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Abstract: α-Conotoxin TxID was discovered from Conus textile by gene cloning, which has 4/6
inter-cysteine loop spacing and selectively inhibits α3β4 nicotinic acetylcholine receptor (nAChR)
subtype. However, TxID is susceptible to modification due to it containing a methionine (Met)
residue that easily forms methionine sulfoxide (MetO) in oxidative environment. In this study,
we investigated how Met-11 and its derivatives affect the activity of TxID using a combination of
electrophysiological recordings and molecular modelling. The results showed most TxID analogues
had substantially decreased activities on α3β4 nAChR with more than 10-fold potency loss and 5 of
them demonstrated no inhibition on α3β4 nAChR. However, one mutant, [M11I]TxID, displayed
potent inhibition at α3β4 nAChR with an IC50 of 69 nM, which only exhibited 3.8-fold less compared
with TxID. Molecular dynamics simulations were performed to expound the decrease in the affinity
for α3β4 nAChR. The results indicate replacement of Met with a hydrophobic moderate-sized Ile in
TxID is an alternative strategy to reduce the impact of Met oxidation, which may help to redesign
conotoxins containing methionine residue.

Keywords: α-Conotoxin TxID; methionine oxidation and substitution; α3β4 nAChR; peptide
synthesis and activity assay; molecular dynamics simulations

1. Introduction

Conotoxins (Conopeptides, CTxs) are produced by marine cone snails belonging to the Conus
genus, which are disulfide-constrained peptides targeting a range of ion channels and receptors [1–4].
α-CTxs are a subgroup of conotoxins characterized by their ability to inhibit nicotinic acetylcholine
receptors (nAChRs) [5–8]. The nAChRs have been implicated in a range of diseases including pain,
addiction, dementia, Parkinson’s disease, schizophrenia, obesity and cancer et al. [9,10]. As such,
α-Ctxs are potential treatments for these difficult miscellaneous diseases.

A structurally novel α-conotoxin, TxID, was discovered by gene cloning in our lab from Conus
textile. It consists of 15 amino acid residues possessing one readily oxidizable methionine at position
11 (Met-11) (Figure 1). TxID belongs to the α-4/6 conotoxin subfamily that potently blocks α3β4
nAChR subtype with high selectivity [11]. Differential sensitivity of α-CTx TxID on stoichiometry
of α3β4 nAChR was examined previously. We used three α3:β4 RNA injection ratios of 1:1, 1:10
and 10:1 to form three different stoichiometry receptors of α3β4 subtype [12]. The results showed
that inhibition of 1:10 injection ratio by TxID was comparable with regular 1:1 α3β4 nAChRs within
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2-fold difference. However, potency of 10:1 injection ratio decreased 5-fold comparing with 1:1 α3β4
nAChR. TxID exhibited different sensitivity on different stoichiometry of α3β4 nAChRs, which could
reflect different stoichiometries of α and β subunit [12]. To better understand which amino acids are
responsible for the activity of TxID, we performed alanine scanning mutagenesis on all residues except
for four Cys residues. TxID completely lost its inhibitory activity at α3β4 nAChR when five residues
(i.e., His-5, Pro-6, Val-7, Met-11 and Pro-13) were mutated to alanine respectively. For [G1A]TxID,
activity decreased nearly 19-fold relative to wild-type peptide. Other analogues, [S4A]TxID, [S9A]TxID,
[S12A]TxID and [I14A]TxID almost maintained full potency at α3β4 nAChR. Our homology models
and molecular dynamics(MD) simulations suggested that critical residues His-5, Pro-6 and Val-7 in
loop 1 of TxID interacted with the α3 subunit, whereas Met-11 and Pro-13 located in loop 2 are close to
β4 subunit [11,13]. These results reveal that Met is one of critical residues for binding α3β4 nAChR.

Methionine and cysteine are the only two sulfur-containing proteogenic amino acids and are
extremely vulnerable to oxidation in vivo. Cystines are oxidized to form disulfide bonds that are
crucial for structural and biological function of proteins. Oxidation of the amino acid methionine
generates methionine sulfoxide (MetO) which may play a vital role in mediating the physiological
function of some proteins [14]. With this information in mind, we investigated whether the oxidation of
Met to MetO could alter the potency of α-CTx TxID at α3β4 nAChR subtype. Additionally, Met residue
was substituted by other amino acids to ascertain the impact of postion 11 on TxID activity (Figure 1).
In a series of electrophysiological experiments, we accessed activities of these analogues at various
nAChR subtypes. Using electrophysiology assays combined with computer dynamic stimulations,
we hoped to reveal the molecular mechanism of Met acting with α3β4 nAChR subtype.

Figure 1. Sequences alignment of α-CTx TxID analogues with Cys (I–III, II–IV) disulfide bond
connectivity (A) and structures of TxID (B) and [MO]TxID (C). (A) The sequences of TxID analogues are
shown and the substituted residues at position 11 are highlighted in red. The # indicates an amidated C
terminus; (B) Structural representation of TxID (PDB ID code 2M3I); (C) Spatial structure of [MO]TxID
while Met residue is oxidized to MetO by addition of oxygen to its sulfur atom, which was produced
by PyMOL.

2. Results

2.1. Peptide Synthesis

The native TxID and its derivatives were synthesized using Fmoc solid phase peptide synthesis
with the side chains of Cys residues protected in pairs. Cys I and Cys III were protected by the
acid-labile trityl (Trt) while Cys II and Cys IV were protected by the acid-resistant acetamidomethyl
(Acm) [14]. Disulfide bonds with Cys (I–III, II–IV) connectivity of these peptides were formed
using two-step oxidations. The folded peptide of TxID and its analogues were purified by HPLC.



Mar. Drugs 2018, 16, 215 3 of 12

Electrospray-mass spectroscopy confirmed molecular mass of the folded peptides which was consistent
with their corresponding theoretical values.

The [MO]TxID was synthesized through 10% hydrogen peroxide(H2O2) oxidation according to
the reaction scheme of Methionine (TxID) + 10% H2O2→Methionine Sulfoxide(TxID) + H2O. Then the
oxidative product was purified by RP-HPLC. When methionine of TxID was oxidized to sulfoxide
methionine, the hydrophilicity of [MO]TxID increased remarkably and its retention time shifted from
15.48 min to 11.42 min (Figure 2A,C). Meanwhile, the molecular weight of TxID and [MO]TxID was
determined by ESI-MS respectively (Figure 2B,D). [MO]TxID showed a molecular weight increase of
16 Da, which was consistent with its theoretical mass (Figure 2B,D).

Figure 2. HPLC chromatograms and mass spectra of α-CTx TxID and [MO]TxID. Peptides were
analyzed on a reversed phase analytical Vydac C18 (5 µm, 4.6 mm × 250 mm) HPLC column using
a linear gradient of a 10–40% buffer B, and 90–60% buffer a over 20 min, where B = 0.05% TFA in
90% ACN; a = 0.075% TFA in water. The elution profile was monitored by measuring the absorbance
at 214 nm. (A) HPLC chromatogram of α-CTx TxID; (B) Electrospray ionization mass spectrometry
(ESI-MS) data for TxID with observed monoisotopic mass of 1488.56 Da; (C) HPLC chromatogram of
[MO]TxID; (D) ESI-MS data for [MO]TxID with an observed monoisotopic mass of 1504.56 Da.

2.2. Characterization of [MO]TxID Effect on the α3β4 nAChR Subtype

The influence of Met oxidation of TxID on α3β4 nAChR subtype expressed in Xenopus oocytes
was investigated. Representative traces of TxID and [MO]TxID on α3β4 nAChR are shown in Figure 3.
At a concentration of 1 µM, TxID almost blocked 100% of ACh-evoked α3β4 nAChR-mediated currents
whereas [MO]TxID only inhibited 72% of current amplitude (Figure 3A,B). At a concentration of 100 nM,
TxID caused potent blockade of ACh-evoked currents (~80%), but [MO]TxID only inhibited 25% of
current amplitude (Figure 3C,D). The concentration response curves indicated that TxID inhibited
α3β4 nAChR with an IC50 of 18 nM (Figure 3E, Table 1). Remarkably, the IC50 value of [MO]TxID was
245 nM which was almost 13.3-fold less potent than that of TxID (Figure 3E, Table 1). These findings
demonstrate that methionine is essential for TxID binding rat α3β4 nAChR.
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Figure 3. α3β4 nAChR-inhibitory activities of TxID and [MO]TxID. α3β4 nAChR was expressed
in Xenopus oocytes as described under “Materials and Methods.” (A) TxID at 1 µM was added
to the chamber and incubated with oocyte for 5 min. Then TxID was washed out and the
response to 1-s pulses to ACh was again measured (arrow). “C” indicates control responses to
Ach; (B) Representative ACh-evoked currents of rat α3β4 nAChR obtained in presence of [MO]TxID
at 1 µM; (C) Representative ACh-evoked currents of rat α3β4 nAChR obtained that the oocyte was
exposed to 100 nM TxID; (D) a representative response of one typical oocyte was exposed to 100 nM
[MO]TxID; (E) Concentration-response analysis of the activities of TxID and [MO]TxID on rat α3β4
nAChR subtype. Error bars denote the means ± SEM. of the data from 3 to 8 separate oocytes.

Table 1. IC50 and Hill slope values for blockade of α3β4 nAChR subtype by TxID analogues.

TxID Analogues α3β4 nAChR, IC50 * Hill Slope * IC50 Ratio Relative to TxID

TxID 18.38 (15.35–22.0) 0.69 (0.61–0.77) 1
[MO]TxID 245.0 (211.7–283.6) 0.79 (0.71–0.87) 13.3

[M11V]TxID 980.3 (760.1–1264) 0.88 (0.68–1.09) 53.3
[M11I]TxID 69.09 (50.68–94.19) 0.70 (0.57–0.83) 3.8
[M11L]TxID 256.7 (211.7–311.2) 1.27 (1.01–1.54) 14.0
[M11K]TxID >10,000 a - -
[M11R]TxID >10,000 a - -
[M11Q]TxID >10,000 a - -
[M11E]TxID >10,000 a - -
[M11A]TxID >10,000 a - -

* Numbers in parentheses are 95% confidence intervals. a Less than 50% block at 10 µM.

2.3. Effect of Mutants of Substitution at Met of TxID on α3β4 nAChR Subtype

The methionine of TxID was substituted by Ala, hydrophobic amino acids (Ile, Val and Leu) and
charged amino acid (Lys, Arg, Glu and Gln) and these analogues (1 µM) were tested at α3β4 nAChR
(Figure 4A). The [M11K]TxID, [M11R]TxID, [M11Q]TxID, [M11A]TxID and [M11E]TxID exhibited
nearly no inhibition on α3β4 nAChR. Replacing the Met residue with Val resulted in a 40% decrease
on blocking α3β4 nAChR. In contrast, [M11I]TxID and [M11L]TxID displayed comparable activity to
the native peptide, which blocked >80% evoked current (Figure 4A).

The concentration-response relationships of all TxID analogues were determined (Figure 4B,
Table 1). Three of them retained the potency on α3β4 subtype, and none of the analogues increased
binding affinity compared to native peptide. The IC50 for [M11I]TxID on α3β4 nAChR subtype was
69.09 nM, which retained comparable activity compared to native peptide. Surprisingly, the activities of
[M11L]TxID and [M11V]TxID reduced dramatically with an IC50 of 256.7 nM and 980.3 nM respectively
(Table 1). There were 14-fold potency loss for [M11L]TxID and 53-fold potency loss for [M11V]TxID.
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We subsequently evaluated [M11L]TxID and [M11I]TxID on the other nAChR subtypes, including
α6/α3β4, Mα1β1δε, α7, α9α10, α2β4, α3β2, α4β2 and α4β4. Only α6/α3β4 nAChR can be blocked
with high concentration of 10 µM.

Figure 4. Inhibition of α3β4 nAChR by TxID and its Met substitution analogues. (A) Bar graph of
normalized inhibition of ACh-evoked current is generated by methionine-substituted TxID analogues
and native TxID. All peptides were tested at 1 µM and data are represented as mean ± SEM (n = 3–6);
(B) Concentration-response curves are obtained for inhibition of α3β4 nAChR. Error bars denote the
means ± SEM of the data from 3 to 8 separate oocytes.

2.4. Homology Modeling and MD Simulations Demonstrate Potency Variation between TxID Analogues
and α3β4 nAChR

Homology modeling/MD simulations were performed to understand the molecular mechanism
for the activity of TxID analogues at α3β4 nAChR. Native TxID and its mutants bind to the extracellular
domain of the rat α3β4 nAChR and the models demonstrate the binding pocket of peptides complexed
with α3β4 nAChR (Figure 5). According to the model, Met-11 is surrounded by hydrophobic and
charged amino acids in β4 subunit, including Ile78, Ile110, Arg112 and Arg80 (Figure 5A). Therefore,
the substitution of Met by charged amino acids ([M11K]TxID, [M11R]TxID and [M11Q]TxID) would
significantly impact the electrostatic interactions between peptides and receptors, which may result
in a complete loss of inhibition at α3β4 nAChR . Through 50 ns dynamic stimulation, the distance
between MetO and β4 subunit increases and MetO is impacted by more amino acids in α3 subunit,
including Ser149, Tyr150 and Asp154 (Figure 5B). In addition, [MO]TxID is more hydrophilic than
wildtype toxin, hence MetO would probably decrease hydrophobic interactions with Ile78 and Ile110.
Besides, when Met residue was mutated to Ile residue, distance between two hydrophobic surfaces also
increases, which partially weakens the interaction force of Ile-11 and receptors. Similarly, replacement
of Met with Leu and Val leads to lose more potency on α3β4 nAChR.

Figure 5. Molecular interactions between peptides and α3β4 nAChR through homology modeling and
MD simulation. The α3 subunit is drawn in green, the β4 is in cyan, and the peptides are in brown.
Amino acids around 4 Å radius of the Met and its substitutions are labeled. (A) The molecular model
was shown between TxID and α3β4 nAChR during 50 ns MD simulations; (B) Snapshot at 50 ns of
[MO]TxID and α3β4 interface; (C) Snapshot at 50 ns of [M11I]TxID and α3β4 interface.
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3. Discussion

Cone snails have evolved many conopeptides which target to a wide variety of different voltage-
or ligand-gated ion channels. The α-family conotoxins (α*-CTxs) act by blocking different isoforms
of nAChRs, which locate in the neuromuscular junction or central nervous system broadly [5,6].
Methionine, sulfur-containing amino acid, was exist in different conotoxin families, such as α-,
αD-, αO- and ω-CTxs (Table 2) [11,15–28]. Apart from TxID, several α-CTxs contain Met residue.
SrIA and SrIB were discovered from the venom of Conus spurius, which can inhibit α4β2 and α1β1γδ
nAChR, respectively [15]. EI demonstrates strong blockade of the nAChR subtypes of α4β2, α1β1γδ
and α3β4 [15,16]. Additionally, methionine was detected in several αD-CTxs which formed dimer
and bound different nAChR subtypes [25,26]. The ω-CTx MVIIA is a potent antagonist of N-type
calcium ion channel (Cav2.2), which is the only cone snail-derived pharmaceutical drug. MVIIA
contains a Met at the 12th position. Before it was developed as a drug candidate, hundreds of
analogues of wild type peptide were tested. However, there was no ideal analogue substituting MVIIA,
which indicated the difficulty to reform native peptide [29]. Pu14a containing Met at position 10
inhibits neuronal α3β2 and neuromuscular α1β1γδ nAChR [27]. Recently, a novel O-superfamily
conotoxin, αO-GeXXVIIA, a disulfide-linked homodimer conopeptide, blocks α9α10 nAChR with
high potency [28]. Therefore, the methionine possibly plays an important role in the modulation of the
interaction between conotoxins and receptors.

Table 2. Sequences and receptor activities of conotoxins comprising Met residue. #, amidated
C–terminus; γ, γ–carboxyglutamate; O, 4–trans–hydroxyproline; Z, pyroglutamate. The Met residues
are in bold.

Peptide Species Sequence Activities Reference

α-TxID C. textile GCCSHPVCSAMSPIC# α3β4 > α6/α3β4 > α2β4 [11]

α-SrIA C. spurius RTCCSROTCRMγYPγLCG# α1β1γδ, α4β2 [15]

α-SrIB C. spurius RTCCSROTCRMEYPγLCG# α1β1γδ, α4β2 [15]

α-EI C. ermineus RDOCCYHPTCNMSNPQIC# α1β1γδ, α3β4, α4β2 [15,16]

ω-CnVIIA C. consors CKGKGAOCTRLMYDCCHGSCSSSKGRC# Ca2.2 > Ca2.1 [17]

ω-CVIB C. catus KGKGASCRKTMYDCCRGSCRSGRC# Ca2.2~Ca2.1 > Ca2.3 [18]

ω-CVIC C. catus CKGKGQSCSKLMYDCCTGSCSRRGKC# Ca2.1~Ca2.2 [18]

ω-CVID C. catus CKSKGAKCSKLMYDCCSGSCSGTVGRC# Ca2.2 > Ca2.1 [18]

ω-MVIIA C. magus CKGKGAKCSRLMYDCCTGSCRSGKC# Ca2.2 > Ca2.1 [19–21]

ω-MVIIC C. magus CKGKGAPCSKTMYDCCSGSCGRRGKC# Ca2.1 > Ca2.2 [21,22]

ω-MVIID C. magus CQGRGASCRKTMYNCCSGSCNRGRCC# Ca2.1 >> Ca2.2 [23,24]

αD-VxXXA C. vexillum DVQDCQVSTOGSKWGRCCLNRVCGPM
CCPASHCYCVYHRGRGHGCSC (dimer) N.D. [25]

αD-VxXXB C. vexillum DDγSγCIINTRDSPWGRCCRTRMCGSMCC
PRNGCTCVYHWRRGHGCSCPG (dimer) α7, α3β2, α4β2 [25]

αD-VxXXC C. vexillum DLRQCTRNAPGSTWGRCCLNPMCGNFC
CPRSGCTCAYNWRRGIYCSC (dimer) N.D. [25]

αD-cap C. capitaneus EVQECQVDTPGSSWGKCCMTRMCGTMC
CSRSVCTCVYHWRRGHGCSCPG (dimer) α7, α3β2, α4β2 [26]

αD-mus C. mustelinus DVRECQVNTPGSKWGKCCMTRMCGTMC
CARSGCTCVYHWRRGHGCSCPG α7, α3β2, α4β2 [26]

Pu14a C. pulicarius DCPPHPVPGMHKCVCLKTC α3β2, α6α3β2 [27]

O-GeXXVIIA C. generalis ALMSTGTNYRLLKTCRGSGRYCRSPYDCR
RRYCRRISDACV α9α10, α1β1εδ [28]

Increasing evidences indicate that Met residue in proteins is the same as cysteine which serve
as antioxidants and impact the structure of proteins [14]. Here, we investigated how methionine



Mar. Drugs 2018, 16, 215 7 of 12

played a role in interaction between TxID and α3β4 nAChR. Firstly, [MO]TxID was synthesized
and the potency on α3β4 nAChR was tested. It resulted in a 13.3-fold loss of activity compared to
parent peptide. Previous study showed single amino acid substitutions in TxID shifted its selectivity.
Analogously, Met oxidation in TxID probably change its specificity on α3β4 nAChR. To understand
the role of Met in TxID, we systematically substituted Met residue by the other eight amino acids,
including Ala, Ile, Val, Leu, Lys, Arg, Glu and Gln. Most analogues decreased or even lost the affinity
at α3β4 nAChR. Only [M11I]TxID retained most activity on α3β4 nAChR (Table 1). Our findings show
that [M11L]TxID binds with Hill coefficient of 1.27 and other TxID analogues bind with Hill coefficients
less than 1 (0.69–0.88), which may predict the substitution of Met in TxID can allosterically regulate the
conformation of α3β4 nAChR [30]. Consistent with the electrophysiology experiment results, the MD
simulations data shows that Met residue can establish hydrophobic interactions with the residues in
the binding pocket. In our models, the conversion of Met to MetO weakens the hydrophobic interaction
between peptide and receptor. It is, therefore, not surprising to find the [MO]TxID have a decreased
activity compared to TxID. Eight analogues were designed and synthesized. Their potencies were
evaluated respectively to reveal effects of the 11th position amino acid of TxID on α3β4 nAChR.
Among them, replacement of Met with Ile is only 3.8-fold less active against α3β4 nAChR. In the
binding mode of [M11I]TxID at α3β4 nAChR, the spacing distance between position 11 and β4 (−)-I78
increased from 3.5 Å to 4.6 Å, which may slightly but not significantly weaken the hydrophobic
interaction, which could be used to explain why [M11I]TxID has comparable activity relative to the
parent peptide (Figure 6).

Figure 6. MD simulations demonstrate the distance difference between rat β4-I78 and Met-11 or Ile-11.
(A) For native TxID, the distance between the sulfur atom of Met-11 and side-chain Cδ of β4-I78 lies
within 3.5 Å; (B) For analogue [M11I]TxID, the distance between Cγ2 of Ile-11 and side-chain Cδ of
β4-I78 is 4.6 Å.

To date, several α-CTxs and its analogues have been identified to antagonize α3β4 nAChR [11,31–34].
α4/6-CTx AuIB, from the venom of Conus aulicus, selectively inhibits α3β4 nAChR with an IC50 of
750 nM [31]. Alanine-scanning and MD simulations analysis revealed the side chain size, aromaticity,
and hydrophobicity of phenylalanine (Phe) at position 9 can significantly affect the activity of AuIB
at α3β4 nAChR [35]. α-CTx RegIIA was identified from Conus regius venom, inhibiting α3β2, α3β4,
and α7 nAChRs [34]. Mutagenesis of RegIIA revealed α-CTx [N11A, N12A] RegIIA specific blocked
α3β4 nAChR, then the molecular mechanism research suggested Asn-9, Asn-11, and Asn-12 involved in
toxin-receptor interaction [36]. Another research elucidated specific β subunit residues interacting with
RegIIA and AuIB [37]. Combining with our research results, the interaction between α-CTxs with α3β4
nAChR is complex, and further mutational and molecular mechanical studies are required to illuminate
SAR between them.
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Owing to its potent activity, the TxID has a potential in the development of a novel drug.
Unfortunately, the conversion of Met to MetO is readily to happen during TxID synthesis and oxidation
steps as well as under oxidative environment in vivo, which causes the loss of activity in the inhibition
of α3β4 nAChR. Furthermore, conotoxins containing Met require low-temperature storage in the
entire supply chain which increases the inconvenience and cost [38]. These drawbacks caused by
Met should be considered in the pharmaceutical industry when transferring TxID to a drug. Hence,
it is an ideal strategy that Met could be replaced by other stable amino acids or derivatives while
maintaining its original activity. In this study, our research results showed substitution Met-11 with Ile
retained comparable activity at α3β4 nAChR. Our research sheds a light on re-engineering conotoxins
containing Met to retain their stability and activity.

In summary, we firstly investigated how the conversion of Met to MetO affected the efficacy of
TxID at the α3β4 nAChR. The substitution of Met of TxID by an Ile maintained the comparable activity
at the α3β4 nAChR. Homology models and dynamic simulation suggested the molecular mechanism
of interaction between different analogues of TxID and α3β4 nAChR. These findings provide further
information for understanding the function of Met residue in α-CTx TxID.

4. Materials and Methods

4.1. Chemical Synthesis and Oxidative Folding of α-Ctx TxID Analogues

The linear peptides of TxID and its mutants were synthesized as previously described [39]. Two
disulfide bonds between cysteine residues form disulfide frameworks with regioselective protection
method. Cysteine residues were protected with a pairwise combination of S-trityl on Cys I and Cys III
and with S-acetamidomethyl on Cys II and IV. Acid-labile protecting groups Trt were cleaved from
Cys I and Cys III during the acidic conditions, and the first disulfide bridge was formed by exposure
to potassium ferricyanide (Ke3[Fe(CN)6]), then monocyclic peptides were purified by preparative
RP-HPLC. The Acm protecting groups were subsequently removed and closed from Cys II and Cys
IV by iodine oxidation. The synthesized peptides were purified on a Waters 2535 HPLC system
(Milford, MA, USA) using preparative Vydac C18 column with a linear gradient of a 10–40% eluate B,
and 90–60% eluate a over 30 min. Solvent B was 90% ACN, 0.092% TFA, and H2O; Solvent a was 0.1%
TFA in H2O. The purity of the TxID and its analogues were determined by monitoring absorbance at
214 nm during HPLC (≥95% purity). ESI-MS mass spectrometry was utilized to confirm the identity
of the products.

4.2. Chemical Synthesis of [MO]TxID

Met is easily modified to methionine sulfoxide under oxidative conditions. α-CTx TxID (0.2 mg)
firstly dissolved in 100 µL of 60% acetonitrile in ddH2O, which was incubated with 5 mL of 10%
hydrogen peroxide (H2O2) in 20 min at room temperature. Then reaction products were separated using
semi-preparative RP-HPLC with a linear gradient as above conditions. The purity of oxidative products
was identified by Waters ACQUITY UPLC™ System with BEH300 C18 column (50 × 2.1 mm, 1.7 µm)
(Waters Corporation, Milford, MA, USA). The molecular mass was measured on a Waters TQD mass
spectrometer equipped with an electrospray ionization source (Waters Corporation, Milford, MA, USA).

4.3. RNA Preparation and Injection

Plasmid DNAs encoding rat nAChR subunits were kindly provided by Stefan H. Heinemann
(Salk Institute, San Diego, CA, USA). The plasmids were linearized with appropriate restriction
enzymes. Then capped RNA (cRNA) for the various subunits were made using transcription kit of
the mMessage mMachine SP6 (Ambion, Austin, TX, USA) in vitro. The cRNA was purified using
MEGAclear™ kit (Ambion). The concentration of each cRNA was determined using Smart Spec™
plus Spectrophotometer (Bio-Rad, Hercules, CA, USA) at 260 nm. cRNA of the various subunits
was combined to give ~50 ng/µL of each subunit cRNA. 50.6 nL of this mixture was injected into
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each Xenopus oocyte with a Drummond microdispenser (Drummond Scientific, Broomall, PA, USA),
and incubated at 17 ◦C. Oocytes were injected within 1 day of harvesting, and recordings were made
2–4 days post-injection.

4.4. Voltage-Clamp Recording

Oocytes were voltage-clamped and exposed to ACh and CTxs as described previously [40].
Briefly, oocytes were transferred into the recording chamber (~50 µL in volume) and gravity-perfused
at 2 mL/min with ND96 buffer (96 mM NaCl, 2.0 mM KCl, 1.0 mM MgCl2·6H2O, 1.8 mM CaCl2·2H2O,
5 mM HEPES, pH 7.1–7.5) containing 1 µM atropine and 0.1 mg/mL bovine serum albumin (BSA).
For α9α10 subtype, the ND96 contained no atropine. Two electrode voltage clamp recordings from
oocytes were carried out at room temperature using an Axoclamp 900A amplifier (Molecular Devices
Corp., Sunnyvale, CA, USA) at a holding potential of −70 mV. The continuous gravity perfused with
standard ND96 solution and stimulated with 1-s pulses of ACh once every minute. For screening of
receptor for toxin concentration 10 µM and lower, once a stable baseline was achieved, we added 5 µL
of different concentration toxin to the chamber and waited for 5 min, then applied perfusion system,
during which 1-s pulses of 100 µM ACh were applied every minute until a constant level of block
was achieved. The electrophysiology data were recorded and analyzed using Clampfit 10.2 software
(Molecular Devices Corp., Sunnyvale, CA, USA). The results were acquired with at least three oocytes.

4.5. Statistical Analysis of Data

The data and statistical analysis in this study comply with previous strategy [12]. An average of
five control responses just preceding a test response was used to normalize the test response to obtain
“% response”. All electrophysiological data were collected at least three oocytes and represent means
± standard error of the mean (SEM). The dose-response data were fit to the equation, % response =
100/{1 + ([toxin]/IC50)nH}, where nH is the Hill coefficient, by nonlinear regression analysis using
GraphPad Prism 5.0 (GraphPad Software, San Diego, CA, USA).

4.6. Homology Modeling

Homology models of the extracellular ligand binding domain of Rat α3β4 nAChR were
generated using Modeler9v14 as previous method [13,41]. The co-crystal structure of Ac-AChBP
(Aplysia californica acetylcholine-binding protein) with the potent mutant TxIA(A10L) (PDB ID:
2BR8) [42] and crystallographic structure of human α9 subunit (PDB ID: 4D01) [43] were adopted as
structural template. These templates were chosen to generate model of the interaction between toxin
and rat α3β4 nAChR ligand binding domains. Then the model was selected for subsequent molecular
dynamics (MD) simulations and analysis.

4.7. Molecular Dynamics Simulations

Molecular dynamics (MD) simulations were performed for the α3β4 nAChRs with TxID and its
two analogues. The structure of methionine sulfoxide was built with GaussView V.5 and Amber tools
14. These models were implemented using the GROMACS5.1 [44] with the amber ff99SB-ILDN30 force
field [45]. The MD parameters complied with previous study. 50 nanoseconds simulation was performed
for each model and graphics were produced using PyMOL package (http://www.pymol.org/).
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