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Genome-wide Estrogen Receptor-a
activation is sustained, not cyclical
Andrew N Holding*, Amy E Cullen, Florian Markowetz

Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge,
United Kingdom

Abstract Estrogen Receptor-alpha (ER) drives 75% of breast cancers. Stimulation of the ER by

estra-2-diol forms a transcriptionally-active chromatin-bound complex. Previous studies reported

that ER binding follows a cyclical pattern. However, most studies have been limited to individual ER

target genes and without replicates. Thus, the robustness and generality of ER cycling are not well

understood. We present a comprehensive genome-wide analysis of the ER after activation, based

on 6 replicates at 10 time-points, using our method for precise quantification of binding, Parallel-

Factor ChIP-seq. In contrast to previous studies, we identified a sustained increase in affinity,

alongside a class of estra-2-diol independent binding sites. Our results are corroborated by

quantitative re-analysis of multiple independent studies. Our new model reconciles the conflicting

studies into the ER at the TFF1 promoter and provides a detailed understanding in the context of

the ER’s role as both the driver and therapeutic target of breast cancer.

DOI: https://doi.org/10.7554/eLife.40854.001

Introduction
The study of the Estrogen Receptor-a (ER) has played a fundamental role in both our understanding

of transcription factors and cancer biology. The ER is one of a family of transcription factors called

nuclear receptors. Nuclear receptors are intra-cellular and, on activation by their ligand, typically

undergo dimerisation and bind to specific DNA motif (for ER: Estrogen Response Elements; EREs).

On the chromatin, the nuclear receptor recruits a series of cofactors and promotes the basal tran-

scription mechanism at either nearby promoters or through chromatin loops from distal enhancers.

Because of the minimal nature of these systems relative to other signaling pathways, nuclear recep-

tors have become a model system for transcription factor analysis. Simultaneously, the role of

nuclear receptors as drivers in a range of hormone dependent cancers has led to focused studies in

the context of the disease.

Previously, it was reported that the ER and key cofactors followed a cyclical pattern in breast can-

cer cell lines with maximal binding at 45 min after stimulation with estra-2-diol (Shang et al., 2000;

Métivier et al., 2003). Similar results were also reported for the AR after activation with DHT

(Kang et al., 2002) and several follow-up studies exist looking at single genomic loci (Herynk et al.,

2010; Luo et al., 2005; Shao et al., 2004; Burakov et al., 2002). However, subsequent genome-

wide studies have provided little further detail on the specific nature of the proposed kinetics of ER

binding being either limited in the number of replicates or lacking temporal resolution

(Honkela et al., 2015; wa Maina et al., 2014; Dzida et al., 2017; Guertin et al., 2014). In our own

network analysis (Holding et al., 2018), we focused on 0, 45 and 90 min and found no significant

reduction in ER signal at 90 min. In the same study, quantitative proteomic analysis of ER interactions

at the same time intervals by qPLEX-RIME (Papachristou et al., 2018) shows no significant differ-

ence in terms of ER interactions at 45 and 90 min. These conflicting results have so far not been

resolved.
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Routinely used assays to measure protein binding to chromatin are based on Chromatin Immuno-

precipitation (ChIP). A major challenge to monitoring ER activation through ChIP is the normalization

of the ChIP signal — either genome-wide with next generation sequencing or at individual loci by

qPCR — as the standard protocols do not control for a significant number of confounding factors

including the efficiency of the immunoprecipitation step. In the case the of the two original studies

(Shang et al., 2000; Métivier et al., 2003), the data only provided limited controls in this regard.

An alternative method that has been applied to normalize ChIP-seq data is to use the maximal read

count obtained at each individual site across each time point (Guertin et al., 2014); however, this

method is at the expense of monitoring the magnitude of ER binding and gives equal weight to low

read count peaks and more robust data from stronger binding sites.

In the context of these challenges, we applied two strategies to robustly and accurately monitor

the process of nuclear receptor binding to chromatin on activation. The first strategy was to increase

the number of replicates. We generated sample data for six independent isogenic experiments to

enable better characterization of the variance within the data. This strategy provided an unprece-

dented level of information regarding ER activation with twice the level of replication used in previ-

ous ChIP-qPCR studies (Métivier et al., 2003) and a significant improvement on previous single

replicate genome-wide studies. The second strategy was to use our recently developed method for

precise quantification of binding, Parallel-Factor ChIP (pfChIP) (Guertin et al., 2018), which uses an

internal control for quantitative differential ChIP-seq. Combined, these two strategies enabled us to

undertake the most comprehensive and precise analysis of ER activation to date.

eLife digest Breast cancer is the most common type of cancer worldwide. The hormone

estrogen drives the growth of 70% of breast cancer tumors. This form of breast cancer is called

estrogen receptor positive (ER+) breast cancer. In the early 2000s, several scientists found that some

genes in ER+ breast cancers turn on and off in 90-minute cycles. Moreover, when the estrogen

receptor binds to the DNA in the nucleus of a cell, it activates nearby genes causing the tumor cells

to grow and divide.

Learning more about how cancer cells respond to estrogen is very important. Many cancer drugs

block estrogen to stop its tumor growth promoting effects. But the initial studies of estrogens

effects were only able to look at how estrogen affected a small number of genes. Newer genome

sequencing technologies allow scientists to study the effects of estrogen on more genes and

provide more detailed information.

Using these cutting-edge technologies, Holding et al. show that the 90-minute cycles found in

the previous studies are likely artefacts of older techniques and lacking controls. The new

experiments used a newer technique called parallel factor ChIP-seq to look at how all genes

respond to the estrogen receptor. Then, Holding et al. reanalyzed data published in the previous

studies and found that they were often contradictory and inconsistent.

None of the genes – not even the ones looked at in earlier studies – were expressed in 90-minute

cycles like the previous studies suggested. Instead, the expression of the genes was variable, which

may make the cell even more responsive to estrogen. The previous reports of the 90-minute cycles

are most likely explained by a bias of the human eye of finding patterns in a highly variable process

that do not hold up to statistical analysis.

Better understanding how estrogen influences genes and cell growth is essential to developing

better treatments for ER+ breast cancer. This includes ruling out ideas that may be incorrect or

misleading. These findings help resolve why not all studies have found estrogen receptor driven

cycles of gene expression, and will provide researchers with a better foundation for future studies.

DOI: https://doi.org/10.7554/eLife.40854.002
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Results

Measurement of genome Copy-Number discordance
We measured ER-binding in MCF7 cells, a widely used model system for ER biology. To maximize

the reproducibility of our results, MCF7 cells were grown from ATCC stocks, keeping passaging to a

minimum, and the cell line origin was confirmed by STR genotyping. Additionally, to ensure the

MCF7 cell line did not show significant genetic drift during culturing within our laboratory, we

applied CellStrainer (Ben-David et al., 2018) to the input data from our ChIP-seq experiments. The

fraction of genome with copy-number discordance was estimated at 0.2787, within the range of 0 to

0.3 as published by CellStrainer’s developers to ensure similar therapeutic response.

Visualization of raw data
Sequencing reads from the analysis of 60 pfChip-seq samples targeting ER and six input samples

were demultiplexed and aligned to the Homo sapiens GRCh38 reference assembly. Visual inspection

of the data using the Integrative Genomics Viewer (IGV) Viewer (Robinson et al., 2011) confirmed

enrichment at known ER binding sites (exemplified by TFF1 in Figure 1—figure supplement 1) and

the presence of previously reported CTCF control peaks (Guertin et al., 2018). From visual
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Figure 1. pfChIP-seq signal at the TFF1 promoter and proximal CTCF binding site. Binding of ER at the TFF1 promoter has been the classical focus of

study before genome-wide technology and the predicted site for oscillations in ER binding. ER binding is minimal at 0 min; however, by 10 min, the ER

has rapidly and robustly bound to give a sustained signal at the TFF1 promoter. In contrast, the closest CTCF binding site demonstrates a constant,

estra-2-diol-independent, signal with significantly less variance. Pairwise comparison found no significant changes in binding at the TFF1 promoter (t-

test, two-sided, FDR < 0.05) except for when comparing against the 0 min time point.

DOI: https://doi.org/10.7554/eLife.40854.003

The following figure supplements are available for figure 1:

Figure supplement 1. TFF1 Promoter and Enhancer.

DOI: https://doi.org/10.7554/eLife.40854.004

Figure supplement 2. Normalization plots for each time point as generated by Brundle (Guertin et al., 2018).

DOI: https://doi.org/10.7554/eLife.40854.005

Figure supplement 3. Line plot of pfChIP-seq signal at the TFF1 promoter and proximal CTCF binding site.

DOI: https://doi.org/10.7554/eLife.40854.006

Figure supplement 4. Plot of pfChIP-seq signal at the RARA promoter and proximal CTCF binding site.

DOI: https://doi.org/10.7554/eLife.40854.007
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inspection, pfChIP-seq samples qualitatively showed minimal ER binding at 0 min while CTCF bind-

ing was constant at all time points.

Parallel-Factor normalization
Peak count data from CTCF binding sites were used to normalize between conditions as these sites

have previously been shown to be unchanged in response to estrogen (Ross-Innes et al., 2011),

with >70 000 binding sites discovered across all samples and >50 000 CTCF binding sites found in

over 50% of samples. Analysis after normalization of the raw data showed similar levels of variability

in terms of signal (Figure 1—figure supplement 2) as we saw when developing the pfChIP method

(Guertin et al., 2018). The resultant normalized binding matrix of ER binding was used for all down-

stream analyses and is provided as Supplementary file 1.

ER binding at the TFF1 promoter
Normalized count data for the TFF1 promoter showed that on activation with estra-2-diol the ER

rapidly (in less than 10 min) binds the TFF1 promoter. Binding after this time point shows no signifi-

cant changes (Figure 1). Analysis of the data by individual replicates (Figure 1—figure supplement

3) did not demonstrate evidence of oscillatory binding in individual replicates either with a period of

90 min period or an alternative frequency.

Comparison of the variance in the ER binding after induction shows that there is significantly

more variance (F-test, time points >= 10 min, p-value < 1 � 10-10) in the ER binding data than in

Figure 2. Heatmaps showing ER binding affinity from 0 to 90 min after stimulation with estra-2-diol normalized in

two different ways. Row order is the same in both plots. (A) Normalized by row to time point with maximal

binding. Data suggests that genomic loci may influence the time point maximal binding; however, normalizing to

CTCF control peaks (B) demonstrates the effect is potentially overemphasized by normalization choice and that

binding affinity is the biggest variable. In contrast, both plots (A and B) show minimal ER binding affinity is found

at 0 min, consistent with the literature response of MCF7 cells to treatment of estra-2-diol.

DOI: https://doi.org/10.7554/eLife.40854.008

The following figure supplements are available for figure 2:

Figure supplement 1. (Left) Analysis of each time point to the previous time point only shows a significant

numbers of changes in ER binding between 0 and 10 min.

DOI: https://doi.org/10.7554/eLife.40854.009

Figure supplement 2. (Left) Class average of ER binding in the block of binding events that show maximum

binding at 0 min in Figure 2.

DOI: https://doi.org/10.7554/eLife.40854.010
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CTCF binding between replicates. In contrast, pairwise F-test (two-sided, FDR < 0.05) for ER binding

at all time points showed no significant difference in the variance for any comparison. As the vari-

ance of CTCF binding in pfChIP-seq is a good estimator of the technical variance, the most likely

source of increased variance in ER binding is therefore biological. These findings were validated

through analysis of the RARA promoter and proximal CTCF peaks (Figure 1—figure supplement 4),

which gave consistent results to those seen at the TFF1 promoter.

Locus specific variation in maximal ER binding affinity
Previously, ER binding sites were shown to reach maximum occupancy at different time points

depending on genomic location, revealing a P300 squelching mechanism at early time points

(Guertin et al., 2014). Therefore, to provide a partial validation of this study, we applied the same

principles of their analysis to our data, that is normalizing in the time-space setting maximum occu-

pancy to 1. Consistent with the previous study, the two time points with the largest numbers of sites

reaching maximal occupancy in both data sets were at 10 and 40 min (Figure 2A). As the remaining

time points were unique to the individual data sets, these could not be directly compared.

While grouping by maximum occupancy in Figure 2A was essential to highlight these features in

the context of Guertin et al.’s previous study, in our analysis we found this method distorts the data

and the effects that drove the appearance of blocks are not statistically significant in our dataset

(Figure 2—figure supplement 1) with the exception of the 0 to 10 min contrast.

As far as we are aware, the loss on ER binding on activation with estra-2-diol is unprecedented,

and therefore the presence of a block of ER sites with maximal binding at 0 min warranted deeper

investigation. Analysis of the class average (Figure 2—figure supplement 2A) showed that the vari-

ance of this class is much greater than the decrease seen between 0 and 10 min. A more detailed

analysis of the individual trajectories of each binding site (Figure 2—figure supplement 2B) showed
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Figure 3. t-SNE plot to explore temporal patterns in ER binding affinity. Two trajectories, A and B, are highlighted with white arrows and starting a

single cluster of peaks. Points are colored by FDR value computed by Brundle/DiffBind for the 0 vs 10 min contrast. Trajectory A demonstrates

increasing ER affinity in response to estra-2-diol at 10 min. Trajectory B shows increasing affinity for all times points, that is estra-2-diol independent

binding, but the maximum signal is of a lower intensity than that of Trajectory A. De novo motif analysis for Class A (the peaks found at the end of

trajectory A) gave strongest enrichment for the ERE (p = 1 � 10-538). The same analysis of Class C provided a partial ERE (not shown), consistent with ER

affinity being a function of how conserved the ER binding site is with respect to ideal ERE. Analysis of Class B gave FOXA1 as the most significantly

enriched motif (p = 1 � 10-19).

DOI: https://doi.org/10.7554/eLife.40854.011

The following figure supplements are available for figure 3:

Figure supplement 1. Multiple t-SNE plots of ER binding affinity changes in response to estra-2-diol at increasing perplexity (top left of each figure).

DOI: https://doi.org/10.7554/eLife.40854.012

Figure supplement 2. Analysis of the ER data stream gave similar profiles at the TFF1.

DOI: https://doi.org/10.7554/eLife.40854.013
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a similar result, with the maximal binding at time zero appearing marginal and in all cases. We there-

fore concluded that maintaining the group of the blocks between Figure 2A and B visually overem-

phasized this feature within the data.

pfChIP-seq allowed us to improve on the previous study by directly normalizing the data to the

internal control. The resultant binding matrix provided quantification of the absolute binding affinity

at each time point (Figure 2B).

Comparison of Figure 2A and B demonstrates the effects of different data normalization strate-

gies. The relative normalization to maximum binding emphasizes binding maxima (red blocks in

Figure 2A) while the absolute normalization to an internal control shows that these maxima are very

shallow, barely visible in Figure 2B, and other features dominate the data. A few genes show very
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Figure 4. t-SNE analysis of the most strongly bound ER sites (Class A) and comparison to previously published data. (A) t-SNE plot of Class A from

Figure 3, points colored by time of maximum value. Profiles for binding sites near the transcription start site of two well studied ER target genes, TFF1

and GREB1, gave a robust sustained response to estra-2-diol. Binding sites near SNX24 and ACKR3 TSS are shown to examples of ER binding affinity

profiles that indicate potential early or late maximal binding. Peak coordinates are provided in Supplementary file 1. (B) Analysis of ER and cofactor

binding at the TFF1 promoter in four studies (Burakov et al., 2002; Herynk et al., 2010; Shang et al., 2000; Shao et al., 2004). Data was either read

directly from plots within the original publication or using ImageJ (Schneider et al., 2012) to calculate band density. To ensure data was comparable,

data was normalized to the maximum value and all studies were chosen for replicating the conditions in Shang et al.’s original study.

DOI: https://doi.org/10.7554/eLife.40854.014
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high levels of ER binding (visible as thin red lines in Figure 2B), while most genes show intermediate

levels and some very low levels (blue lines). These different levels of ER binding are preserved over

time, with only time point 0 showing very low levels for all genes.

Visualizing temporal ER binding affinity
To elucidate potential different temporal responses to ER activation by estra-2-diol, we applied

t-SNE (Maaten and Hinton, 2008), a widely used method for dimensionality reduction and data

visualization (Figure 3). Each dot in the plot represents a binding site over time, that is one row in

the binding matrix shown in Figure 2B. We colored each dot by the false discovery rate (FDR;

(Benjamini and Hochberg, 1995)) for the change in ER affinity between 0 to 10 min. This analysis

revealed two major trajectories of binding sites in the data, one dominated by low FDR (orange) and

one by high FDR (blue). Both trajectories saw an increasing affinity in the direction of the white

arrow. This pattern was stable for a wide range of perplexity, the main t-SNE parameter (Figure 3—

figure supplement 1).

We named the estra-2-diol responsive trajectory A, and the estra-2-diol independent trajectory B.

The set of genomic sites found at the end of each trajectory were named Class A and B respectively.

Motif analysis of Class A peaks demonstrated significant enrichment for the full estrogen response

element (ERE, (Klein-Hitpass et al., 1986)), while Class B gave enrichment for the FOXA1 binding

site. Analysis of Class C (i.e. weaker responding genes on trajectory A) gave a partial ERE match,

suggesting a greater divergence from the ERE motif and consistent with the lower levels of ER affin-

ity found on ER activation at these sites (Driscoll et al., 1998).

Average binding profiles were computed for both Class A and Class B. Class A showed minimal

binding at 0 min followed by a robust response before 10 min, the binding affinity then remained

similar for the remaining time points. In contrast, Class B displayed estra-2-diol independent binding

at 0 min and average ER binding affinity saw no significant changes between time points. Class C

gave a similar profile to Class A (not shown), but with reduced amplitude. The average amplitude of

the binding from 10 to 90 min displayed a greater ER affinity for Class A then Class B.

Genomic regions enrichment of annotations tool (GREAT) analysis (Welch et al., 2014) of Class B

binding sites (Supplementary file 2) identified the enrichment of six amplicons previously identified

from the analysis of 191 breast tumor samples, q = 5.6 � 10-41 to q = 3.3 � 10-8, (Nikolsky et al.,

2008) and a set of genes upregulated in luminal-like breast cancer cell lines compared to the mesen-

chymal-like cell lines, q = 1.9 � 10-13, [Charafe-Jauffret et al., 2006]).

Undertaking the same analysis of the ER only ChIP-seq data stream gave very similar results to

that of pfChIP-seq analysis, confirming that any potential cycling is not suppressed by the method

(Figure 3—figure supplement 2). As with the pfChIP-seq analysis, no clear cycling was seen for the

individual replicates (Figure 3—figure supplement 2C).

Analysis of class A ER binding sites
Class A binding sites showed the strongest response to estra-2-diol, the greatest enrichment of the

estrogen response element and contained the classical ER binding site at TFF1. We therefore

focused further analysis on these peaks to minimize confounding factors. A t-SNE plot of only Class

A sites (Figure 4A) did not provide distinct clustering of points. Partial separation was seen on the

basis of time point of maximal binding (left to right) and amplitude (approximately top to bottom).

As the class profiles may average out site-specific oscillatory kinetics, we undertook analysis of

individual ER binding sites. Peaks were annotated on the basis of the nearest Transcription Start

Sites (TSS) and profiles for key ER target genes TFF1 and GREB1 were generated. As previously

seen in Figure 1—figure supplement 1, ER binding at TFF1 was stable after induction. The same

response was seen at the TFF1 enhancer (dark red). Analysis of ER binding proximal to GREB1 again

showed a robust and unidirectional response to estra-2-diol.

Profiles of ER binding that showed either early or late maximal ER affinity were individually inves-

tigated. Binding near the TSS of SNX24 and ACKR3 are provided as representative examples.

Quantitative re-analysis of independent studies
Given we found a robust and stable response to ER activation by estra-2-diol in contrast to the cycli-

cal response previously described (Shang et al., 2000), we reviewed studies that have investigated
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ER binding at the TFF1 promoter. Several studies either used a different promoter (Park et al.,

2005), factor (Li et al., 2003) or estra-2-diol concentration/include a-amanitin (Métivier et al.,

2003).

By manually reviewing the first 1000 citations of (Shang et al., 2000), we identified several studies

(Burakov et al., 2002; Herynk et al., 2010; Shao et al., 2004) that undertook the same analysis in

the MCF7 cell line, with the same concentration of estra-2-diol, same crosslinking time scale, and at

the same promoter as the best datasets for comparison with each other and to our dataset.

Since the numerical values of ER binding occupancy were not available for these studies, we read

the values off the provided charts or undertook image analysis of figures (Supplementary file 4).

Comparison of the data from all four studies gave little or no consistency in the temporal profile

of ER, AIB1 and P300 binding at these sites (Figure 4B). Quantitative image analysis presents limita-

tions in reestablishing the exact values without the primary data; however, the primary data was not

available. In lieu of this, analysis of the published data was considered adequate as the relative inten-

sities will be preserved. Interpretation is further hindered as these studies only report a single repli-

cate for analysis, thereby making it impossible to quantify uncertainty in the data. Therefore, there is

no consistent evidence for cycling in the studies using the same conditions as the original

observation.

Discussion
By undertaking six biological replicates and incorporating an internal control with pfChIP, we have

produced the most comprehensive analysis to date of ER binding over the first 90 min after stimula-

tion with estra-2-diol. We found the sites at which we detected ER binding on the chromatin follows

two distinct trajectories, either the rapid activation within 10 min followed by a stable response or

ligand independent binding.

Enrichment of the FOXA1 motif in the strongest ligand-independent/Class B sites supports our

hypothesis: that these are as a result of ER interactions at these sites. Importantly, the de novo motif

analysis did not find the presence of the CTCF motif, confirming that they are not an artifact of utiliz-

ing CTCF to normalize via the pfChIP-seq method. Analysis of the Class B binding sites with GREAT

(Welch et al., 2014), Supplementary file 2, gave enrichment for 6 out of 30 ER regulated amplicons

identified in a previous study of 191 breast cancer tumor samples (Nikolsky et al., 2008). On the

basis that no ERE was found at Class B sites and that the affinity of ER at these sites was less than at

estra-2-diol response sites, we propose that these sites represent open regions of chromatin where

ER can be recruited by other transcription factors in the absence of its own ligand. However, these

interactions are weak, and very likely transient, as the average binding affinity for Class B sites is sim-

ilar in level (a normalized read count of 30–40) to the binding before activation at Class A binding

sites, but greater than Class C binding sites (» 10 normalized reads increasing to » 40 on

activation).

Ligand dependent activation of ER was seen robustly at Class A sites, but displayed no evidence

of cyclical binding. We propose instead that ER activation occurs rapidly, within 10 min and binding

shows no significant change after this point. The two examples we demonstrated — of increasing or

decreasing ER binding after activation at the SNX24 and ACKR3 TSS (Figure 4A) — should be inter-

preted with caution as, while downstream effects are likely to modulate ER binding, searching for

individual outliers results within a large data set will generate false positives. Nonetheless, the two

examples imply a secondary level of modulation does occur as previously seen, but at much lower

magnitude than proposed in studies focused on ER cycling.

It is possible that alternative conditions may be able to induce tightly regulated cycling; however,

we feel this is unlikely in terms of physiology. For example, the work of Metivier et al. makes use of

a-amanitin, a RNA polymerase inhibitor. Within the cancer biology setting, these conditions have no

direct interpretation. Worse, the mode of action is downstream of the ER and therefore is a con-

founding factor, not a clear method of synchronization.

In light of our results and the lack of consistency of published results, we propose that the previ-

ously described cyclical response kinetics are likely an artefact of observing a highly variable process

without replicates. With replicates, the cyclical effect is lost when averaging. Even if a cyclical

response existed, our results indicate that it is not regulated tightly enough to be coherently visible

across multiple replicates. The variance in ER binding may better be described by heterogeneity in
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the cell populations before induction and by current models regarding expression noise as an indica-

tor for greater transcription responsiveness (Morgan and Marioni, 2018). Finally, our proposal pro-

vides, for the first time, a model that reconciles ChIP-seq data with the stochastic model of nuclear

receptor binding as proposed and visualized by those undertaking single model imaging. In contrast,

ER cycling has always been irreconcilable with these alternative forms of data (Lenstra et al., 2016)

While we cannot discount that our cells could have specifically lost the ability to regulate ER bind-

ing in the manner previously described, we have minimized this possibility through the use of cells

direct from ATCC, by confirming the cell line by STR genotype and applying the latest methods

(Ben-David et al., 2018) to confirm that our cell line is genetically similar to the strains used in other

labs. Nonetheless, we would welcome further replication of this study.

In summary, through the use of stringent internal controls, we have reproducibly shown that

estra-2-diol responsive ER binding is sustained and not cyclical, with the magnitude of the binding

primarily defined by the conservation of the ERE at the binding site.

Materials and methods

Cell culture
MCF7 cells (RRID:CVCL_0031) were obtained from ATCC and confirmed by STR genotype before

culture. For each immunoprecipitation, cells from 2 � 15 cm dishes were used. In each 15 cm

plate, 2 � 106 were seeded and grown for 3 days in DMEM (Glibco) with 10% FBS before washing

with phosphate buffered saline. Media was replaced with charcoal stripped and phenol red-free

DMEM medium. Media was replaced daily for 4 days to ensure removal of estrogenic compounds.

Plates were stimulated on day 5 with a final concentration of 100 nM estra-2-diol in EtOH before

crosslinking at the required time. All six replicates were done on different dates and represent differ-

ent passages.

Cell lines
MCF7 cells were obtained from ATCC. The cell line was authenticated using STR profiling and are

confirmed Mycoplasma free.

pfChIP-seq
Parallel-factor ChIP-seq was performed as previously described (Guertin et al., 2018). CTCF anti-

body was D31H2 Lot:3 (RRID:AB_2086791, Cell Signaling). ER antibody was 06–965 Lot:3008172

(Millipore).

Data analysis
Reads were aligned using BWA (Li and Durbin, 2009), and ENCODE blacklist regions

(ENCODE Project Consortium et al., 2012) were removed as previously described (Carroll et al.,

2014). Duplicate reads were removed and peak calling was undertaken using MACS2 (Zhang et al.,

2008; Feng et al., 2012). ER and CTCF peaks were filtered according to the pfChIP-seq protocol

(Guertin et al., 2018), before normalization and differential binding analysis with Brundle/DiffBind

(Guertin et al., 2018; Ross-Innes et al., 2012) in R. t-SNE plots were generated with Rtsne

(Krijthe, 2015). Perplexity was tested from 2 to 200 to confirm the stability of the transformation of

the data into 2-dimensional space (Figure 3—figure supplement 1). Lower perplexities, 2 and 5,

gave minimal structure. For perplexities tested between 30 and 200, two stable trajectories were

seen in all cases. GREAT (Welch et al., 2014) was used to analyze Class B binding sites. Band inten-

sities from previously published studies were measured with ImageJ (Schneider et al., 2012).

Data repositories
Sequencing data have been deposited in GEO under accession code GSE119057.
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