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Abstract: Strategies to prevent acute coronary and cerebrovascular events are based on accurate
identification of patients at increased cardiovascular (CV) risk who may benefit from intensive
preventive measures. The majority of acute CV events are precipitated by the rupture of the thin
cap overlying the necrotic core of an atherosclerotic plaque. Hence, identification of vulnerable
coronary lesions is essential for CV prevention. Atherosclerosis is a highly dynamic process involving
cell migration, apoptosis, inflammation, osteogenesis, and intimal calcification, progressing from
early lesions to advanced plaques. Coronary artery calcification (CAC) is a marker of coronary
atherosclerosis, correlates with clinically significant coronary artery disease (CAD), predicts future
CV events and improves the risk prediction of conventional risk factors. The relative importance of
coronary calcification, whether it has a protective effect as a stabilizing force of high-risk atherosclerotic
plaque has been debated until recently. The extent of calcium in coronary arteries has different clinical
implications. Extensive plaque calcification is often a feature of advanced and stable atherosclerosis,
which only rarely results in rupture. These macroscopic vascular calcifications can be detected by
computed tomography (CT). The resulting CAC scoring, although a good marker of overall coronary
plaque burden, is not useful to identify vulnerable lesions prone to rupture. Unlike macrocalcifications,
spotty microcalcifications assessed by intravascular ultrasound or optical coherence tomography
strongly correlate with plaque instability. However, they are below the resolution of CT due to limited
spatial resolution. Microcalcifications develop in the earliest stages of coronary intimal calcification
and directly contribute to plaque rupture producing local mechanical stress on the plaque surface.
They result from a healing response to intense local macrophage inflammatory activity. Most of
them show a progressive calcification transforming the early stage high-risk microcalcification into
the stable end-stage macroscopic calcification. In recent years, new developments in noninvasive
cardiovascular imaging technology have shifted the study of vulnerable plaques from morphology to
the assessment of disease activity of the atherosclerotic lesions. Increased disease activity, detected
by positron emission tomography (PET) and magnetic resonance (MR), has been shown to be
associated with more microcalcification, larger necrotic core and greater rates of events. In this context,
the paradox of increased coronary artery calcification observed in statin trials, despite reduced CV
events, can be explained by the reduction of coronary inflammation induced by statin which results
in more stable macrocalcification.
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1. Introduction

Strategies for preventing acute coronary and cerebrovascular (CV) events are based on accurate
identification of patients at increased (CV) risk who may benefit from intensive preventive measures [1].
Although the risk stratification using available CV risk scores is useful at a population level, the accuracy
of predicting acute events in the individual patient is limited. Current diagnostic strategies are mostly
based on the evaluation of symptomatic and asymptomatic patients to detect coronary artery luminal
narrowing and myocardial ischemia [2–5]. However, the importance of the extent of coronary stenosis
underlying acute coronary syndrome is debated [6–8]. In most instances, an acute coronary event is
not due to occlusion at the site of severe stenosis seen on conventional angiography. Rather, the degree
of luminal obstruction is a poor predictor of subsequent acute events and most vulnerable plaques
are commonly associated with only mild to moderate stenosis [9–12]. In contrast, thrombosis plays a
critical role in the pathogenesis of an acute coronary syndrome [13,14]. The majority of acute coronary
events are caused by rupture of the thin cap overlying necrotic core of an atherosclerotic plaque or by
plaque erosion, with superimposed thrombus formation [15–17]. However, thrombus formation at the
site of severe stenosis is more likely to greatly reduce the blood flow, leading to clinical events. Hence,
identification of the plaques thought to cause coronary thrombosis, referred to as vulnerable plaques,
is essential for optimum acute event prevention. The important role of imaging techniques depends on
their ability to identify the morphological and functional characteristics of the vulnerable plaque.

2. Pathology

Histological studies have demonstrated that some adverse plaque characteristics, such as a thin
fibrous cap, macrophage infiltration, a large necrotic core, microcalcification, neovascularization,
intraplaque hemorrhage, and outward arterial remodeling, are consistently associated with plaque
rupture and myocardial infarction [18–21]. Atherosclerosis and calcification are closely related and
have traditionally been considered passive, degenerative, the end-stage process of aging. However,
several recent studies have demonstrated that they are active, highly dynamic and tightly regulated
processes involving cell migration, apoptosis, inflammation, osteogenesis, and intimal calcification,
progressing from early lesions to advanced plaques [18,19,22–25]. Inflammation plays a central role
in atherogenesis. In fact, it is involved in all atherosclerosis steps, from plaque formation leading to
calcification and rupture [26–28]. In most cases, atherogenesis is initiated by endothelial dysfunction
which allows subendothelial retention of lipoproteins in arterial regions where the laminar flow is
disturbed by arterial branches [19,20]. Inflammatory and immune cells such as macrophages, T cells,
and mast cells are then recruited and produce pro-inflammatory mediators and enzymes [29,30].
Macrophages usually have an essential role in the genesis and progression of atherosclerosis [15]. They
oxidize and catabolize lipoproteins within the arterial wall. Depending on their amount, oxidized
lipoproteins can cause the death of macrophages which finally coalesce into a necrotic core. Vascular
smooth muscle cells migrate into the intima and promote the formation of a fibrous cap which is mostly
collagen [31]. This lipid-rich necrotic core encapsulated by fibrous tissue constitutes the fibroatheroma,
which is generally a stable lesion [18]. Macrophages exert a catabolic effect on the fibrous components
of the plaque through the release of metalloproteinases, resulting into plaque cap thinning [28].
Extensive inflammatory process and macrophages infiltration produce the thin-cap fibroatheroma
(TCFA), characterized by a large necrotic core separated from the coronary lumen by a thin membrane
cap, less than 50 or 60 µm (0.05 or 0.06 mm) thick, which makes the plaque unstable [32–37].

The inflammation makes the fibroatheroma hypoxic, resulting in the development of intraplaque
neovascularization originating from the vasa vasorum in the adventitia, thus contributing to the
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destabilization of the plaque [38]. Large lipid tissue and macrophage count are also associated
with outward enlargement, or positive remodeling, of the arterial wall [39]. Although the arterial
enlargement may be beneficial in avoiding or limiting the luminal stenosis, the plaque is more prone to
rupture [21,40,41].

Calcifications in atherosclerotic plaques develop as a healing response to intense local macrophage
inflammatory and immune activity, leading also to the osteogenic transformation of vascular smooth
muscle cells [42–46]. In lesions with extensive inflammation, macrophage-derived vesicles are released
within the necrotic core of the plaque and serve as nucleating sites for calcification [47–49]. On the other
hand, calcifications themselves stimulate macrophage infiltration [50,51]. As long as inflammation
persists there will be subsequent cycles of macrophage infiltration and repair through calcification.
The causal relationship between inflammation and calcification has been clinically confirmed by
the observation that vascular inflammation, assessed by positron emission tomography, precedes
subsequent deposition of arterial calcium within the same vascular site [52]. If the inflammation is
reduced, the plaques stabilize leading to macrocalcification [53–55].

The relative importance of coronary calcification, whether it exerts a protective effect as a stabilizing
force of high-risk atherosclerotic plaque has been debated until recently [54,56]. The extent of calcium
in coronary arteries has different clinical implications [45]. Extensive plaque calcification reflects
advanced, less inflamed and stable disease [12]. Macrocalcifications make the plaque stable acting as
a barrier to limit the spread of inflammation and only rarely result in a rupture. This is confirmed
by the observation that the use of statins, which are known to reduce vascular inflammation [57,58],
is associated with increased plaque calcification and fibrous cap thickness, resulting in stabilization of
the atherosclerotic lesions [59–65]. Moreover, recent data have shown that the degree of coronary artery
calcification is significantly higher in symptomatic patients who had chronic coronary artery disease
compared to patients who sustained acute coronary events [43,66,67]. In asymptomatic patients with
type 2 diabetes, the plaques more likely to become culprit plaques for acute coronary events over a 8-year
follow-up were characterized by larger volume, greater lipid content, and only mild calcification [68].
These observations support the concept that at the level of individual plaque mild calcification predicts
subsequent acute events, whereas more advanced calcification has a protective effect.

Unlike largely calcified plaques, microcalcifications, below 60 µm diameter (0.06 mm) [69,70],
embedded in the fibrous cap of the fibroatheroma, are associated with increased inflammation and are
more frequently observed in patients with acute coronary events [50,66,71]. In combination with other
features of plaque vulnerability, such as TCFA, large necrotic lipid core, and extensive presence of
macrophages, microcalcifications strongly contribute to plaque instability [45,72,73]. Microcalcifications
develop from the aggregation and fusion of individual calcifying extracellular vesicles in areas of
inflammation with a large necrotic core [74]. It is thought they may predispose to plaque rupture
either through tissue mechanical stress within the fibrous cap of the fibroatheroma [35,75–77], and
further stimulate inflammation around the plaque [78]. The microcalcific deposits give rise to spotty
calcifications, defined as small calcium deposits in the range of 1 to 3 mm involving an arc of
about one-fourth of the coronary circumference, embedded in a plaque [49,50,79]. Some of them
show a progressive calcification, transforming the early-stage high-risk lesions into stable end-stage
macroscopic calcification [80]. Spotty calcifications can also derive from asymptomatic rupture of
unstable plaques subsequently healed and have been associated with extensive and progressive
coronary atherosclerosis [81,82]. These observations indicate that plaque vulnerability is inversely
related to the extent of calcifications.

3. Imaging Atherosclerosis

In addition to CV risk assessment using risk factors, imaging is used to directly detect the presence
and extent of atherosclerotic disease. Microcalcification and inflammation play a key role in plaque
rupture, therefore representing important potential imaging targets. Although the greatest efforts have
been undertaken to identify and treat the TCFA with signs of inflammation as high-risk lesions for
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acute coronary events, it is now well established that most vulnerable plaques do not cause cardiac
events [7,83,84]. The majority of unstable plaques undergo progressive transformation from high-risk
lesions with microcalcifications to more stable macroscopic calcification. Others likely heal following
asymptomatic rupture and stabilize with time [85]. According to these observations, imaging aimed
at the detection and treatment of individual plaques has a limited impact on prevention. However,
unstable plaques do not occur in isolation. Some studies suggest that plaque destabilization occurs
at multiple distant sites throughout the coronary and carotid vascular beds [86–88]. Hence, their
detection may serve to identify high-risk individuals with more extensive atherosclerotic disease activity,
who may benefit from systemic therapy [89]. Atherosclerosis imaging is accordingly evolving from
anatomical to metabolic imaging, thus providing insight into the underlying vascular inflammation
of patient.

4. Imaging Plaque Morphology

Direct visualization of coronary atherosclerotic lesions is currently performed using angiography,
computed tomography (CT) coronary artery calcium (CAC) scoring, coronary computed tomography
angiography (CCTA), intravascular ultrasound (IVUS), and optical coherence tomography (OCT),
each providing different information about plaque morphology.

A coronary angiogram is routinely used to assess the degree and extension of arterial stenosis.
Although it can detect extensive superficial calcium plaques, its sensitivity for smaller lesions is less
than 50%, being to some extent operator-dependent [90]. Moreover, the relationship between the
severity of stenosis and vulnerable plaques is uncertain. When the presence of vulnerable lesions is
assessed by more specific intracoronary imaging, such as IVUS and OCT, a greater number of TCFA is
detected in non-severe than in severe stenotic arterial lesions [11]. However, the underlying lesion
morphology at the site of severe stenosis is more vulnerable and thrombus formation following the
rupture more likely to further limit the blood flow leading to clinical events [91].

Non-contrast cardiac-gated computed tomography (CT) is extensively used to calculate the CAC
score which correlates with the total coronary atherosclerotic burden and has been found as a strong
predictor of patient outcomes [92–96]. Guidelines recommend CAC assessment using the Agatston
scoring system to improve CV risk prediction in asymptomatic individuals at intermediate risk as
well as in diabetics [1,3–5]. Recent studies have shown that CAC volume and density have different
relationships with patients’ outcomes. While CAC volume is a direct predictor of CAD, density is
inversely associated with acute coronary events [97,98]. These observations may suggest that a higher
calculated volume of calcium is associated with extensive coronary atherosclerosis, whereas higher
calcium density indicates more stable plaques. However, although the extent of coronary calcification
can be accurately quantified, the current spatial resolution of 64-slice CT imaging cannot identify
microcalcifications or distinguish actively inflamed from stable atherosclerotic calcifications.

In patients with stable coronary artery disease at low-intermediate risk, the addition of intravenous
contrast agent to coronary CT provides non-invasive, highly accurate insight into the extent of
coronary calcification and detection of obstructive coronary stenosis and high-risk coronary plaque
morphology [99,100] (Figures 1 and 2). However, accurate quantification of various plaque components
provided by CCTA is limited [101]. Microcalcifications and TCFA cannot be detected because their
dimension is about ten times below the CCTA scan spatial resolution (about 0.5 mm) [102]. Hence,
the anatomic assessment of the coronary plaques provided by CCTA, although a good predictor of the
global risk of acute events is not useful for identifying vulnerable lesions prone to rupture in a specific
lesion [103–105]. Overall, there is no evidence that CCTA plaque assessment improves the prediction
of acute coronary event risk compared to established risk factors [106].
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Figure 1. (a). Coronary computed tomography angiography. 79-year-old hypertensive patient 
demonstrating extensive calcified plaques of left anterior descending (LAD) coronary artery. 
Lipid-rich (low CT attenuation) plaques are also shown (arrows). (b). Same patient. Axial view. The 
calcific plaque involves the origin of the LAD coronary artery (yellow arrowhead). (c). Same patient. 
Agatston CAC score > 400, indicating extensive calcification, high CV risk and high likelihood of 
significant coronary stenosis. 

 
Figure 2. Coronary computed tomography angiography. 59-year-old woman with type-2 diabetes, 
symptomatic for stable angina, showing extensive calcified plaques of the LAD coronary artery. 

Intravascular imaging such as IVUS or OCT enables the clinician to gain insight into the arterial 
wall for the detection and quantification of calcium within a plaque and to use this information for 
patient care [107,108] (Figure 3). IVUS has high sensitivity and specificity for detecting large dense 
calcific plaques or spotty calcifications [80,81]. However, its axial resolution, in the range of 150–200 
µm (0.15–0.20 mm), is not sufficient to visualize microcalcifications or the thin-cap fibroatheroma 

Figure 1. (a). Coronary computed tomography angiography. 79-year-old hypertensive patient
demonstrating extensive calcified plaques of left anterior descending (LAD) coronary artery. Lipid-rich
(low CT attenuation) plaques are also shown (arrows). (b). Same patient. Axial view. The calcific
plaque involves the origin of the LAD coronary artery (yellow arrowhead). (c). Same patient. Agatston
CAC score >400, indicating extensive calcification, high CV risk and high likelihood of significant
coronary stenosis.
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Figure 2. Coronary computed tomography angiography. 59-year-old woman with type-2 diabetes,
symptomatic for stable angina, showing extensive calcified plaques of the LAD coronary artery.

Intravascular imaging such as IVUS or OCT enables the clinician to gain insight into the arterial
wall for the detection and quantification of calcium within a plaque and to use this information for
patient care [107,108] (Figure 3). IVUS has high sensitivity and specificity for detecting large dense
calcific plaques or spotty calcifications [80,81]. However, its axial resolution, in the range of 150–200 µm
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(0.15–0.20 mm), is not sufficient to visualize microcalcifications or the thin-cap fibroatheroma which are
usually smaller than 60 µm (0.06 mm). Since IVUS cannot penetrate calcium, its assessment is limited
to arc and length. Another limitation is the inability to assess the composition and inflammation state
of the fibrous cap [109].
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Figure 3. Angiographic assessment by IVUS images in a fibro-calcific plaque involving left anterior 
descending (LAD) and left main (LM) coronary arteries. 69-year-old male patient, hypertensive, 
obese, previously treated by percutaneous coronary intervention (PCI) and drug eluting stent (DES) 
implantation to right coronary artery (RCA) because of inferior STEMI occurred. A staged procedure 
was scheduled to treat distal and mid left anterior descending (LAD) and to perform an IVUS 
assessment at proximal LAD and left main LM trunk. After stenting distal and mid segment (C and 
D), followed by a properly post-dilation, IVUS pullback was performed. The images showed a severe 
and calcific stenosis involving diagonal ostium (cross section “a” and “b”), an almost complete 
calcific ring (cross section “a” and “b”, white arrows) is stopped just at side branch take-off (cross 
section “b”, white asterisk). Proximally, a fibrotic prevalent plaque was detectable (cross section “c”). 
More proximally, fibrotic plaque associated by calcific spot was identified (cross section “d”, white 
asterisk). Immediately distal the bifurcation side (LM–LAD–LCx) another calcific deposits, forming 
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Figure 3. Angiographic assessment by IVUS images in a fibro-calcific plaque involving left anterior
descending (LAD) and left main (LM) coronary arteries. 69-year-old male patient, hypertensive,
obese, previously treated by percutaneous coronary intervention (PCI) and drug eluting stent (DES)
implantation to right coronary artery (RCA) because of inferior STEMI occurred. A staged procedure
was scheduled to treat distal and mid left anterior descending (LAD) and to perform an IVUS assessment
at proximal LAD and left main LM trunk. After stenting distal and mid segment (C and D), followed
by a properly post-dilation, IVUS pullback was performed. The images showed a severe and calcific
stenosis involving diagonal ostium (cross section “a” and “b”), an almost complete calcific ring (cross
section “a” and “b”, white arrows) is stopped just at side branch take-off (cross section “b”, white
asterisk). Proximally, a fibrotic prevalent plaque was detectable (cross section “c”). More proximally,
fibrotic plaque associated by calcific spot was identified (cross section “d”, white asterisk). Immediately
distal the bifurcation side (LM–LAD–LCx) another calcific deposits, forming an arch (around 110◦),
was detected (cross section “e”) and the site of distal LM truck a superficial calcific deposit (cross
section “e”, white arrows) and a deep calcium nodule were detected (cross section “f”, yellow arrows),
even visible by angiography (A and B, white arrows). After adequate pre-dilation, a long stent was
implanted to LM-LAD (E) and a satisfactory result was reached (F–H).
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OCT is a light-based imaging modality, analogous to ultrasound, which measures the time delay
of optical echoes reflected by the arterial structures, providing high resolution, cross-sectional images
of their structure [37,110,111]. Compared to IVUS, OCT has about ten times higher resolution, between
10 and 20 µm (0.01–0.02 mm). Unlike IVUS, OCT can penetrate calcium and assess its thickness, area,
and volume, thus having the potential to characterize the details of coronary calcification (Figure 4).
According to the OCT imaging of calcium arc, defined as the widest angle in which the calcifications
are detectable, the coronary calcifications are classified as macrocalcifications with a calcium arc >90◦,
spotty calcification between 90◦ and 22.5◦, and microcalcifications with a calcium arc <22.5◦ [112].
OCT is capable of quantifying the presence of macrophages in the atherosclerotic plaque with a high
degree of positive correlation with histology, demonstrating high sensitivity (>85%) and specificity
(89%) [113–115]. This provides direct evidence of the level of plaque inflammation. Recent OCT studies
in patients with stable CAD have demonstrated that the contemporary presence of macrophages
and microcalcifications in the same plaque (co-localization, when the reciprocal distance is smaller
than 1 mm) is associated with a more vulnerable plaque and with systemic features of atherosclerosis
such as increased carotid intima-media thickness [73,78]. The same patients showed less advanced
coronary artery stenosis, thus suggesting that the co-localization of macrophages and microcalcifications
indicates an early phase of the atherosclerotic process which may progress into further calcification and
inflammation. Taken together these observations indicate that OCT can provide both morphological
and assessment of the level of disease activity, thus identifying patients at higher risk for subsequent
coronary events [116].
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Figure 4. OCT overcomes angiography limits during an acute coronary syndrome with transient
ST-elevation in a symptomatic patient. This is a clinical case that can well show plaque activity in an
Acute Coronary Syndrome (ACS). A 66-year-old man, smoker, hypertensive, presented chest pain at
Emergency Department. The EKG showed a transient inferior ST-elevation associated at high-sensitive
Troponin increased. An early (<2 h) coronary angiography was performed but, no significant lesions
were detected (A–C). Optical Coherence Tomography (OCT) was executed and a severe spasm occurred
immediately after guide-wire crossed the lesion (D, black arrow). Nitroglycerine administration did
not reverse the intense spasm and the intravascular imaging show a very tight lesion with a minimum
lumen area of 1.34 mmq (cross section “b”). In the atheroma two spotty calcifications (cross section
“a” and “b”, white asterisks) and, proximally, activated macrophages (cross section “c”, white arrow),
TCFA (yellow arrow) and lipid pool (white asterisk), were detected. Moreover, other two smaller
and superficial calcifications (cross section “d”, white arrow and asterisk), forming, joined an arch
(<90◦), were identified. A stent was placed and optimized, guided by OCT features, reaching a good
angiography result (E and F).

5. Imaging Disease Activity

Cardiac magnetic resonance (CMR) and positron emission tomography (PET) provide an
assessment of microcalcification and inflammation.

Due to limited spatial resolution (1.3–1.8 mm) and long scan duration, CMR has limited indications
in clinical practice, whereas it has important research interest for future applications. Preliminary studies
have shown that CMR can identify some unstable coronary plaque characteristics [105]. Hyperintensity
plaques on non-contrast T1-weighted imaging were identified as high-risk plaques, validated by
intravascular imaging [117–120]. Contrast-enhanced CMR plaque imaging provides a higher spatial
resolution. The accumulation of the gadolinium-based contrast agent has been associated with
macrophage accumulation and intraplaque hemorrhage, as confirmed by OCT [121–124]. The absence
of ionizing radiation or potentially nephrotoxic contrast agents, could make CMR a non-invasive
imaging modality to monitor the atherosclerotic disease activity.

PET provides a non-invasive imaging method for the assessment of the underlying biological
activity within the arterial wall [105,125]. Specific radioligands are used, targeting microcalcification
(18F-sodium fluoride) and macrophages (18F-fluorodeoxyglucose and somatostatin receptor ligand).
To provide anatomic details, PET scans are currently combined with CT or MR. Recently developed
hybrid scanners PET/MR offer the possibility to simultaneous assessment of disease activity and
morphological information with a lower radiation exposure compared to PET/CT [124,126].

18F-sodium fluoride (18F-NaF) was originally studied to identify bone metastasis. Fluoride ions
are incorporated into hydroxyapatite, which is a central component of osteogenic mineralization [127].
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Coronary atherosclerosis is directly connected to macrophages osteogenic activity in the early stages
of atherosclerosis, which results in microcalcifications [42]. This allows 18F-NaF to detect active
microcalcification area beyond the resolution of CT scan [128–131]. The stronger affinity of the
radioligand with newly formed hydroxyapatite compared to the old crystals makes it possible to
distinguish between actively inflamed coronary calcifications from stable ones. This is confirmed
by the observation that large areas of coronary calcium detected by CT scan do not show increased
18F-NaF uptake. Conversely, regions with absent or minimal CT calcium demonstrate intense 18F-NaF
uptake [132,133]. This may explain the lack of correlation between 18F-NaF atherosclerotic plaque
uptake and CAC score observed in high-risk individuals [134].

18F-fluorodeoxyglucose (18F-FDG) is a glucose analogue which accumulates mostly in macrophages
due to their high demand for glucose. It is a marker of vascular inflammation and macrophage burden
and is extensively used for malignancy staging. Several studies conducted in carotid arteries have
demonstrated the systemic nature of atherosclerosis [127,135,136]. Its use in the assessment of coronary
plaque inflammation is limited by the close proximity to myocardial tissue, which has a high affinity
to tracer uptake due to its high glucose metabolism. This obscures the coronary visualization, thus
limiting accurate plaque analysis.

6. Confocal Imaging of Microcalcifications

Besides the above-mentioned histological visualization methods, fluorescence-based techniques
can provide imaging of micro-calcifications with high sensitivity, selectivity, and resolution. Confocal
microscopy, routinely applied to biological imaging, can penetrate deep inside heart tissues to provide
clearer images of intricate structures [137]. Unlike other assessment methods where the spatial
resolution cannot be decreased beyond 10 µm, the resolution in confocal microscopy can reach ~500 nm.
In confocal microscopy, a tightly focused laser spot is scanned across a fluorescently labeled sample
and the collected emission is filtered through a micro-meter-sized pinhole to exclusively allow the
in-focus fluorescence reach a sensitive detector and reject all out-of-focus fluorescence contributed
from other imaging planes. As such, confocal microscopy allows fine sectioning of samples to
provide clear images with high signal-to-noise ratio. Alhough superior to other imaging techniques,
confocal microscopy requires the sample to be immuno-stained with an appropriate fluorescent dye
with low photo-bleaching kinetics to allow unperturbed imaging over long durations. This might
represent a challenge to pathologists using Hematoxylin and Eosin (H&E) staining for their assessments.
Furthermore, the field-of-view in confocal microscopy is limited by the magnification of the imaging
objective and the linear range of the laser scanners to approximately 250 µm. As means to mitigate this
shortcoming, it is possible to identify Regions of Interest (ROIs) using the low-resolution methods
outlined above and, subsequently, use confocal microscopy to acquire high-resolution imaging of
these ROIs.

7. Conclusions

Recent developments in the understanding of the pathophysiology of plaque vulnerability have
demonstrated the central role of inflammation and microcalcification. The need to identify early stages
of unstable lesions has shifted the patients’ risk factor assessment for CV events to direct imaging-based
detection of plaque morphology and disease activity. Further means of accurate study and assessment
of vascular microcalcification is expected to have more profound clinical impact on disease prevention.
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