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In the human placenta, two trophoblast cell layers separate the maternal blood
from the villous basement membrane and fetal capillary endothelial cells. The inner
layer, which is complete early in pregnancy and later becomes discontinuous,
comprises the proliferative mononuclear cytotrophoblasts, which fuse together and
differentiate to form the outer layer of multinucleated syncytiotrophoblasts. Because the
syncytiotrophoblasts are responsible for key maternal-fetal exchange functions, tight
regulation of this differentiation process is critical for the proper development and the
functional role of the placenta. The molecular mechanisms regulating the fusion and
differentiation of trophoblasts during human pregnancy remain poorly understood. To
decipher the interactions of non-coding RNAs (ncRNAs) in this process, we exposed
cultured primary human trophoblasts to standard in vitro differentiation conditions or
to conditions known to hinder this differentiation process, namely exposure to hypoxia
(O2 < 1%) or to the addition of dimethyl sulfoxide (DMSO, 1.5%) to the culture medium.
Using next generation sequencing technology, we analyzed the differential expression of
trophoblastic lncRNAs, miRNAs, and mRNAs that are concordantly modulated by both
hypoxia and DMSO. Additionally, we developed a model to construct a lncRNA-miRNA-
mRNA co-expression network and inferred the functions of lncRNAs and miRNAs via
indirect gene ontology analysis. This study improves our knowledge of the interactions
between ncRNAs and mRNAs during trophoblast differentiation and identifies key
biological processes that may be impaired in common gestational diseases, such as
fetal growth restriction or preeclampsia.

Keywords: trophoblast, differentiation, hypoxia, lncRNA, miRNA, gene ontology, RNA network

INTRODUCTION

The fusion of mononucleated cytotrophoblasts into multinucleated syncytiotrophoblasts is a
central process in human trophoblast differentiation. Early in pregnancy, this fusion process is
a part of the pre-lacunar and lacunar stages of implantation on days 6–12 after fertilization in
human pregnancy (Boyd and Hamilton, 1970). Once villi are formed, the fusion of mononucleated
cytotrophoblasts into overlying multinucleated syncytiotrophoblasts at the villous surface is
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accompanied by a dramatic change in cell morphology,
transcriptional output, and the production of growth factors and
endocrine signals (Sadovsky and Jansson, 2015). Located at the
surface of human placental villi, the syncytiotrophoblasts are
uniquely positioned to regulate key functions of the placenta in
terms of maternal-fetal gas exchange, the uptake of nutrients
into the feto-placental compartment, the release of waste to
the maternal blood, the production of hormones and the
immune and mechanical protection of the developing fetus
(Sadovsky and Jansson, 2015; Burton et al., 2016). The subjacent
mononucleated cytotrophoblasts, which form a continuous layer
early in pregnancy, later become a discontinuous layer of
interspersed cytotrophoblasts that function as progenitors for
replenishment of damaged or dead syncytium and homeostatic
preservation of this critical layer (Jones and Fox, 1991).
The syncytiotrophoblast exhibits polarity, with a microvillous
plasma membrane facing the maternal blood on the apical
side and a basal plasma membrane located adjacent to the
cytotrophoblasts and the basement membrane. Considering
its functions, it is not surprising that the syncytiotrophoblast
microvillous membrane, which interfaces directly with the
maternal blood, harbors receptors for diverse plasma proteins,
growth factors, immunoglobulins, and other soluble ligands, all
linked to intracellular trophoblast signaling cascades (Dearden
and Ockleford, 1983; Sadovsky and Jansson, 2015).

Syncytium formation prior to 10–13 weeks of human
pregnancy takes place in a hypoxic environment (Burton et al.,
2002; Jauniaux et al., 2006; Burton and Jauniaux, 2018). Beyond
that point, and once the maternal blood begins to perfuse the
intervillous space, hypoxia may be harmful for proper placental
function, leading to cytotrophoblast proliferation, attenuated
fusion of cytotrophoblasts into syncytiotrophoblasts, reduced
hormone and other biosynthetic functions, and overall syncytial
damage and trophoblast death, leading to placental injury and
diseases such as fetal growth restriction (Fox, 1970; Arnholdt
et al., 1991; Pardi et al., 1993; Alsat et al., 1996; Levy et al.,
2000; Pardi et al., 2002; Cartwright et al., 2007; McCarthy et al.,
2007; Simon and Keith, 2008; Schoots et al., 2018). Seeking
to characterize gene expression changes that define trophoblast
differentiation, researchers have focused on the effect of hypoxia
on the expression of protein-coding genes in term trophoblasts
(Roh et al., 2005; Oh et al., 2011; Wakeland et al., 2017;
Kwak et al., 2019).

Recent progress in untangling the complexity of the RNA
world has shed light on diverse non-coding RNAs (ncRNAs)
that play an essential role in shaping cellular differentiated
functions. Among these RNAs, microRNAs (miRNAs) and
long non-coding RNAs (lncRNAs) represent the two best
characterized classes and perhaps those with the most important
regulatory potential. Over 2000 miRNAs are encoded in the
human genome. Most of these miRNAs act in the cytosol,
where they target mRNAs though imperfect base-pairing to
block their translation and accelerate their decay (Bartel, 2009).
However, despite their relative simplicity, the full impact of
miRNAs on gene expression remains incompletely understood.
lncRNAs are more diverse, with an estimated 30,000–100,000
nuclear and cytoplasmic species expressed from the human

genome (Iyer et al., 2015; Hon et al., 2017; Uszczynska-Ratajczak
et al., 2018; Carlevaro-Fita and Johnson, 2019). Further, the
action of lncRNAs is complex, spanning interactions with DNA,
RNA, and proteins and involving 3D structural flexibility that
enables protein scaffolding and the assembly of multi-subunit
complexes and nuclear condensates that shape transcriptional
and posttranscriptional functions (Carlevaro-Fita and Johnson,
2019; Statello et al., 2021).

Recent discoveries within the field of placental biology
highlighted the putative role of lncRNAs and miRNAs in
trophoblastic gene regulatory networks, their role in trophoblast
differentiation and in response to hypoxic injury, and the
impact of these processes on clinically relevant placental
diseases (Canfield et al., 2019; Sheng et al., 2019; Saha and
Ain, 2020). A systematic inquiry into network interactions
of lncRNAs, miRNAs, and mRNAs in differentiating primary
human trophoblasts (PHT cells) is lacking. Here, we used an
in vitro model of cultured PHT cells to investigate harmonized
changes of lncRNAs, miRNAs, and mRNAs during PHT cell
differentiation. In addition to exposure of PHT cells to hypoxia
(Nelson et al., 1999), diverse chemicals and culture conditions
have been employed in vitro to modulate the differentiation of
PHT cells. Douglas et al. found that cytotrophoblasts exposed to
1.5% DMSO retain their mononuclear morphology, culminating
in drastic inhibition of hCG production (Thirkill and Douglas,
1997). Other approaches to limit trophoblast differentiation
include the use of colchicine, an inhibitor of microtubule
polymerization (Douglas and King, 1993), cobalt chloride, a
hypoxia-mimicking agent (Daoud et al., 2005; Rimon et al.,
2008), and the use of Ham’s/Waymouth medium (Douglas
and King, 1990; Chen et al., 2004; Bildirici et al., 2018). The
deployment of these culture conditions led to the discovery of
a repertoire of genes that have been implicated in trophoblast
differentiation and to which hypoxia-induced placental injury has
been attributed (Jiang and Mendelson, 2005; Chen et al., 2006;
Soares et al., 2017).

We sought to hinder trophoblast differentiation using hypoxia
or the addition of DMSO to the culture medium, two approaches
that have led to reproducible results in our laboratory (Nelson
et al., 1999; Yusuf et al., 2002; Roh et al., 2005; Oh et al., 2011;
Mouillet et al., 2013; Bildirici et al., 2018; Beharier et al., 2020).
We used next generation sequencing technology to identify
differentially expressed lncRNAs, miRNAs, and mRNAs during
these processes. Importantly, we interrogated the interactions
among these RNAs and inferred the main biological processes
represented by co-expression patterns.

MATERIALS AND METHODS

Placentas and Dispersed Primary Human
Trophoblasts
All placentas used in our studies were obtained from
uncomplicated pregnancies and term deliveries at Magee-
Womens Hospital in Pittsburgh, under a protocol that
was approved by the Institutional Review Board at the
University of Pittsburgh. PHT cells were isolated using the
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trypsin-DNase-dispase/Percollx method as described by Kliman
et al. (1986), with modifications as we previously published
(Nelson et al., 1999; Mouillet et al., 2010). PHT cells were
cultured in DMEM (Sigma-Aldrich, St. Louis, MO) containing
10% bovine growth serum (HyClone, Logan, UT) and 1% P/S
antibiotics (Sigma-Aldrich) at 37◦C in a 5% CO2-air atmosphere,
until culture conditions were modified as below.

The data used for this study were derived from two
independent sets of experiments, each including several
paradigms (Figure 1). In the first experimental set, PHT cells
from five independently collected placentas were first cultured
for 4–6 h in standard conditions (20% O2) to allow adhesion,
using protocols established in our lab. Some of the cells were
harvested at the end of the initial incubation period (time 0
in Figure 1) and were used as control. The remaining plates
from the same culture were maintained for an additional 48 h
in either standard culture conditions or in hypoxia (O2 < 1%),
using a dedicated hypoxia chamber, as we previously described
(Mouillet et al., 2010). In the second experimental set, PHT
cells from six independently collected placentas were first
cultured for 4–6 h in standard conditions as above. The culture
continued for an additional 48 h, with some of the cells
exposed to DMSO 1.5% (Sigma-Aldrich), designed to mitigate
cell differentiation as previously shown (Douglas and King,
1990) and reproducibly validated by us (Schaiff et al., 2000;
Yusuf et al., 2001).

RNA Extraction, Library Preparation, and
Sequencing
Total RNA was isolated from from placental specimens by
using TRI Reagent (Sigma) according to the manufacturer’s
instructions and purified using EconoSpin spin columns
(Epoch Life Science, Missouri City, TX). The quantity and

quality of total RNA was determined with a NanoDrop 1000
spectrometer (Thermo Fisher, Waltham, MA) and an Agilent
bioanalyzer (Agilent Technologies, Santa Clara, CA). From
each extracted RNA sample, we used 10 µg of total RNA
to generate two types of libraries—one for long RNAs (≥200
nt), including mRNAs and lncRNAs, and one for small RNAs.
The libraries were prepared and sequenced by Ocean Ridge
Biosciences (Palm Beach Gardens, FL) and by McGill University’s
Génome Québec Innovation Centre (Montréal, Canada). For
the second set of experiments, the libraries were prepared
and sequenced at the Health Sciences Sequencing Core at
Children’s Hospital of Pittsburgh. The miRNA samples were
sequenced using the QIAseq miRNA sequencing protocol, which
links a unique molecular identifier (UMI) to each miRNA
to reduce sequencing bias. Data from all experiments were
deposited to the Sequence Read Archive (SRA) at the National
Center for Biotechnology Information with BioProject IDs:
PRJNA674312, PRJNA674329, PRJNA674366, PRJNA704383,
PRJNA704399, PRJNA704393.

Reverse Transcriptase and Quantitative
PCR (RT-qPCR)
RNA was extracted from cells with TRI Reagent (Sigma).
cDNA was synthesized from 1 µg of total RNA by using
the High-Capacity cDNA Reverse Transcription kit (Applied
Biosystems, Foster City, CA) according to the manufacturer’s
protocol. Template cDNA was PCR-amplified with the gene-
specific primer sets (Supplementary Figure 1B). RT-qPCR
was performed using SYBR Select (Applied Biosystems) in a
ViiA 7 system (Applied Biosystems). Analysis of qPCR data
was performed using the delta-delta Ct method (Livak and
Schmittgen, 2001), normalized to glyceraldehyde-3-phosphate
dehydrogenase expression.

FIGURE 1 | Experimental design. Note that PHT cells were sequenced at 0 h (4–6 h after plating, serving as control) and at 48 h in standard culture conditions or in
the two experimental exposure sets: hypoxia (Hpx) or DMSO added to the culture medium.
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RNAseq Data Processing
The long RNA libraries were aligned to human reference genome
GRCh38 using STAR (2.5.2b), an RNAseq alignment tool (Dobin
et al., 2013), and annotated with GENCODE v25 (Frankish et al.,
2019). The number of reads per gene was calculated for each
RNAseq library, using STAR. We used the definition of lncRNA,
which includes antisense RNA, sense intronic RNA, processed
transcripts, and sense-overlapping RNAs (Derrien et al., 2012).
The 15 small RNA libraries from the first set of experiments were
analyzed using our validated miRNA sequencing data analysis
pipeline (Chu et al., 2015). Briefly, after pre-processing the library
reads, including the removal of adaptor sequences and dimerized
primer sequences, we used Bowtie to align all remaining reads
with of least 15 nucleotides to the human reference genome
(GRCh38) (Langmead et al., 2009). The BEDTools program was
used to intersect the alignments to a mature miRNA database
maintained by miRBase (v21). The intersected alignments were
summarized to obtain counts for all miRNAs. The 18 small
RNA libraries from the second set of experiments were processed
using the online Qiagen Primary QIAseq miRNA quantification
tool1 to handle the reads with UMIs. We found an extremely
high correlation between miRNA counts with distinct UMIs
and total miRNA reads. To ensure consistency across the two
experimental sets, the total miRNA reads were used as the miRNA
expression data.

The counts of long and short RNAs in the sequencing
libraries were assumed to follow negative binomial distributions.
The negative binomial test, implemented in the Bioconductor
R package DESeq2 (Love et al., 2014), was used to identify
differentially expressed lncRNAs, miRNAs, and mRNAs. Fisher
exact test was used to perform gene ontology analysis and identify
the biological processes that were over-represented in selected
mRNAs. All p-values from multiple simultaneous multiples tests
were adjusted using Benjamin and Hochberg’s method to control
the false discovery rate (Benjamini and Hochberg, 1995).

Model-Based Co-expression Analysis
We proposed a model-based method to identify mRNAs that
were co-expressed with lncRNAs and/or miRNAs. Specifically, we
assume that the two genes are co-expressed if their expressions Y
and X are related through a (generalized) linear model:

g (E [Y | X, Z]) = aX + BZ,

where g is the link function, Z is the vector of confounding
variables, B is a row vector representing the coefficients of Z, and
a is a non-zero coefficient representing the co-expression relation
between X and Y. We then examined whether X and Y were co-
expressed by testing if a = 0. Note that when X, Y, and Z have a
joint multivariate normal distribution, this is equivalent to testing
whether X and Y have a zero partial correlation, given Z. As we
used a negative binomial model to analyze the gene expression,
Y is the count for one gene and X the log-transformed and
normalized expression of the other gene. The vector B accounts
for the experimental exposure and for placentas used for each
batch of PHT cells.
1www.qiagen.com/

Analysis of Gene Ontology
Because the functions of lncRNAs and miRNAs are not available
from the gene ontology database, we proposed an indirect
approach through the gene co-expression analysis described
above. Specifically, given a set of lncRNAs or miRNAs and using
the model-based co-expression analysis, we identified all mRNAs
that are co-expressed with each of the lncRNAs or miRNAs. The
top-ranked mRNAs were then used for analysis of gene ontology
to identify the enriched biological processes, attributed to altered
expression of the set of lncRNAs or miRNAs.

The statistical analyses, detailed above, were performed
using R (R Development Core Team, 2012) and Bioconductor
(Gentleman et al., 2004). For analysis of lncRNA by RT-
qPCR, the fold-change data were analyzed using Kruskal Wallis
non-parametric test, with post hoc Tukey test for all pairwise
comparisons. RT-qPCR data analysis was performed using Prism
software (GraphPad Software, San Diego, CA).

RESULTS

Using an average read of 0.5 per library as a cutoff in the first
set of experiments, we identified 33,719 long RNAs, including
8,035 lncRNA and 17,298 mRNA species, from the 15 long RNA
libraries and 923 miRNAs from the 15 small RNA libraries. In
the second set of experiments, we identified 30,421 long RNAs
from the 15 long RNA libraries, including 6,988 lncRNA and
16,723 mRNA species, and 2,416 miRNAs from the 15 small RNA
libraries. Overall, mRNAs had a higher read count per library
than lncRNAs (Figure 2). For example, in the first experiment the
median of average lncRNA reads per library was 6.2, compared
to 457.5 reads for the mRNAs. In the second experiment,
the corresponding values were 4.2 and 267.7, respectively. We
also used RT-qPCR to validate the expression changes of 10
lncRNAs (Supplementary Figure 1), as we previously did for
mRNA and miRNA transcript data (Mouillet et al., 2010;
Xie et al., 2014).

To visualize the effect of exposure and potential confounding
factors on the PHT transcriptome, we normalized and log
transformed the long RNA and miRNA library data, using the
regularized and variance-stabilizing transformation method in
the Bioconductor package DESeq2. We then performed classical
multidimensional scaling, respectively, for lncRNAs, miRNA,
and mRNAs (Figure 3). These plots showed that the experimental
conditions markedly influenced the PHT transcriptome. The
exposure effect dominated for mRNAs in the two experimental
sets and for lncRNAs in the second set and was clearly visible for
lncRNAs in the first set and for miRNAs in both experimental
sets. The plots also showed a batch effect on the expression of
lncRNAs and miRNAs in the first experimental set (hypoxia), as
samples 1 and 2 were processed by a different lab than samples
3–5. Our data also suggest an effect of the placenta on miRNAs in
both experimental sets.

We tested the lncRNAs, miRNAs, and mRNAs that were
differentially expressed between the conditions in the two
experimental sets. For this, we used negative binomial
regression models with two factors: the exposure factor
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FIGURE 2 | The distribution of selected long RNA reads in PHT cells in the two experimental sets. The X-axis represents the average log2 normalized reads per
library, and the Y-axis represents the estimated probability density. Note that analysis of multiple small RNA species was not performed, as the sequencing
procedure was designed to enrich for miRNA (which represented 72.3% of small RNAs in hypoxia and 68.8% of RNAs in DMSO).

(hypoxia, DMSO) and the placenta factor, which refers to inter-
individual variation in placental transcriptome and possible
differences in processes related to placental collection and cell
preparation. After controlling the false discovery rate at 0.05,
the numbers of differentially expressed lncRNAs, miRNAs, and
mRNAs are shown in Table 1. For convenience, herein genes
differentially expressed under the hypoxic as opposed to the
standard condition are termed “hypoxia-DE” genes, and genes
differentially expressed with DMSO as distinguished from the
standard condition are termed as “DMSO-DE” genes. We next
examined the number of lncRNAs, miRNAs, and mRNA that
exhibited concordant (Figure 4) or discordant (Supplementary
Figure 2) expression change across the two experimental
sets. We noticed a significant concordance (up or down) in
RNA expression change between the two sets of experimental
exposures, namely “hypoxia-DE” and “DMSO-DE” genes
(Figure 5). This concordance was noted primarily for lncRNA
and mRNA species (Figures 5A,C), with less concordance for
up- or downregulated miRNAs (Figure 5B).

We also assessed the similarity of the two experimental sets
by examining expression differences in mRNAs, lncRNAs, and
miRNAs, between the 0 and 48 h time points, under standard
conditions. We found an extremely high concordance (up or
down) in the expression change of all three types of RNAs
between the two experimental sets (Supplementary Figure 3).
This confirms that the two experimental sets are comparable for
similar conditions, thus supporting our experimental approach.

We provided additional support to our findings by
comparing our gene expression changes with published
human placental single cell RNAseq (scRNAseq) data, predicting
that our data would be similar to gene expression changes
between syncytiotrophoblasts and cytotrophoblasts. We
performed this analysis using the PlacentaCellEnrich tool

(Jain and Tuteja, 2021), available for protein coding genes, and
examined changes among the 19 mRNAs with the highest
concordant log2-fold increased expression and the 6 mRNAs
with the highest concordant log2-fold decreased expression
between standard conditions and hypoxia/DMSO. Among
the selected 25 mRNAs (Supplementary Table 1) the vast
majority of our results were consistent with the scRNAseq
data, as predicted, with expression changes between standard
conditions vs. hypoxia/DMSO that are similar to changes
between syncytiotrophoblasts and cytotrophoblasts. Notably,
discrepancies were more common for one of the databases,
likely reflecting much lower mRNA expression levels and a
lower magnitude of the log2-fold change for mRNAs that are
downregulated during cell differentiation.

To define pathways that might be implicated in reduced
trophoblast differentiation, we performed direct and indirect
gene ontology analyses. We focused on genes with at least a
moderate expression, defined as having a minimum of 25 reads
per library. For mRNA, we focused on 3,338 hypoxia-DE genes,
2,232 DMSO-DE genes, and 988 DE genes that were concordantly
altered in the two sets of experiments. Table 2 shows the
shared biological processes that were significantly enriched
based on mRNA changes in “hypoxia-DE” and in “DMSO-DE”
transcripts, irrespective of lncRNA or miRNA co-expression.
Supplementary Table 2 shows differentially expressed mRNAs
that were concordantly expressed in the two exposure sets and
that are co-expressed with at least one differentially expressed
lncRNA and miRNA, where both lncRNA and miRNA exhibit
concordant expression change (up- or downregulation) between
the two exposure sets.

To further pursue the biological pathways reflecting mRNA
expression changes that were associated with differentially
expressed lncRNAs and/or differentially expressed miRNAs, we
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FIGURE 3 | Multidimensional scaling plots of RNAs in the two experimental sets. Classic multidimensional scaling plots of lncRNAs, miRNAs, and mRNAs were
created using Euclidean distance as dissimilarity matrix across the samples. The cells were sequenced after plating (Ctrl), 48 h after culture in standard condition
(Std) or after culture in hypoxia (Hpx) or in medium with added DMSO. The numbers in the plots represent each placental ID in the two exposure sets.

performed indirect gene ontology analysis as described in section
“Materials and Methods.” We first selected the 438 hypoxia-DE
lncRNAs and 85 hypoxia-DE miRNAs, 167 DMSO-DE lncRNAs

TABLE 1 | The numbers of differentially expressed RNA transcripts in the two
experimental sets.

Std vs. Hypoxia Std vs. DMSO

Up Down Up Down

mRNA 4,803 4,236 4,354 4,607

lncRNA 571 1,658 1,012 422

Other RNA 311 1,234 520 264

miRNA 69 58 94 156

and 115 DMSO-DE miRNAs, as well as 66 concordant DE
lncRNAs and 9 concordant DE miRNAs. We then performed
model-based co-expression analysis for these associations on
the basis of our negative binomial regression model. Table 3
shows biological processes attributed to mRNAs that were
expressed in a concordant manner in the two exposures, in
association with changes with either lncRNA or with miRNA in
the same conditions. Lastly, we identified the biological processes
attributed to mRNAs that were differentially expressed in a
concordant manner between the two exposures in association
with changes with both lncRNA and with miRNA in the same
conditions (Table 4). These associations are also shown in the
Circos plot (Figure 6).
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FIGURE 4 | Venn diagram of differentially expressed RNAs across the two experimental sets. Fisher exact tests were used to determine whether the genes that were
up- or downregulated in one experimental set were more likely to be regulated in the same direction in the other experimental set.

DISCUSSION

To decipher RNA interactions during differentiation of
primary term human trophoblasts, we interrogated two sets

of experiments, where the normal differentiation process was
hindered either by the physiologically relevant exposure to
hypoxia or by using the chemical DMSO (Thirkill and Douglas,
1997; Nelson et al., 1999; Yusuf et al., 2002; Roh et al., 2005;
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FIGURE 5 | Heatmaps of RNA expression clustering across the experimental paradigms. The heatmaps were constructed on the basis of normalized log2 gene
expression for concordantly differentially expressed lncRNAs (A), miRNAs (B), and mRNAs (C) in the two exposure sets. Note that the first letter of the sample labels
at the bottom of each plot represent experimental condition: “S” for 48 h in standard conditions, “H” for 48 h in hypoxic conditions, and “D” for 48 h in
DMSO-containing medium. The number represents placental ID in each experiment. “Std H” and “Std D” refer to 48 h Std conditions in the hypoxia or DMSO
experiments, respectively.

Oh et al., 2011). Because each of these exposures may influence
the PHT transcriptome in a manner that is independent of the
effect on differentiation, we focused on RNA interactions that
are shared by both exposures. We surmised that identification
of such interactions may suggest RNA regulatory pathways that
govern trophoblast differentiation.

Our informatics-based data offered general insight into
changes in the trophoblast transcriptome during differentiation.
We noticed that the average number of reads for each lncRNA
is about 1.3∼1.5% of the average mRNA read number. Based
on Ensembl Gene 87 (Aken et al., 2017), the average length of
a lncRNA molecule is 1 kb, and 1.7 kb for mRNA. Therefore,
the average expression of lncRNA in PHT cells is between 2.2
and 2.5% of mRNA. This lower expression of lncRNA relative to
mRNA was shown in other cell systems (Palazzo and Lee, 2015).
Note that the reads per library for lncRNAs and mRNAs in the
first experimental set are higher because of the larger average
library size in that set. Further, our data show that the distribution
of the reads per library of “other RNAs” is somewhat different
between the two experiments (Figure 2). These two factors likely
reflect differences in library size, preparation, and sequencing
technology between the two experimental sets. Indeed, even
among the “other RNAs,” these factors tend to have a greater
effect on smaller RNAs (Supplementary Figure 4). Importantly,
these technical factors would not affect our analysis, because
we tested the differential expression in the two experimental
sets separately, and took library size into account in our
statistical tests.

Importantly, we found that lncRNAs, miRNAs, and mRNAs
respond to hypoxia and DMSO in different ways. Notably,

mRNAs and lncRNAs exhibited a similar change in expression
patterns despite of their vastly different expression levels: both
RNA types clustered by the experimental conditions (Figure 3),
both differentially expressed mRNAs and lncRNAs tended to
have larger log2 fold expression change (Figure 4), and both
exhibited significant concordance in DE transcripts between
the two experimental sets (Figure 5). In contrast, DE miRNA
clustering reflected not only the experimental exposure but
also the placenta used for PHT cell dispersal and, in the case
of hypoxia, even the laboratory performing the sequencing
Figure 3). This observation could be explained by the smaller
log2 fold expression change in differentially expressed miRNAs
(Figure 4), a smaller number of miRNA with a concordant
expression change between the two experimental sets (Figure 5),
or differences in sequencing technology among the laboratories.

We identified mRNAs that were concordantly differentially
expressed across both experimental sets and correlated with
altered expression of ≥ 1 lncRNA and miRNA (Supplementary
Table 1). Some of the identified transcripts were previously
shown to be related to germane trophoblast processes and
to complications of pregnancy. SDC1 (Syndecan1) was shown
to have a positive correlation with trophoblast differentiation
and exhibited lower expression in hypoxia/DMSO exposure
compared to standard conditions (Prakash et al., 2011). Several
identified differentially expressed mRNAs are known to regulate
the invasion or adhesion of trophoblasts and other types of
cells. KISS1 has a role in early placentation and implantation,
ADAM12 (ADAM metallopeptidase domain 12) was shown to
control trophoblast fusion through E-cadherin, and NECTIN3
(Nectin Cell Adhesion Molecule 3) is a member of a cell
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TABLE 2 | Biological processes enriched in mRNAs that exhibited a concordant
expression change during trophoblast differentiationa and ranked by adjusted
p-value.

Process

Immune response

Female pregnancy

Signal transduction

Inflammatory response

Cell surface receptor signaling pathway

Immune system process

Chemokine-mediated signaling pathway

Cell-cell signaling

Response to drug

Retinoid metabolic process

Cytokine-mediated signaling pathway

Positive regulation of cytosolic calcium ion concentration

Positive regulation of T cell proliferation

Defense response

Regulation of calcium ion-dependent exocytosis

Calcium ion-regulated exocytosis of neurotransmitter

Multicellular organism development

Cell adhesion

Positive regulation of phagocytosis, engulfment

Chemotaxis

Single organismal cell-cell adhesion

Innate immune response

Keratinization

Cellular response to lipopolysaccharide

G-protein coupled receptor signaling pathway

Positive regulation of ERK1 and ERK2 cascade

Positive regulation of cell proliferation

aTrophoblast differentiation was defined as expression change in control vs.
hypoxia and in control vs. DMSO exposure.

adhesion family of proteins (Reymond et al., 2000; Aghababaei
et al., 2015; Hu et al., 2019). Some of the genes with the most
pronounced expression changes are related to preeclampsia,
where hypoxia is commonly implicated in disease pathogenesis
(Tal, 2012). Indeed, reduced placental expression of LGALS13
(Galectin 13), a member of the glycan-binding proteins that
regulate innate and adaptive immune responses, was found
in women with preeclampsia (Than et al., 2014). Similarly,
the expression of SDC1, NPPB (natriuretic peptide B), GDF15
(growth differentiation factor 15), and ADAMTS6 (ADAM
metallopeptidase with thrombospondin type 1 motif 6) all had
a lower expression in our experimental exposures, and all are
lower in preeclampsia (Junus et al., 2014; Chen et al., 2016;
Gandley et al., 2016; Jiang et al., 2020). In contrast, our data
are inconsistent with respect to the expression of PAPPA2, a
regulator of trophoblast invasion and migration, or MNDA
(myeloid cell nuclear differentiation antigen), which exhibited
a lower expression level in our paradigms but is elevated in
placentas from women with preeclampsia (Wagner et al., 2011;
Kolialexi et al., 2017; Neuman et al., 2020).

A major innovative aspect of our work is the use of the model-
based co-expression analysis. The Pearson correlation coefficient

TABLE 3 | Biological processes enriched in mRNAs that were associated with
lncRNA or miRNA during trophoblast differentiation, and ranked by adjusted
p-value.

Association Biological processes

mRNA associated with
lncRNAa

Positive regulation of transcription from
RNA pol II promoter

Response to drug

Inflammatory response

Response to mechanical stimulus

Positive regulation of gene expression

Cellular oxidant detoxification

mRNA associated with
miRNAa

Female pregnancy

Cell adhesion

Inflammatory response

Extracellular matrix disassembly

Cell-cell signaling

Positive regulation of angiogenesis

Response to drug

aAt least one DE lncRNA or one DE miRNA, respectively, were associated with
mRNA in the two exposures.

TABLE 4 | Biological processes enriched in mRNAs that were associated with
lncRNA and miRNA during trophoblast differentiationa, and ranked by adjusted
p-value.

Process

Female pregnancy

Cholesterol metabolic process

Lipoprotein metabolic process

Positive regulation of cytosolic calcium ion concentration

Placenta development

Cell adhesion

Inflammatory response

Positive regulation of phagocytosis, engulfment

Retinoid metabolic process

Cytokine-mediated signaling pathway

Cellular response to hormone stimulus

Signal transduction

Immune response

Chemotaxis

Response to drug

aAt least one DE lncRNA and one DE miRNA were associated with altered mRNA
expression in the two experimental exposures.

is often used as a measurement of co-expressed genes. When
the data do not follow multivariate normal distribution, more
robust methods, such as the Spearman correlation or the bi-
weight mid-correlation, are recommended (Zhang and Horvath,
2005). These methods, however, may not be optimal for “real
world” data, which are often influenced by confounding variables,
such as the sample processing by separate laboratories in our
first experimental sets, a factor known to strongly influence
expression measurements. Thus, two genes may have significant
correlation not because of shared biological pathways, but simply
because the expression measurements were performed by a
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FIGURE 6 | A Circos plot depicting the association of mRNAs, lncRNAs, and miRNAs that exhibit a concordant expression change in the two exposures (hypoxia
and DMSO). The outer band of the ring represents log2 fold changes in standard vs. hypoxia exposure, and the inner band of represents log2 fold changes in
standard vs. DMSO exposure. Blue denotes that the RNA is upregulated; green denotes that the RNA is downregulated. The curved lines connect each
lncRNA/miRNA to the co-expressed mRNAs, with blue (upregulation) and green (downregulation) lines representing positive correlations and red lines representing
negative correlations.

certain laboratory or technology. Using the model-based method
proposed in this paper, we can eliminate the “spurious” co-
expression caused by known confounding factors. This is critical
when data from multiple experiments are combined in a meta
co-expression analysis. For example, consider a confounding
factor Z with N(0,1) distribution, and two genes X, Y that are
conditionally independent, given Z = z, with distribution N(z,1).
It then follows that the Pearson correlation between X and Y
is 0.5. As mentioned before, under this scenario, the model-
based co-expression test is equivalent to testing whether X and
Y have a zero partial correlation, given Z. It is easy to see that
here, indeed, the partial correlation between X and Y, given
Z, is 0. Thus, we correctly capture the independent relation
between X and Y given the confounder Z, and eliminate the
spurious correlation.

We recognize that this paper has several limitations. First, the
data were collected over a period of 4 years, and two laboratories
were used to perform RNAseq in the first experimental set.
Although we have developed statistical models to address this
shortcoming, it might have negatively affected the power of
this study. Second, our results were derived from an informatic
analysis of the gene expression data on the basis of RNA
sequencing libraries. It will therefore require future experimental
validation. This is particularly important as the regulation of
mRNA by lncRNA and miRNA is a complex process, involving
direct and indirect regulation and chromatin remodeling. For the
same reason we did not consider the presence of or absence of
miRNA-response elements in gene ontology analysis. Finally, our
work is limited to in vitro approaches, which may not be fully
consistent with changes that occur in vivo. In the future, we plan
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to collect additional data from our experiments and from public
databases to strengthen and validate our results.
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