotic pathways,
and the impairment of major pathways such as epithelial–mesenchymal transition (EMT),
phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT), and nuclear factor-kappa
(NF-κB) signaling pathways [7,8]. Efforts are required to understand GI-cancers’ underlying
mechanisms through these specific impaired pathways.

1.2. The Immune System in Cancer Pathogenesis

The human immune system is defined as a group of cells that protect the body from
foreign antigens such as toxins, microbes, viruses, and cancer cells [9]. The immune
system has two lines of defense that complement each other; innate and adaptive immunity.
Imbalance or defects in either line of defense could result in an inappropriate immune
response in the body [10].

Cancer and the immune system have been widely discussed for a century [11]. The
underlying mechanism between cancer cells and the immune system interaction involves
three processes of how the immune system defends and protects the host; (i) the iden-
tification of non-self cells, (ii) the production of effector cells to specifically target the
cancerous cells, and (iii) the development of immunological memory as a defense mech-
anism [12]. The role of immune cells in cancer includes both a pro-tumorigenic and an
anti-tumorigenic function [11]. Inflammatory immune cells activation in cancer can present
in different tumorigenesis stages and can lead to epigenetic modification, the induction of
cancerous cellular proliferation, genomic instability, and the enhancement of a cancerous
anti-apoptotic pathway, therefore, leading to cancer progression and dissemination [11].
During the pathogenesis of cancer, multiple components and pathways of innate and
adaptive immunity are activated to identify cancerous cells and target their genetic and
epigenetic alterations and modifications, thus leading to cancer elimination [13]. Such
pathways include complement proteins activation aiding in cancer eradication, natural
killer (NK) cells, cytotoxic immune cells which recognize and eliminate immunogenic
cancerous cells, neutrophil protease activation, anti-tumor macrophages which display
a pro-inflammatory like polarization playing a role in the elimination of immunogenic
cancerous cells, CD4+ T-cells activation, the production of IL-22 promoting T-cells prolifer-
ation, and naïve B cells activation [14,15]. Despite these mechanisms, cancer can manage to
overcome immune components as in the case of T-cells, in which cancerous cells can impair
the functions of anti-tumor T-cells such as their ability to infiltrate the tumor survival,
cytotoxicity, and proliferation abilities [15].

Advances in the development of immuno-oncology have changed the treatment of GI
cancer. Multiple ongoing clinical trials evaluate the efficacy and safety of immunotherapy
agents such as avelumab (anti-PD-L1) and relatlimab (anti-LAG3) in patients with advanced
gastric cancer [16]. Additionally, as for CRC, two immune checkpoint inhibitors target
programmed death-ligand 1 (PD-1) in metastatic cancer, namely, KEYNOTE 028 and
CheckMate 142, with an objective response rate of 40% and 55%, respectively [17]. More
studies are required to identify the common side effects of these treatments, to estimate the
impact on patients with immunodeficiency, and to evaluate the role of gut microbiota in
treatment utilization.

1.3. Gut Microbiota: Role in GI Cancer Immunity

In the human body, trillions of microorganisms, such as bacteria, viruses, fungi,
and protozoan, are known as the microbiota [18]. The microbiota resides mainly on the
respiratory and gastrointestinal tract’s mucosal surfaces with different concentrations and
relative abundances [19]. Over time, changes in the microbiome composition occur due
to internal or external factors such as lifestyle, genetics, geographical locations, and age,
leading to significant variations between individuals [20]. The gut microbiome plays a
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role in protection from infections, vitamin production, and immune cells development and
activity [21], but intestinal dysbiosis and the imbalance in the number of microbes and their
diversity in the gut is linked to several pathogeneses such as cancer [22].

Studies have reported the impact of microbiota on the development, activities, and
function of immune cells [23]. In mucosal sites, where the microbiota prominently resides,
early B-lineage cells development occurs under the influence of extracellular signals from
the microbiota [24]. Additionally, the gut microbiome promotes the differentiation of naïve
T-cells into colonic Treg cells with unique T-cell receptors on their surfaces [25]. During the
invasion of pathogenic bacteria, the gut microbiome promotes the activation of myeloid
cells leading to cytokines production [23].

In cancer, the gut microbiome influences the anti-tumor immune response through
(1) the induction of the T-cells response, (2) the engagement of a pattern recognition
receptor that has pro-inflammatory effects, or (3) the mediation of specific metabolites,
which can activate T-cell receptors [26]. Efforts are required to investigate and understand
the underlying mechanisms between the gut microbiome and the immune system in the
context of cancer and how those mechanisms can be utilized as targets for cancer therapy.
Figure 1 summarizes the most common pathogens in the GI tract, their relative abundance,
and reported immune regulations.
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Figure 1. Schematic illustration of regional diversity of the microbiome along the GI tract. The figure
is divided into different regions of the GI tract and highlights the microbial concentration ranges,
common phylum and genus, relative abundance [27], and immune regulations specific to each region.
“Created with BioRender.com”.

This review has analyzed published studies that report the crosstalk between the gut
microbiota and the immune system, assessing the impact of this communication on specific
GI cancer pathways. Additionally, it identifies gaps in the current literature.

2. Search Strategy and Selection Criteria

Using the databases “Medline”, “Scopus”, and “PubMed”, papers published from 2001
were searched, using the search terms “Immune cells”, “microbiota”, “Immune cells AND
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microbiota”, “microbial metabolism”, “Innate immunity AND microbiome”, “Microbiome
AND GI cancer”, “gut microbiota enzymes”, “gut microbiome AND immune cells AND GI
cancer”, “gut microbiome AND immune cells AND gastric cancer”, and “gut microbiome
AND immune cells AND colorectal cancer”. The search yielded around 2000 articles, and
in this article, we selected 166 articles and analyzed them in detail. Duplicate studies were
excluded, and eligible studies were selected based on inclusion and exclusion criteria. The
inclusion criteria included papers that discussed gastrointestinal cancer models or tissues
and highlighted gut microbiome interactions.

3. Microbiota–Immune Interactions

The colonization of the gut with microorganisms led to physiological adaptation in
the body, as seen with immune cells development, maturation, and interaction [28]. The
relationship between the microbiota and the human body is tightly regulated through a
controlled immune response to avoid immune activation that might harm the body [29].
This section will discuss three major interactions between the gut microbiome and the
immune system: (1) segmented filamentous bacteria (SFB), (2) antimicrobial peptides, and
(3) dietary fibers such as short-chain fatty acids (SCFA). Figure 2 highlights these three
interactions.
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Figure 2. Summary of the most reported gut microbiome and immune interactions. While the left
side of the figure illustrates the influence of segmented filamentous bacteria (SFB) and antimicrobial
peptides (AMP) on the host immune system through the activation of Th17 and MyD88 signaling,
respectively, the right section of the figure highlights the role of dietary fibers and short chain fatty
acids (SCFA) on T cells expression. The role of bacterial antigens on the production of IgA dimer is
shown in the middle part of the figure. “Created with BioRender.com”.
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3.1. Segmented Filamentous Bacteria

SFB are commensal bacteria found mainly in the small intestine [30]. They are gram-
positive bacteria identified by their long and filamentous appearance [31]. A genome
sequencing listed SFB as a member of Clostridiales. Additionally, the sequencing results
reported a lack of amino acid biosynthetic enzymes in SFB and an expression of typical
flagella and spore-forming genes. This suggests that those bacteria depend on the host for
essential nutrients [32].

The colonization of SFB in the intestine regulates and influences the immune response
in the body [33]. SFB regulates the level of IL-17A and IL-22 expression in the intestine
through the modulation of serum amyloid A (SAA) [34]. Additionally, SFB play a role in
postnatal maturation of the immune system through the production of IL-17 producing
CD4+ T-cells, which is critical in host protection against extracellular pathogens [35]. The
observed effects of SFB on the immune system occur due to their ability to adhere to the
intestinal epithelium, which is a crucial step to induce Th17 cells differentiation. SFB
models lacking the ability to adhere failed to induce intestinal Th17 differentiation [36].
Following the adherence of SFB to the intestinal epithelium is the secretion of SAA, which
is essential for cytokines production and secretion [37]. Despite what is known so far about
the role of SFB in shaping the intestinal immune response, more research is still required to
understand the interaction of SFB with other microbiomes such as viruses and how they
all impact the immune system. Additionally, the mechanism in which SFB modulates the
immune system requires further understanding as well as how distal organs react to those
immune changes modulated by SFB.

3.2. Short Chain Fatty Acids

SCFAs are fermented fatty acids generated by the gut microbiota, such as Faecalibac-
terium prausnitzii, from the digestion of complex carbohydrates [38]. They are considered
the most abundant microbial-derived metabolites in the human gut lumen. They consist
mainly of propionate, butyrate, and acetate [39]. SCFAs play a critical role in improving the
function of the gut barrier, protecting against microbial invasions, and reducing intestinal
inflammation, thus improving the host’s overall health status [40]. Those observed positive
effects of SCFAs are due to the activation of G-protein coupled receptors (GPCRs) such as
GPR109a or the suppression of histone/histone deacetylases (HDACs) which influence
genetic expression [41].

In colonocytes, the sodium-dependent monocarboxylate transporter-1 (SLC5A8) facili-
tates and mediates the entry of SCFAs (specifically butyrate) from the lumen to the colonic
epithelial cells. This leads to the suppression and activation of HDACs and GPCRs, respec-
tively [42]. SCFAs are essential regulators of immune cells’ recruitment, activation, and
differentiation, such as dendritic cells (DC), neutrophils, macrophages, and T-lymphocytes.
Additionally, SCFAs regulate the expression of pro-inflammatory cytokines such as IL-12
and IL-6 [43]. Moreover, the binding of butyrate to GPR109a receptor on DCs results in an
increased expression of IL-10 and a decreased expression of IL-6, which results in increased
T-reg cells development, thus inhibiting Th17 cells expansion [44]. This indicates that the
GPR109a receptor is vital in anti-inflammatory pathways such as apoptosis, especially in
inflammation-induced colon cancer [45]. Figure 2 summarizes the reported interaction
between butyrate and GPR109a and the subsequent cytokines production. Despite the
observed tumor suppressor effects of GPR109a receptors, some reports highlighted that
the activation of this receptor leads to the activation of inflammatory signaling pathways,
which suggest that GPR109a could act as a tumor activator and suppressor depending on
the affected sites and tissues [46]. Further research is required to investigate the effect of
the GPR109a receptor and other GPCRs receptors. Additionally, more efforts are necessary
to understand the effect of other SCFAs such as acetate on the host immune system.
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3.3. Antimicrobial Peptides

The intestine contains many microorganisms that provide multiple benefits in metabolism,
nutrients, and immunity [47]. The symbiotic relationship between the host and the gut
microbiota is mediated by chemical and physical gut mucosal barriers, preventing unregu-
lated interaction between the host immune system and the gut microbiota [48]. Antimicro-
bial peptides (AMPs) are considered a chemical mucosal barrier of basic amino acid-rich
proteins with a broad spectrum of antimicrobial properties, such as being cytolytic, micro-
bicidal, and bacteriostatic [49]. Shortly after infection, AMPs are synthesized promptly to
rapidly neutralize the invading microbes [50]. Additionally, AMPs include the defensin
protein family, such as alpha and beta. They bind to the microbial cell membrane and dis-
rupt the membrane integrity by forming pore-like structures. Deficiency in alpha defensin,
a highly expressed protein in Paneth cells, is associated with gut microbiota alteration
suggesting that AMPs play a role in gut environment hemostasis [51]. Moreover, patients
with inflammatory bowel disease have reported having intestinal barrier dysfunction as
the level of AMPs production was reduced [52].

The Toll-like receptor (TLR) family plays a role in enhancing the function of the
epithelial barrier and innate immunity [53]. After an infection, TLRs recognize the syn-
thesized bacterial products such as AMPs which activate the cytoplasmic adaptor protein
MyD88 [54]. Activated MyD88 is essential in protecting the intestinal epithelial cells
from mucus-associated bacteria and opportunistic bacteria. Additionally, a loss of MyD88
signaling activation can disrupt microbiota and host tissue segregation, compromise ep-
ithelial barrier function, and alter the balance of the gut microbiota community [55]. More-
over, TLRs are critical for IgA antibody secretion. After producing bacterial antigens, the
TLRs sense those antigens, leading to T-cell differentiation and subsequently producing
IgA dimers. The production of IgA is essential to distinguish between pathogenic and
commensal bacteria where it neutralizes the mobility and adhesions of the pathogenic
bacteria [56]. Figure 2 summarizes the role of TLRs in MyD88 signaling activation and IgA
production.

4. Microbiota–Immune Interactions: Role in GI Cancer Development

The gut microbiome plays a critical role in the pathogenesis of host diseases such as
cancer [57]. As the gut microbiome is influenced by several factors such as diet, genet-
ics, and lifestyle, its dysbiosis, either in the bacterial composition, bacterial bioactivity or
diversity, can impair the balance of specific bacterial species and increase the abundance
of inflammation-inducing species that can cause several diseases including inflammatory
bowel disease and cancer [58]. The gut microbiome influences the host immune response
to regulate cancer mechanisms such as progression, genetic instability, and the response to
treatment [59]. Animal studies have reported that specific microbes such as Bacteroides frag-
ilis and Escherichia coli can promote cancer development by releasing genotoxins, damaging
the host DNA [60]. Additionally, the gut microbiome could impact the efficacy of cancer
treatment, as seen in antibiotic-treated mice [61]. This suggests the critical role of intact
microbiota in the gut for optimal treatment outcomes.

Additionally, the gut microbiome impacts the function of the mucosal B and T cells,
which are essential for immune homeostasis as they inhibit the unregulated response to
harmless antigens and preserve the mucosal barrier integrity in the intestine [62]. Dis-
ruption of the gut barrier facilitates the interaction between the immune cells and the
microorganisms, resulting in cancer development through the induction of immunosup-
pressive or pro-inflammatory pathways [63]. Gut microbiome dysbiosis can influence
cancer pathways by recruiting lymphocytes to the intestine, leading to cellular proliferation
by activating the IL-6 pathway [64]. Moreover, TLRs upregulation can activate the nuclear
factor (NF)-κB and JAK/STAT3, which are critical for immunosuppression and cellular
proliferation [65]. Table 1 summarizes the main findings from the reported studies.
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Table 1. Representative microbial–immune interactions and their underlying anticancer effects.

Targeted
Cancer

Pathway

Type of
Cancer

(s)

Microbial
Species

Targeted Metabolites/
Proteins/
Genes/
Species

Targeted Immune Cells/
Pathways/
Products

Site of
Interaction Mechanism of Action Methods of Testing

Model Used

References

In Vivo In Vitro

In
fla

m
m

at
io

n

Colon
cancer

Enterococcus
Bacteroidetes
Lactobacillus

E. coli
Segmented

filamen-
tous

bacteria

Short-chain fatty acids
(SCFA)

IL-18
IL-6

IL-22

Colon
Intestine

- SCFA receptors (GPR43,
GPR41) promote barrier
immunity

- Suppress bacterial invasion
- Regulate T-cell response in the

intestine (TH17)
- Promote the expression of

intestinal tight junction
proteins

Quantitative reverse
transcription PCR
Flow cytometry

FISH
Confocal microscopy

- C57BL/6 mice
- Apc Min/+ mice [66]

Colon
tumori-
genesis

Erysipelotrichaceae
Prevotellaceae
Lachnospiraceae

Not specified
CD8 T cells

IFN-γ
IL-1β

Colon

- Gut dysbiosis promote
tumorigenesis via
CD8-independent
mechanisms

- Presence of specific bacterial
populations

- Gut dysbiosis promotes T cell
exhaustion which reduces
anti-tumor immunity

16S rRNA sequencing
linear discriminant

analysis (LDA)
Quantitative reverse

transcription PCR
Antibiotic and

antifungal studies
Flow cytometry

- SPF WT1 mice
- Cd8 mice [67]

Colon
cancer

Mix of
enteric

flora from
fecal

samples

Compound K IL-8 Colon

- Compound K exerts an
anti-proliferative effect on
colon cancer

- Compound K actively
inhibited the cellular growth
of colon cancer

- Compound K significantly
induced apoptosis

- Compound K significantly
reduced the production of
IL-8 at 20 µM

- Compound K exerts
significant anti-inflammatory
effects on colon cancer at low
concentration

Flow cytometry
liquid chromatography

quadrupole
time-of-flight mass

spectrometry
ELISA

- HCT-116
- HT-19 [68]
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Table 1. Cont.

Targeted
Cancer

Pathway

Type of
Cancer

(s)

Microbial
Species

Targeted Metabolites/
Proteins/
Genes/
Species

Targeted Immune Cells/
Pathways/
Products

Site of
Interaction Mechanism of Action Methods of Testing

Model Used

References

In Vivo In Vitro

Colon
cancer

Segmented
filamen-

tous
bacteria

Proteobacteria
Firmicutes

FAM3D (cytokine like
family) a gut secreted protein

CD3 T cells
B220+ B cells

CD11b+ myeloid cells
Colon

- FAM3D deficiency impaired
mucosal barrier function by
reducing acidic mucins
expression. This leads to the
expansion of potential
pathogens

- such as Deferribacteraceae
and Muribaculaceae.

- Absence of this molecule lead
to increased low-level
inflammation

Immunofluorescent
staining

Real-time PCR
Western blot

Quantitative reverse
transcription PCR

FISH

- C57BL/6 mice [69]

Colon
cancer

Bacteroidetes
Prevotellaceae
Firmicutes

Gpr109a
IL-17
IL-23
ILC3

Colon

- Gpr109a suppresses IL-23
production by dendritic cells

- IL-23 plays a role in the
induction of inflammatory
bowel disease

- Gpr109a inhibits the
production of
microbiota-induced
inflammatory cytokines

Antibody treatment
Quantitative PCR

Microbiome
sequencing

- C57BL/6 mice [70]

Colon
cancer

Helicobacter
hepaticus

Lach-
nospiraceae

TGF-β NF-β Colon

- Disruptions in the TGF-β
signaling can cause
tumorigenesis if combined
with Helicobacter hepaticus

- Deficiency in TGF-β leads to
a decrease in butyrate
production which can
promote tumor formation and
inflammation

DNA/RNA
sequencing

Multi-omics studies
- Smad3 mice [71]

Colon
cancer

Bacteroides
Firmicutes

IL-23 produced from
dendritic cells

IL-1A
IL-13

IL-17A
CXCL-9

IL-17

Colon

- IL-23 level increased in colon
cancer, and it correlates
strongly with
pro-inflammatory cytokines

- IL-23 has a direct impact on
epithelial barrier permeability

- IL-23 is highly expressed in
colon tumor samples

- IL-23 triggers an
inflammatory pathway
through the Th17 expansion

Cell proliferation
assays

Cell migration and
invasion assays

ELISA
Real-time PCR
Ex-vivo studies
Immunoblots

- F344 rats
- Caco2
- HCT116 [72]
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Table 1. Cont.

Targeted
Cancer

Pathway

Type of
Cancer

(s)

Microbial
Species

Targeted Metabolites/
Proteins/
Genes/
Species

Targeted Immune Cells/
Pathways/
Products

Site of
Interaction Mechanism of Action Methods of Testing

Model Used

References

In Vivo In Vitro

Colon
cancer

Prevotellaceae
Segmented

filamen-
tous

Bacteria

LRP5/6-β-catenin-IL-10
signaling axis

TNF-α
IL-6

IL-1β

Colon
Intestine

- LRP5/6 signaling plays a role
in suppressing
colitis-associated tumor

- Deficiency of LRP5/6 resulted
in a marked increase in p38
MAPK activation, which is
critical for the expression of
inflammatory factors

- LRP5/6 deficient mice
displayed a higher level of
CD4+ cells producing IL-17A
compared to wild type mice

- Deletion of LRP5/6 in CD11c+
APCs resulted in lower levels
of IL-22 production

Antibiotic treatment
Fecal microbiota

transplant
ELISA

Cell sorting
Flow cytometry
Real-time PCR

- C57BL/6 mice
- CD11c-cre mice [73]

Colon
cancer

Not
specified TLR-4

Dual oxidase 2 (DUOX2)
NADPH oxidase 1

(NOX1)
Colon

- The level of TLR4, DUOX2,
and NOX1 was upregulated
in colon cancer cells

- Gut microbiota activate
TLR-4, which stimulates ROS
production through Duox2
even after the inflammation is
treated

- Activation of TLR4 and
DUOX2 increases the
production of H2O2, which
promotes tumor initiation

Cell viability assays
16s ribosomal RNA
polymerase chain

reaction
16s ribosomal RNA

sequencing

- Villin-TLR4 mice
- C57Bl/6 mice [74]

Colon
cancer

Prevotella
Escherichia

coli
Akkermansia
Pseudoflavonifractor
Ruminococcus
Clostridium

XlVa

Short chain fatty acids
(SCFA)

NOD-like receptor
family

pyrin domain
containing 3 (NLRP3)

Tumour necrosis
factor-α (TNF-α)

Interleukin-1β (IL-1β)

Colon

- Intestinal secretory
immunoglobulin A (sIgA)
expression was decreased in
the mice receiving fecal
samples from colorectal
cancer patients

- Real-time PCR results showed
an upregulation in the
expression of
pro-inflammatory cytokines
such as NLRP3, TNF-α, and
IL-1β.

- Gut microbiota from
colorectal cancer patients
enhanced the activation of
Wnt signaling pathway

Fecal microbiota
transplant

Histological studies
Immunohistochemistry

staining
Real-time PCR
RNA extraction
Western blotting
RNA sequencing

- C57BL/6J mice - Fecal
samples [75]
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Table 1. Cont.

Targeted
Cancer

Pathway

Type of
Cancer

(s)

Microbial
Species

Targeted Metabolites/
Proteins/
Genes/
Species

Targeted Immune
Cells/

Pathways/
Products

Site of
Interaction Mechanism of Action Methods of Testing

Model Used

References

In Vivo In Vitro

C
el

lu
la

r
Pr

ol
if

er
at

io
n

Colon
cancer

Fusobacterium
nucleatum microRNA-31

CD3 T cells
CD8 T cells

CD45RO T cells
FOXP3 T cells

Colon

- F. nucleatum arrested human
T-cells in the G1 phase of the
cell cycle

- F. nucleatum expanded
myeloid-derived immune
cells, which can inhibit T-cells
proliferation

- MicroRNA-31 (miR-31)
expression was significantly
upregulated in cancer which
can be associated with a poor
prognosis

Quantitative PCR
Ariol image analysis

system
Microarray

Metagenomic analyses

- Colorectal
carcinoma

tissues from
patients

[76]

Colon
cancer

Bifidobacterium
Prevotellaceae
Bacteroides

Lachnospiraceae

YYFZBJS (traditional
Chinese herbs)

CD4 T cells
Foxp3
T-bet

ROR-γt

Colon

- YYFZBJS reduced tumor
multiplicity and numbers in
the CRC mouse model

- YYFZBJS treatment changed
the composition of bacterial
taxa in the colon

- YYFZBJS induced multiple
inflammatory pathways such
as Treg/Th17 signaling
leading to a significant
expression of IL-6, IL-10, IL-17

- YYFZBJS inhibited cellular
proliferation through
Enterotoxigenic Bacteroides
fragilis primed T-regulatory
cells

Quantitative PCR
Histology

Genotyping
Antibiotic treatment

Fecal microbiota
transplantation
Flow cytometry

Bacterial attachment
assay

- ApcMin/+ mice

- HCT116
cells

- MC-38
cells

[77]

Colitis-
associated

colon
cancer
(CAC)

Not
specified TLR-4 TNF-a

IL-1b
Colon

carcinoma

- During the inflammatory
phase of colon cancer, TLR-4
was upregulated in colonic
tissues, which promoted
tumor development

- Blocking TLR-4 with TAK-242
reduced the release of TNF-a
and IL-1b

Cytokine
Quantification
Real-Time PCR
Flow cytometry

- BALB/c mice - CT26 cells [78]
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Table 1. Cont.

Targeted
Cancer

Pathway

Type of
Cancer

(s)

Microbial
Species

Targeted Metabolites/
Proteins/
Genes/
Species

Targeted Immune Cells/
Pathways/
Products

Site of
Interaction Mechanism of Action Methods of Testing

Model Used

References

In Vivo In Vitro

M
et

as
ta

si
s

Colon
cancer

Not
specified Inflammasome pathway

IL-18
IL-1

Hepatic NK cells

Colon
Liver

Spleen

- Mice deficient in Caspase-1-
were susceptible to CRC liver
metastasis

- Nlrp3 inflammasome is
required to suppress CRC
liver metastasis

- IL-18 is critical for
inflammasome mediated CRC
growth in the liver
suppression through the
modulation of NK cells

Quantitative Real-Time
PCR

Flow cytometry
Immunofluorescence

staining

- C57BL6/J mice [79]

Colon
cancer

Fusobacterium
nucleatum Fusobacterium nucleatum

CD8 T cells
CD33 cells
CD163 cells

Colon
Liver

- The presence of F. nucleatum
was associated with a lower
CD8+ T cell density

- The presence of F. nucleatum
was associated with a higher
myeloid-derived

- suppressor cells densities
(MDSC)

- F. nucleatum promotes the
development of colonic
neoplasia through the
recruitment of MDSCs into
the tumor

Immunohistochemical
staining

DNA extraction
Quantitative Real-Time

PCR
Immunohistochemistry

- Patients
undergoing
chemotherapy

- ApcMin mouse

- Colorectal
cancer liver

metastases cells
[80]

Colon
cancer

Firmicutes
Proteobacteria Sodium butyrate

IL-10
IL-17

Hepatic NK cells

Colon
Liver

- Sodium butyrate
administration reduced Treg
frequencies

- Sodium butyrate significantly
increased the rate of natural
killer T cells in the liver

- Sodium butyrate decreased
IL-10 production while
increasing the production of
IL-17 in colorectal liver
metastasis mice

Quantitative Real-Time
PCR

Hematoxylin and eosin
stain

Flow cytometry

- BALB/c mice [81]



Cancers 2022, 14, 2140 12 of 28

Table 1. Cont.

Targeted
Cancer

Pathway

Type
of

Cancer
(s)

Microbial
Species

Targeted Metabolites/
Proteins/
Genes/
Species

Targeted Immune
Cells/

Pathways/
Products

Site of
Interaction Mechanism of Action Methods of Testing

Model Used

References

In Vivo In Vitro

A
po

pt
os

is

Colon
cancer

Erysipelotrichaceae
B.fragilis Follicular helper T (TFH) cells caspase-3

caspase-7 Colon

- Ileal microbiota is critical for
the activation of TFH cells

- The density of TFH cells
correlated with ileal caspase-3
activation during ileal
apoptosis, suggesting a
potential anti-tumor activity

- Microbial structures such as
bacterial RNA can trigger
IL-1β-dependent
differentiation of TFH cells.

Antibiotic treatment
Flow cytometry
Fecal microbiota
transplantation

ELISA
16S rRNA gene

sequencing
Immunohistochemistry

staining

- C57BL/6J
mice

- Luminal
content
from proxi-
mal colon

- CT26 cells
- 4T1 cells

[82]

Colon
cancer

Bacteroides
Firmicutes

Prevotellaceae
Lactobacillaceae

Fucoidan

β-catenin C-Myc
CyclinD1

IL-17
IL-23
Il-4

Il-10

Colon
tissues

- Treatment with fucoidan
increased cellular apoptosis
and decreased tumor
incidence and mean weight

- Treatment with fucoidan
decreased the expression of
β-catenin C-Myc and
CyclinD1

- The level of NK cells,
interferon-γ, IL-4, IL-10, and
CD4 T cells were increased in
the fucoidan treated models,
while the levels of interleukin
(IL)-17 and IL-23 were
decreased

Flow cytometry
Western blotting

Immunofluorescence
assay

16S rRNA gene
sequencing

Gas chromatography

- Sprague–
Dawley (SD)
rats

[83]

Colon
cancer Not specified BCL-G (BCL2L14) IFN-γ

TNF-α Colon

- BCL-G S/L level was
upregulated during Th1
cytokine-induced apoptosis
through the synergetic
regulation of IFN-γ and
TNF-α.

- Both STAT1 and
SWI/SNF-mediated
chromatin remodeling played
a role in the induction of
BCL-G S/L level

- Despite these results, BCL-G
was unessential for death in
intestinal epithelial cells

Crystal violet staining
Microscopy

Western blotting
Chemokine analysis

- HT-29 cells
- Colonic

biopsy
[84]
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4.1. Inflammation

Inflammation is associated with multiple diseases such as diabetes, cardiovascular
disease, and multiple stages of cancer [85]. During cancer, acute inflammation is critical in
the recruitment and accumulation of neutrophils, the stimulation of antigen presentation,
and the maturation of dendritic cells leading to an anti-tumor response. Additionally,
and during acute inflammation, the level of C-reactive protein and serum amyloid A
protein (SAA), acute phase proteins can increase, with the latter being influenced by seg-
mented filamentous bacteria. On the other hand, chronic inflammation is linked to different
stages of cancer development, including transformation, promotion, proliferation, inva-
sion, metastasis, survival, angiogenesis, and treatment resistance, with an accumulation
of macrophages, lymphocytes, and plasma cells at the site [86]. In addition, chronic in-
flammation is considered a risk factor for gastrointestinal cancer development in patients
with inflammatory bowel disease, as reports have illustrated a similar inflammatory mi-
croenvironment between cancer and inflammatory bowel diseases. Additionally, in both
diseases, inflammatory cells produce similar mediators such as IL-6 and IL-12, which
suggests the role played by the immune system in both diseases [68]. Damaged tissues
in the body caused by either a physical or an ischemic injury, exposure to toxins, or an
infection can result in an inflammatory response activation that is necessary to repair the
damaged tissues [87]. An inflammatory response can become chronic when the causative
agent of the inflammation persists, resulting in cellular proliferation and mutation, thus
creating a suitable environment for cancer development [88]. Additionally, and due to
chronic inflammation, host leukocytes such as macrophages, dendritic cells, and lympho-
cytes can be present in tumor areas. They can lead to immunosuppression and cancer
growth by producing reactive oxygen species (ROS) that damage the intestinal epithelial
cells’ DNA [87].

The gut microbiota in the intestine is usually segregated from the immune cells by
a single layer of intestinal epithelial cells joined by tight junctions [89]. Dysbiosis in
the gut can alter the permeability of the intestinal barrier, causing a disruption where
commensal bacteria and their products can invade the mucosa, thus resulting in low-grade
systemic inflammation. Due to that, inflammatory pathways such as Wnt and Notch are
activated, affecting the mucosal epithelial cells, thus influencing immune homeostasis and
increasing susceptibility to CRC [90]. After activating the myeloid differentiation factor
88 (MyD88), the invading commensal bacteria and their products interact with TLRs on
tumor-infiltrating myeloid cells, leading to the production of inflammatory cytokines such
as IL-23 activating the production of IL-6, IL-22, and IL-17A [91]. The production of those
cytokines can eventually promote the activation of STAT3 and the nuclear factor-kB (NF-kB)
signaling pathway [92]. The promoted activation of NF-kB signaling pathway by TLR-4
overexpression can induce COX-2 expression, a CRC biomarker, and an inflammation-
associated gene in inflammatory bowel disease [93]. Figure 3 summarizes the interaction
between the gut microbiome and the immune cells in GI cancer and its activation of
inflammation. Meanwhile, another preclinical study documented that the activation of the
inflammatory response significantly correlated with the disturbance of the gut microbiota
and changes in the fecal metabolites [94]. The authors found that these changes could be
closely related to the occurrence of precancerous lesions of GC. The correlation analysis
between inflammatory cytokines and gut microbiota/feces metabolites was evaluated in
a N-methyl-N′-nitro-N-nitrosoguanidine multiple factors-induced rat model of GC. The
results demonstrated a significant increase in pro-inflammatory serum cytokines such as
IL-1β, IL-4, IL-6, IL-10, IFN-γ, TNF-α, and M-CSF.
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Figure 3. Schematic representation of the immune—gut interactions during GI cancer and how it
influences the inflammatory responses. Due to gut dysbiosis, the low level of short chain fatty acids
can lead to the activation of inflammatory pathway, the production of cytokines and chemokines and
the activation of STAT3 and NF-kB signaling pathways. “Created with BioRender.com”.

On the other hand, there was a significant decrease in the level of chemokine
(C-X-C motif) ligand 1 (CXCL1) in the model group vs. controls. In this regard, the
gut microbiota and fecal metabolic phenotype composition in the model group revealed
that Lactobacillus and Bifidobacterium significantly increased. At the same time, Turicibac-
ter, Romboutsia, Ruminococcaceae_UCG-014, Ruminococcaceae_UCG-005, and Ruminococcus_1
were significantly decreased compared to the control animals.

4.2. Cellular Proliferation

Cellular proliferation is a fundamental process essential for the development and
hemostasis of the organism [95]. It is tightly regulated to ensure a precise and complete
genome duplication [96]. Multiple factors, from DNA damage to growth factors, influence
the process of DNA replication, especially the entering to the S phase of the cycle [97].
Cancer cells embody multiple characteristics that play a role in their survival and abnormal
proliferation [98] and due to epigenetic changes and/or mutations, cancer cells are resistant
to cellular proliferation regulators such as growth factors and hormones. Such changes
promote the growth and survival of cancerous cells through the stimulation of proliferation
pathways and the inhibition of apoptotic pathways [99]. Emerging evidence supports
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the gut microbiome’s role in influencing cellular proliferation in cancer through contact
with immune cells, as seen in the case of Fusobacterium nucleatum, the most studied colon
cancer-associated microorganism, which is enriched during cancer [100,101].

F. nucleatum is a commensal opportunistic anaerobic Gram-negative bacillus found
mainly in the oral cavity. It is implicated in multiple diseases outside the oral cavity [102].
F. nucleatum plays a role in colon cancer progression and treatment with antibiotics such
as metronidazole which reduces their load and cellular proliferation [103]. Additionally,
F. nucleatum promotes cellular proliferation in CRC by binding FadA to E-cadherin, which
mediates the bacteria’s attachment and invasion. This leads to the activation of β-catenin
signaling and the increased expression of Wnt genes, transcription factors, and inflamma-
tory genes, thus impacting T-cells infiltration levels [104,105]. On the other hand, some
bacterial strains, such as Holdemanella biformis, are reduced during gut tumorigenesis, which
is critical in blocking tumor proliferation [106]. H. biformis impacts cellular proliferation by
mediating SCFA such as butyrate, which inhibits histone deacetylase (HDAC) activities by
enhancing H3 histone acetylation and reducing the NFATC3 pathway [107].

Efforts are required to identify potential bacteria strains and their role in GI cancer
development. Additionally, more research is necessary to assess the feasibility of maybe
using specific strains as a treatment option for GI cancer. Figure 4 summarizes the role of
the reported bacteria on GI cancer.
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Figure 4. Schematic illustration of two pathways in which two bacteria Fusobacterium nucleatum and
Holdemanella biformis facilitate cancer progression and cellular proliferation through FadA- E-cadherin
interaction and short chain fatty acids (SCFA), respectively. (A) represent the proliferative example
while (B) the anti-proliferative example. “Created with BioRender.com”.



Cancers 2022, 14, 2140 16 of 28

4.3. Metastasis

Metastasis is defined as the expansion of the primary tumor, leading to secondary
tumors distant from the original tumor [108]. Metastasis occurs in a multi-step process that
includes the separation from the primary tumor, the invasion through the surrounding
tissues, and the entry and survival in the circulation [109]. Understanding the mechanism
of metastasis is of great importance to managing and treating cancer. Therefore, assessing
the impact of the gut microbiome, a potential therapeutic option, and immune system
interaction can provide some insights. F. nucleatum is linked to CRC development and
progression [110]. The polymerase chain reaction quantification of F. nucleatum DNA in
181 colorectal cancer liver metastases specimens reported that the presence and the quantity
of the bacteria is inversely associated with a lower CD8+ T-cells density. This could suggest
the potential involvement of F. nucleatum in cancer metastasis (Table 1) [80]. Mechanistically
and in CRC, tissues are overexpressing sugar residues Gal-GalNAc, which is recognized by
the F. nucleatum adhesion molecule, Fab2, and which is critical in mediating hemagglutinin
and co-aggregation functions. Mechanistically, F. nucleatum could promote metastasis by
activating the TLR-4 pathways, upregulating a cytochrome p450 known as CYP2J2. The
metabolite of this cytochrome, 12,13-EpOME, then activates EMT, thus promoting CRC
metastasis in vitro [111].

Additionally, F. nucleatum can evade anti-cancer immune responses by mediating the
recognition and binding of the same Fab2 adhesion molecule to a receptor known as TIGIT,
overexpressed on natural killer cells and other lymphocytes. The mediated binding inhibits
the functions of lymphocytes and natural killer cells, therefore, protecting F. nucleatum
and promoting a pro-tumorigenic environment [112]. Figure 5 highlights the reported
mechanisms in which F. nucleatum promotes GI cancer metastasis.
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4.4. Apoptosis

Apoptosis is a basic cellular mechanism that is essential in the development and home-
ostasis of the organism [113]. Distinct morphological changes characterize it, controlled by
intracellular and extracellular signals regulated by the cell environment [114]. Intrinsic and
extrinsic pathways are the two major apoptotic pathways where they process the stress
signal and execute the death signal in the cell [115]. Both exogenous and endogenous
agents such as physical trauma, infectious agents, radiation, and chemotherapeutic drugs
can trigger apoptosis [116]. In cancer, downregulation of apoptosis by pro-survival pro-
teins is necessary to maintain the phenotypic properties. Such alteration is observed in
the anti-apoptotic Bcl-2 family, which is overexpressed frequently in solid tumors [117].
On the other hand, a study analyzed the expression of human BCL-G, a member of the
BCL-2 family in gastrointestinal conditions, and they reported that both variants were
highly expressed in a healthy gut. At the same time, their m-RNA level was decreased in
colorectal cancer and inflammatory bowel disease conditions [84]. Additionally, the study
reported that the depletion of BCL-G affected the secretion of chemokines such as CCL5
thus illustrating a non-apoptotic function of the BCL-2 family. More studies are required to
assess the role of the BCL-2 family in shaping the immune system, apoptosis, and maybe
the regulation of chemokines (Table 1).

The gut microbiome is a critical mediator of the host’s health by producing certain
metabolites essential for immune system regulations [118]. Gut dysbiosis can reduce the
beneficial bacteria responsible for producing SCFA, such as butyrate [119]. Butyrate plays a
role in maintaining the intestinal barrier function and reducing inflammation in the colon,
as they supply colonocytes with 70% of their required energy [120]. Additionally, the
butyrate induces IL-18 expression in the colon, which is essential in suppressing colonic
inflammation [121]. The administration of butyrate reduces cellular proliferation and pro-
inflammatory cytokines production, such as IL-6, while promoting apoptosis [122]. Gut
analysis of patients with colon cancer and ulcerative colitis showed a significant reduction
in butyrate levels and the number of butyrate-producing bacteria in the colon [123]. During
cancer, and when the gut is in dysbiosis, butyrate production is reduced, impacting the
butyrate receptor’s activity, GPR109a, found in the colon. This reduces IL-18 and IL-22
production, reducing the mucosal tissue repair capabilities, thus impacting cellular apop-
tosis [124,125]. Another study described the significant role of moxibustion, a traditional
Chinese medicine, in inducing apoptosis of rat GC cells in vivo by regulating intestinal
flora [126]. The authors summarized that moxibustion delayed the GC metastasis pos-
sibly by lowering the abundance of Ruminococcaceae and Prevotellaceae bacteria (bacteria
producing short-chain fatty acids in the gut) and enhancing the occurrence of probiotic
Akkermansia in the rat intestine.

Additionally, butyrate induces apoptosis in CRC through the mitochondrial path-
way and caspase 3 [127]. When the butyrate level is reduced, the expression of Bcl-2
anti-apoptotic family is enhanced, while the expression of Bax/Bak, cytochrome c is re-
duced [120]. Figure 6 summarizes the role of gut dysbiosis and butyrate production on
cellular apoptosis during cancer.
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5. Discussion
5.1. Influence of Gut Microbiome on Immunotherapy

Current cancer treatments, including chemotherapy, surgery, endocrine therapy, and
radiotherapy, are usually non-specific approaches. They frequently reach a refractory
period, leading to treatment failure and disease recurrence [128,129]. Targeting the immune
system and enhancing the patient’s immune system to attack the tumor can potentially be
therapeutic [130]. Cancer immunotherapy is an alternative approach that utilizes specific
components of a patient’s immune system to selectively target and eliminate tumor cells,
thus mitigating the side effects of the currently used treatments [131]. Depending on the
mechanism by which the therapy activates the immune response, immunotherapy can be
passive, such as cell-based therapy and chimeric antigen receptor T cell therapy (CAR-T
cell) or active, such as vaccination, immunostimulatory cytokines, and immune checkpoint
inhibitors [132,133]. Immune checkpoint inhibitors are used as a treatment option to in-
duce a T-cells mediated response against cancerous cells to selectively block the inhibitory
checkpoint receptors manipulated by the tumor cell [134]. Types of inhibitory checkpoint re-
ceptors include programmed cell death protein 1 (PD-1), cytotoxic T lymphocyte-associated
antigen 4 (CTLA-4), T cell immunoglobulin and mucin protein 3 (TIM-3), and programmed
cell death 1 ligand 1 (PD-L1) [135]. To treat CRC, immunomodulatory therapy such as
CTLA4, PD-1, and PD-L1 is currently used to target selective checkpoint molecules and
inhibit T-cell activation [136]. Despite this, 19 patients with unselected CRC did not demon-
strate positive clinical responses when using Nivolumab, a monoclonal antibody that binds
to PD-1 receptor [137].

The gut microbiome plays a role in stimulating and influencing immunotherapy
against cancer [138]. The intestinal microbiota is an essential factor in providing an optimal
CpG-oligonucleotide immunotherapy response which activates innate immune cells [139].
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Moreover, the microbiome influences immunotherapy as a community, but specific mi-
crobes such as Bacteroides fragilis can enhance PD-1/PD-L1 and CTLA-4 immunotherapy
as they activate Th1 cells [140]. Figure 7 summarizes the interaction of B. fragilis with
immunotherapy. Additionally, in 74 advanced gastrointestinal cancer patients, the ra-
tio of Prevotella/Bacteroides was elevated with an enhanced anti-PD-1/PD-L1 treatment
response [141]. The analysis of DNA sequencing of stool samples collected before the ad-
ministration of checkpoint inhibitors illustrated a distinct bacterial taxa composition [142],
and that microbial species capable of producing SCFA were reported to have better anti-PD-
1/PD-L1 positive responses [141]. A mice model study showed that Prevotella CAG:485 and
Akkermansia might influence the efficacy of PD-1 immunotherapy through the modulation
of glycerophospholipid metabolism, which can affect the expression of cytokines such as
IL-2 and IFN-γ [143]. More clinical and experimental trials are necessary to investigate how
the gut microbiome impacts immunotherapy.
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5.2. Chemotherapy Treatment and Immune–Gut Interactions

Chemotherapy is used as a treatment option for cancer, with platinum and fluo-
rouracil being the commonly used drugs [144,145]. Regularly, cancer patients receiving
chemotherapy have signs of depression, fatigue, anxiety, and cognitive impairment [146].
Chemotherapy treatment is often accompanied by multiple complications caused by the
cytotoxic effect, linked to a bidirectional interaction between the drug and the gut mi-
crobiome [147]. Preclinical model studies demonstrated chemotherapy-induced changes
in the gut microbiome with a decrease in the total number and diversity of the gut mi-
crobiome [148]. Additionally, and depending on the drug used, the overall impact on
the gut profile reported a reduction in Lactobacillus and Bifidobacterium, and an increase
in Escherichia coli (E. coli) and Staphylococcus. The reported gut microbiome composition
disruption was associated with activating inflammatory pathways, thus enhancing the
vulnerability to pathogenic infections [149].

On the other hand, the efficacy of chemotherapy can be affected by the gut microbiome.
Such a mechanism includes when specific oral or injected drugs, such as CPT-11 (Irinotecan)
depend on the gut microbiome to be converted to the active form and the treatment can exert
anti-cancer properties [150]. Moreover, the gut microbiome can facilitate the anti-cancer
effects of chemotherapy through the induction of enzymatic expression responsible for ROS
production, which can induce cellular apoptosis [151]. Additionally, the gut microbiome
can impact the ROS pathway through a toll-like receptor agonist, which can downstream
the expression of MyD88 and induces inflammatory cytokines such as IL-6 [152,153].
Chemotherapy treatment and the gut microbiome can influence the immune system and
changes in the gut microbiome due to chemotherapy can impact innate immunity by
reducing the production of inflammatory cytokines and antigen-presenting cells [154]. For
example, both Enterococcus hirae and Lactobacillus johnsonii were essential for the anti-cancer
activities of Cyclophosphamide (CTX) where they promoted splenic Th1 memory and a
Th17 response [155]. Figure 7 summarizes the interaction of E. hirae with CTX treatment.

Although multiple reports illustrate the role of the gut microbiome in chemotherapy,
some studies highlight microbiota-induced chemoresistance. The gut of patients with CRC
is enriched with F. nucleatum, which was discussed in the above sections along with how it
can promote metastasis [156]. This phylum can induce chemoresistance in which the in-
flammatory pathway is stimulated by the mediated binding of FadA and E-cadherin, which
can then increase tumor growth [157]. Additionally, the gut microbiome can inactivate
the used chemotherapy drug, inducing chemoresistance as seen with Gammaproteobacteria,
which can convert the gemcitabine drug to its inactive metabolite, thus contributing to drug
resistance [147]. All data indicate that efforts are required to investigate the bidirectional
interaction between the gut microbiota and chemotherapy and the possibility of using
this interaction to improve the treatment outcome further and reduce chemoresistance
development.

5.3. Challenges with Studying the Field

The area of the gut microbiome and immune interaction research is growing as sci-
entists understand more about microbial communities, their behaviors, core microbial
species, their produced metabolites, and their influence on the host immune system in
health and disease as in the case of GI cancer. Despite this, the field faces multiple chal-
lenges, including protocol standardization, experimental models, and interpretation tools.
Additionally, the gut is influenced by several factors such as diet, geographical location,
genetic diversity, and medications, thus requiring a systematic and extensive data analysis.
Moreover, investigating the mechanistic pathways in which the gut microbiome influences
the immune response during cancer is critical as those interactions might provide potential
therapeutic targets. Collective efforts from microbiologists, ecologists, bioinformaticians,
immunologists, and geneticists are fundamental to improving the field further.
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5.4. Future of GI Cancer Treatment?

As discussed in the previous sections, the gut microbiome can interfere directly or
indirectly with current treatments such as chemotherapy and immunotherapy, which might
impact a treatment’s outcome. Manipulating the gut microbiome composition using fecal
microbiota transplantation or phytochemicals might improve therapeutic outcomes [158].
Fecal microbiota transplantation (FMT) is known as the transplantation of microbes from
the gut of a healthy donor to a recipient either through the upper or lower gastrointesti-
nal tract [159]. It was first documented in clinical use in 1958 to treat Clostridium difficile
infection as it helped treat 80% of the affected patients [160]. The advantages of using
FMT include its safety and its ability to restore intestinal microbial diversity [161]. Limited
studies are available in the literature that investigates the role and the application of FMT
in the context of GI cancer treatment. We found a study that reported the effectiveness of
FMT in mice receiving intestinal microbiota from wild mice, as the results showed better
resistance to CRC [162]. Additionally, and on a different approach, the usage of phytochem-
icals for GI cancer treatment has recently gained attention. The bioactive plant-derived
compounds generally have lower oral bioavailability due to poor aqueous solubility, and
therefore, the gut microbiome is essential for the metabolism and absorption of bioactive
compounds [163]. Several data support the role of 13 bioactive secondary compounds
on GI cancer [164]. For example, lutein, an abundant fat-soluble bioactive compound
found primarily in green leaved vegetables, was reported to significantly reduce aberrant
crypt foci (ACF) in the colon of mice, thus reducing cellular proliferation [165]. Despite
those reports that support potential treatments, research is much needed to investigate
the potential synergetic effects between the currently used treatments and FMT or phyto-
chemicals. Additionally, attention should be given to the required concentration and the
appropriate delivery mode of FMT and phytochemicals to avoid toxicity and possible side
effects. Moreover, looking at the role of gut enzymes in the metabolism and the utilization
of those natural bioactive compounds, research is needed to investigate the underlying
mechanisms played by those enzymes that might affect the treatment outcome, as we have
shown in our recently published paper [166].

6. Conclusions

The gut microbiome plays an essential role in mediating the immune response, im-
pacting its activities, development, and function. Generally, and during cancer, signature
microbes in the gut influence the anti-tumor activities by producing specific metabolites
or inducing T-cell responses. On the other hand, some reported bacterial species enhance
cellular proliferation and metastasis during cancer and understanding those interactions in
the context of cancer may provide potential therapeutic targets. Despite the advances in the
field, more research is needed to understand the underlying mechanisms, investigate the
impact on current treatments, and identify specific microbes and immune cells that might
lead to this interaction. Additionally, clinical trials are essential to assess the influence of
immune–gut interaction on immunotherapy treatment in clinical settings.
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Abbreviations

GI gastrointestinal
CRC colorectal cancer
GC gastric cancer
EC esophageal cancer
HCC hepatocellular carcinoma
NF-κB nuclear factor kappa
EMT epithelial-mesenchymal transition
FISH Fluorescence in situ hybridization
PD-1 Programmed death ligand 1
PD-1 Programmed cell death protein 1
SFB Segmented filamentous bacteria
SAA Serum amyloid A
DC Dendritic cell
AMP Antimicrobial peptide
TLR Toll-like receptor
SCFA Short chain fatty acid
GPCRS G-protein coupled receptors
HDAC Histone deacetylase
ROS Reactive oxygen species
F. nucleatum Fusobacterium nucleatum
CTLA-4 cytotoxic T lymphocyte-associated antigen 4
TIM-3 T cell immunoglobulin and mucin protein 3
FMT Fecal microbiota transplant
ACF Aberrant crypt foci
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