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Abstract: We study an oracle operation, along with its circuit design, which combined with the
Grover diffusion operator boosts the probability of finding the minimum or maximum solutions on a
weighted directed graph. We focus on the geometry of sequentially connected bipartite graphs, which
naturally gives rise to solution spaces describable by Gaussian distributions. We then demonstrate
how an oracle that encodes these distributions can be used to solve for the optimal path via amplitude
amplification. And finally, we explore the degree to which this algorithm is capable of solving cases
that are generated using randomized weights, as well as a theoretical application for solving the
Traveling Salesman problem.

Keywords: quantum computing; quantum algorithms; amplitude amplification

1. Introduction

The use of quantum computers for tackling difficult problems is an exciting promise,
but not one without its own set of challenges. Qubits allow for incredible parallelism
in computations via superposition states, but reliably pulling out a single answer via
measurements is often difficult. In 1996, Grover demonstrated one of the first mechanisms
overcoming this weakness [1], later shown to be optimal [2,3], and has since been refined
into a broader technique in quantum algorithms known as ‘amplitude amplification’ [4–10].
In this study, we seek to extend the capabilities of amplitude amplification as a means of
pathfinding on a directed graph with weighted edges.

The success of Grover’s algorithm can be boiled down to two primary components: the
oracle operation UG and diffusion operation Us. While Us is typically considered a straight-
forward mathematical operation—achieving a reflection about the average amplitude—
critics of Grover’s algorithm often point to UG as problematic [11–14]. Neilsen and Chuang
elegantly describe the dilemma of implementing UG as differentiating between an operation
in which knows the desired marked state, versus a true blackbox oracle which can recognize
the answer [15]. Only an oracle of the latter case can truly be considered a speedup for
quantum, otherwise, the solution to the unstructured search problem is already encoded
into UG, defeating the purpose of using a quantum computer in the first place. We note this
specific issue with Grover’s algorithm because it is exactly the problem we aim to address
in this study, specifically for the gate-based model of quantum computing. In this study,
we demonstrate an alternative to the standard Grover oracle, which we refer to as a ‘cost
oracle’ UP, capable of solving weighted directed graph problems.

Beyond the specific geometry used to motivate UP and build its corresponding quan-
tum circuit, much of this study is aimed at formulating a deeper understanding of am-
plitude amplification. The idea of using an oracle that applies phases different from the
standard UG was first investigated by Long and Hoyer [16–18] and later others [19–21],
who showed the degree to which a phase other than π on the marked state(s) could still be
used for probability boosting. Here, we study a UG replacement which affects all states with
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unique phases, not just a single marked state. Consequently, the effect of UP is analogous
to a cost function, whereby UP acting on any state results in a phase proportional to that
state’s representative weighted path. The advantage of quantum is to utilize superposition,
evaluating all costs simultaneously, and ultimately boosting the probability of measuring
the solution to the optimization problem. Using UP results in an amplitude amplification
process that is more complex than standard Grover’s, but still achieves high probabilities
under ideal conditions. And most importantly, we demonstrate the degree to which prob-
ability boosting is possible under randomized conditions which one would expect from
realistic optimization problems [22–24].

After demonstrating results for the success of UP, the final topic of this study is a
theoretical application of cost oracles for solving the Traveling Salesman Problem (TSP) [25],
or all-to-all connected directed graphs. Notable strategies thus far for a quantum solution
to the TSP are based on phase estimation [26], backtracking [27], and adiabatic quantum
computing [28–31]. Here we approach the problem from an amplitude amplification per-
spective, continuing an idea that goes back over a decade [32]. However, to realize the
appropriate quantum states for this application of UP, we must look beyond binary super-
position states provided by qubits, in favor of a mixed qudit quantum computer which
more naturally suits the problem. Although still in their technological infancy compared
to qubits, the realization of qudit technologies [33–36], qudit-based universal computa-
tion [37,38], their fundamental quantum circuits [39–44], and algorithm applications [45,46]
have all seen significant advancements over the last decade, making now an exciting time
to consider their use for future algorithms.

Layout

Section 2 begins with an alternative oracle to Grover’s UG, which we use to introduce
fundamental features of amplitude amplification and oracle operations. The progression
of this study then revolves around a specific directed graph problem, where the under-
lying characteristics of each graph’s solution space are describable by the Central Limit
Theorem [47] and the Law of Large Numbers [48], resulting in solution space distributions
which resemble a Gaussian function [49]. Section 3 covers specifics of this weighted di-
rected graph problem, a graphical representation of all possible paths, and a proposed
classical solving speed based on arguments of information access. Sections 4 and 5 show
how each graph can be represented as a pathfinding problem, translated into quantum
states, and ultimately solved using a modified Grover’s algorithm. In Section 6 we present
results from simulated perfect Gaussian distributions, providing insight into fundamental
properties of optimization problems that are viable for amplitude amplification. In Section 7.
we explore the viability of using a cost oracle to solve optimization problems involving
randomness. Section 8. explores a theoretical application of UP for solving the Traveling
Salesman Problem, and, finally, Section 9. concludes with a summary of our findings and
discussions of future research.

2. Gate-Based Grover’s

Shown below in Equation (1) is Us, known as the diffusion operator, which is the
driving force behind amplitude amplification. The power of this operation lies in its
ability to reflect every state in the quantum system about the average amplitude without
computing the average itself.

Us = 2|s〉〈s| − I (1)

In order to make use of this powerful geometric operation, we must pair it with an
oracle operator in order to solve interesting problems. For clarity, in order for an operator
to qualify as an oracle, we require that the probability of measuring each state in the system
must be the same before and after applying the oracle. This requirement excludes any and
all operations which cause interference, leaving only one type of viable operator: phase
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gates. Thus, it is the aim of this study to investigate viable oracle operations which encode
the information of problems into phases and solve them using amplitude amplification.

2.1. Optimal Amplitude Amplification

It is important to understand why the standard Grover oracle UG, given in Equation (2)
and used in Algorithm 1, is optimal in the manner in which it boosts the probability of
the marked state to nearly 1 [2,3]. Geometrically, this is because the entire amplitude
amplification process takes place along the real axis in amplitude space (i.e., at no point
does any state acquire an imaginary amplitude component). Consequently, the marked
state, origin, mean amplitude point, and non-marked states are all linearly aligned, which
ensures that the marked state receives the maximal reflection of the average (mean point)
at each step. This property holds true for not only the real axis, but any linear axis that runs
through the origin, so long as the marked and non-marked states differ in phase by π as a
result of the oracle operation.

UG|Ψ〉 =
{

marked , eiπ |Ψi〉
non-marked , |Ψi〉

(2)

Algorithm 1 Grover’s Search Algorithm

1: Initialize Qubits: |Ψ〉 = |0〉⊗N

2: Prepare Equal Superposition: H⊗N |Ψ〉 = |s〉
3: for k ≈ π

4

√
2N do

4: Apply UG|Ψ〉 (Oracle)
5: Apply Us|Ψ〉 (Diffusion)
6: Measure

We note the optimality of UG because it is directly tied to the nature of the problem
which it solves, namely an unstructured search [1]. The power of amplitude amplification
using UG goes hand-in-hand with the rigidness of the operator. Thus, if we want to expand
the capabilities of amplitude amplification on gate-based quantum computers to more
interesting problems, we must explore more flexible oracle operators, and consequently
expect probability boosting that is less than optimal.

2.2. Alternate Two-Marked Oracle

Here we present an example analogous to Grover’s search algorithm with two marked
states, but with an oracle operator of our own design. The purpose of this exercise is
to illustrate several key ideas that will be prominent throughout the remainder of this
study. Firstly, the general idea of a multi-phased oracle operation [50,51], or ‘non-boolean’
oracles [52]. Secondly, to demonstrate that the success of amplitude amplification can
be directly traced back to the inherent mathematical properties of an oracle. And finally,
to introduce terminology and features of amplitude amplification on discrete systems
which will apply to later oracles. All of the following results were verified using IBM’s
Qiskit simulator as well as our own python-based simulator.

U′G2|Ψ〉 =


|0〉⊗N , |0〉⊗N

|1〉⊗N , eiπ |1〉⊗N

|Ψi〉 ∈ |Gθ〉 , eiθ |Ψi〉
|Ψi〉 ∈ |G-θ〉 , e-iθ |Ψi〉

(3)
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where

|Gθ〉 ≡ ∑
i
|Ψi〉 = |0〉 ⊗ |ψ〉, for |ψ〉 6= |0〉⊗N−1

|G-θ〉 ≡ ∑
i
|Ψi〉 = |1〉 ⊗ |ψ〉, for |ψ〉 6= |1〉⊗N−1 (4)

We begin with the mathematical definition of our oracle function in Equation (3)
above, which we shall refer to as U′G2, as well as its quantum circuit composition in Figure 1.
Contrary to Equation (2), we now have an oracle operation with four distinct outcomes
depending on which state |Ψi〉 it is acting on. Additionally, U′G2 has a free parameter θ,
controlled by the experimenter, which dictates how the states |0〉⊗N and |1〉⊗N boost in
probability. Altogether, the effect of U′G2 can be seen in Figure 2, which displays the position
of each state in amplitude space (the complex plane) after the first application: U′G2|s〉.

Figure 1. Quantum circuit for implementing U′G2. Boxes with θ and π are phase gates, both single
and controlled. For the controlled operations, black dots indicate a |1〉 control state, and similarly
white dots for |0〉.

Figure 2. An illustration of U′G2|s〉. A unit circle of radius 1/
√

2N is shown by the blue-dashed line,
along with the point of average amplitude with a red ‘X’. The parameter θ controls the phase acquired
by the cluster of states |Gθ〉 and |G-θ〉 , which in turn dictates the location of the mean point along the
real axis.

Before revealing how this alternate two-marked oracle performs at amplitude ampli-
fication, note the red ‘X’ located along the real axis of Figure 2. This ‘X’ marks the mean
point, or average amplitude, where every state in the system will be reflected about after
the first diffusion operator Us. Because 2N − 2 states are evenly distributed between |Gθ〉
and |G-θ〉, this initial mean point can be made to lie anywhere along the real axis between
(−1/

√
2N , 1/

√
2N) as θ ranges from 0 to π. Shown in Figure 3 below is the relation between

θ and the resulting probability boosts for |0〉⊗N and |1〉⊗N .
We define the metric PM, shown as the y-axis in Figure 3, to be the peak probability

achievable through amplitude amplification as defined in Algorithm 1 for a given state.
Here we track PM for the states |0〉⊗N and |1〉⊗N as a function of θ, for the case of N = 20.
Firstly, note the two extremes of θ: 0 and π, for which the resulting amplitude amplification
processess are exactly equal to standard Grover’s for |1〉⊗N and |0〉⊗N respectively. This



Entropy 2022, 24, 963 5 of 33

is in agreement with the geometric picture of U′G2 outlined in Figure 2, whereby all of
the states of |Gθ〉 and |G-θ〉 recieve phases of 0 or π, isolating a single state to be π phase
different from the remaining 2N − 1 states.

Figure 3. A plot of θ vs. peak probability PM for the states |0〉⊗N (orange-dashed) and |1〉⊗N

(blue-solid). Approximate forms for the two plots are given in Equations (5) and (6).

While U′G2 is able to reproduce UG at the θ bounds, it is the intermediate θ values
which are more revealing about the capabilities of amplitude amplification. For suffi-
ciently large N, the mean point produced from U′G2 is dominated by the states making
up |Gθ〉 and |G-θ〉, approximately equal to ≈ 1/

√
2N · cos(θ) (the real axis). We note this

cos(θ) dependance because it also describes the two PM plots shown in Figure 3, given by
Equations (5) and (6) below.

PM(|1〉⊗N) ≈ 1
2
(cos(θ) + 1) (5)

PM(|0〉⊗N) ≈ 1
2
(cos(θ − π) + 1) (6)

The emphasis here is that we have a one-to-one correlation between a property of
U′G2, specifically θ, and the resulting peak probabilities PM achievable through amplitude
amplification. But more accurately, θ is just a parameter for controlling the mean amplitude
point produced by U′G2, which is the more fundamental indicator of successful amplitude
amplification. This is evidenced by the cos(θ) relation found in both PM plots here, as well
as properties of oracle operators to come in this study, which can similarly be directly
linked to the initial mean points they produce.

3. Pathfinding Geometry

While the U′G2 oracle is useful for gaining insight into non-boolean amplitude ampli-
fication processes, ultimately it does not correspond to a meaningful problem we would
ideally look to a quantum computer to solve. In particular, we want an oracle operation
that boosts a quantum state unknown to the experimenter beforehand, yielding the answer
to some unsolved problem. To this end, we now introduce one such optimization problem
which can be encoded as an oracle and ultimately solved through amplitude amplification.

3.1. Graph Structure

Shown in Figure 4 is the general structure of the problem which will serve as the
first primary focus for this study: a series of sequentially connected bipartite graphs with
weighted edges, for which we are interested in finding the path of least or greatest resistance
through the geometry. More formally, we seek the solution to a weighted directed graph
optimization problem. Each geometry can be specified by two variables, N and L, which
represent the number of vertices per column and the total number of columns, respectively.
Throughout this study, we refer to vertices as ‘nodes’, and each complete set of nodes in a
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vertical column as a ‘layer’. For example, Figure 4’s geometry represents a 4-layer system
(L = 4), with 3 nodes per layer (N = 3).

Given the geometric structure shown above, we now assign a complete set of weights
ωi, one for each of the total N2 · (L− 1) edges throughout the geometry. These weights are
one-directional, as we only consider solutions that span the full geometry from layer S to
F in Figure 4. In total, there are NL solutions to the directed graph, which we refer to as
‘paths’. For clarity, a single path Pj is defined as the collection of edges that span from the
leftmost to rightmost layers (S to F), touching exactly one node in every layer (see Figure 7
for an N = 2 example).

ωi ∈ [0, R], ωi ∈ Z (7)

Wj = ∑
i ∈ Pj

ωi (8)

P ≡ { P1, P2, . . . , PNL} ≡ All Paths (9)

Figure 4. A geometry composed of sequentially connected bipartite directed graphs with weighted
edges for which we are interested in finding the optimal path from layer S to layer F, touching exactly
1 node per layer. N denotes the number of nodes per layer, while L is the total number of layers.
With full connectivity between nearest neighboring layers, each geometry has a total of N2 · (L− 1)
edges, yielding NL possible paths from layer S to F.

For each path Pj, there is a cumulative weight Wj that is obtained by summing the
individual weighted edges that make up the path (Equation (8)). The goal is to find the
optimal solution path with a cumulative weight of either Wmin or Wmax:

W ≡ {W1, W2, . . . , WNL} ≡ All Solutions (10)

Wmin = min(W) (11)

Wmax = max(W) (12)

For simplicity, we consider problems where each edge ωi is an integer number between
0 and some max R. This will allow for a clearer picture when visualizing solution spaces W
later on. However, we note that all the results which follow are equally applicable to the
continuous case ωi ∈ R (set of real numbers), which we discuss in Section .

3.2. Classical Solving Speed

As outlined in Equations (7)–(12), we are interested in finding the path (collection
of weighted edges) which corresponds to the smallest or largest Wi value within the set
W. However, the cumulative values Wi are assumed to be initially unknown and must be
computed from a given directed graph like in Figure 4. Importantly, this means that the
base amount of information given to either a classical or quantum computer is the set of ωi
weights and their locations, for which either computer must then find an optimal solution.
For graphs defined according to Figure 4, yielding N2 · (L− 1) total weights, we argue that
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the optimal classical solving speed is of this order. Figure 5 below is an example of how
a classical algorithm solves the pathfinding problem one layer at a time, checking each
weighted edge exactly once.

Figure 5. A layer by layer example of a classical approach to finding Wmin or Wmax, for the case
of N = 3 and L = 4. The blue-dashed, green-solid, and red-dotted lines each represent possible
solutions for the optimal path ending on each of the three nodes per layer.

The steps illustrated in Figure 5 can be summarized as the recursive process given in
Algorithm 2. The general strategy is to work through the graph one layer at a time, checking
all N2 edges between layers, and continually updating a list (labeled OP in Algorithm 2)
of possible optimal paths as one moves through the geometry. Importantly, the classical
algorithm only needs to check each weighted edge one time to determine the optimal path.
At each layer of the algorithm, N candidate paths are stored in memory (the blue, red,
and green lines in Figure 5) and used to compute the next N2 possible paths (grey solid
lines), repeating this process up to the final layer.

Algorithm 2 Classical Pathfinding

1: OP = { 0, 0, . . . , 0 } (length N)
2: for L− 1 do
3: for N2 do
4: Check each edge OPk + wi
5: if OPk + wi is optimal then
6: Update OPk

7: Wmin/max = min/max OP

The algorithm shown above has an O(N2 · (L− 1)) query complexity, which we will
later compare with quantum. However, this speed is specifically for directed graphs
defined according to Figure 4 and Equations (7)–(12). And while quantum will offer a
speedup for certain N and L ranges, this particular speedup is not the primary interest
of this study. As we demonstrate next, these sequential bipartite graphs were chosen to
illustrate a problem with an efficient quantum circuit construction for the oracle. Differ-
ent graph structures will have varying classical speeds for quantum to compete against,
but not all graph structures are easily encoded into quantum states and solvable using
amplitude amplification.

4. Quantum Cost Oracle

Having now outlined the problem of interest, as well as a classical solving speed,
in this section we present the quantum strategy for pathfinding. We begin by outlining the
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manner in which all NL possible paths are uniquely assigned a quantum state, with the
goal of encoding each total path weight Wi via phases. Then later in Section 4, we show
how these phases can be used for amplitude amplification to solve for Wmin or Wmax.

4.1. Representing Paths in Quantum

For qubit-based quantum computing, the methodology put forth in this section is
most naturally suited to problem sizes where N = 2n (nodes per layer). This is because
N dictates how many quantum states are needed for encoding a layer, for which 2n is
achievable using qubits. We begin by presenting two example cases in Figure 6 of size
N = 2 and N = 4, both L = 4. Accompanying each graph are the qubit states needed to
represent each node per layer.

Figure 6. (top) An example geometry of size N = 2, L = 4. For the case of N = 2, a single qubit is
sufficient for representing all possible node choices per layer via the states |0〉 and |1〉. (bottom) An
example geometry of size N = 4, L = 4, requiring two qubits for representing the nodes in each layer.

Because we are interested in solving a quantum pathfinding problem, the manner
in which the qubits’ orthogonal basis states |0〉 and |1〉 are used needs to reflect this fact.
A final measurement at the end of the algorithm will yield a state |Pi〉, comprised of all |0〉’s
and |1〉’s, from which the experimenter must then extrapolate its meaning as the path Pi.
We achieve this by encoding each individual qubit state (or group of qubits) as the location
of a particular node in the geometry. Using

√
N qubits allows us to identify each of the

N nodes per layer (for problem sizes N = 2n), for a total of
√

N · L qubits representing a
complete graph. For problems of size N > 2, multiple qubits are grouped together in order
to represent all possible nodes per layer, such as in Figure 6 (two qubits for representing
four nodes).

Figure 7 shows an example path for N = 2, and its corresponding state |Pi〉. For this
particular graph size there are a total of 16 possible paths, which can be exactly encoded
using the basis states |0〉 and |1〉 of four qubits. Conversely for an N = 4 geometry, two
qubits are necessary for representing the four possible nodes per layer (states |00〉, |01〉,
|10〉, and |11〉). This yields a total of 8 qubits for the complete graph (N = 4, L = 4), for a
Hilbert space of size 28, which is exactly equal to the total number of possible paths 44.
With quantum states encoded in this manner, the goal of the algorithm is to measure |Pmin〉
or |Pmax〉, which will yield the answer Wmin or Wmax upon classically checking the path.
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Figure 7. An example path (red-dashed) for a graph of size N = 2, L = 4. The quantum state |0100〉
represents the path shown in red, using the single qubit states |0〉 and |1〉 for bottom and top row
nodes respectively.

4.2. Cost Oracle UP

The four qubit state shown in Figure 7 corresponds to a single path, but a superposition
state is capable of representing all 24 solutions simultaneously (and more generally any
NL). In order to use these states for finding the optimal path, we now need a mechanism
for assigning each path state |Pi〉 its unique path weight Wi. To achieve this, we implement
an operator UP, which we refer to as a ‘cost oracle’, capable of applying the cumulative
weights Wi of each path through phases:

UP|0100〉 = (eiω1 · eiω2 · eiω3)|0100〉
= ei(ω1+ω2+ω3)|0100〉
= eiW0100 |0100〉 (13)

In Equation (13) above, we’ve used the numerical weights ωi from Figure 7 as an
example, where each edge is directly translated into a phase contribution. In practice,
however, a scaling factor ps is necessary for meaningful results (which we discuss in
Sections 4 and 5). The reason we refer to UP as a cost oracle is because the manner in
which it affects quantum states is analogous to that of a cost function. More specifically,
applying UP to any state |Pi〉 will cause the state to pick up a phase proportional to its
cumulative weight Wi. However, it is more accurate to call UP an oracle because the exact
manner in which phases are distributed throughout the quantum system is unknown to the
experimenter. That is to say, the experimenter is unaware of which |Pi〉 state is receiving
the desired phase proportional to Wmin or Wmax until the conclusion of the algorithm.
The matrix representation of UP has the form of Equation (14) below, where each phase
φi is a scalar of the form ps ·Wi. (the role of ps is discussed later). The matrix for UP has
dimensions NL × NL, equal to the total number of possible solutions, with each path’s
phase along the main diagonal.

UP|Ψ〉 =



eiφ1 0 0 · ·
0 eiφ2 0
0 0 eiφ3

· ·
· ·





|P1〉
|P2〉
|P3〉
·
·

 (14)

It is important to note that the matrix shown in Equation (14) is not necessary for the
quantum circuit implementation of UP. In particular, computing all NL phases is already
slower than the O(N2 · (L− 1)) approach laid out in Section 2. Thus, as we demonstrate in
the next subsection, a viable quantum approach needs to implement UP without calculating
any total path lengths Wi.

4.3. Quantum Circuit

Having now seen the desired effect from UP (Equation (14)), here we present a qubit-
based quantum circuit design that efficiently achieves all NL unique phases, with no a priori
classical computations of any Wi. Here we will focus on the case N = 2 for simplicity,
leaving the general case for the next section. We begin by defining the operator Uij shown
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below in Equation (15), and its corresponding quantum circuit in Figure 8. The operator
Uij encodes all of the phases contained between layers i and j, from which we can build up
to the full UP.

Uij ≡


eiφ00 0 0 0

0 eiφ01 0 0
0 0 eiφ10 0
0 0 0 eiφ11

 (15)

Figure 8. (top) Illustration of layers i and j for an N = 2 graph, and the four weighted edges shared
between them. (bottom) Quantum circuit for achieving the Uij operation outlined in Equation (15).

The circuit shown in Figure 8 applies a unique phase to each of the 2-qubit basis states
|QiQj〉, one for each of the four edges connecting layers i and j. The complete information
of all weighted edges connecting layers i and j is achieved with exactly one phase gate
(controlled) per edge, which is a property that holds true for all geometry sizes. Importantly,
from a qubit connectivity viewpoint, the qubits which make up layer i only need to interact
with the qubits making up layers i± 1. This in turn can be used to significantly reduce
circuit depth, demonstrated below in Figure 9.

Figure 9. The complete circuit design for UP, for the case of N = 2. Each Uij operation applies the
four φi phases corresponding to the ωi weights connecting layers i and j. Because of the way in which
phases add exponentially, the order in which a total weight Wi is applied to a state |Pi〉 can be done
in two sets of parallel operations, shown by the dashed-grey line.

UP ≡
L−1

∏
i=1

Ui,i+1 (16)

Let us now compare the desired effect of UP from Equation (14), with its layer-by-layer
construction shown in Figures 8 and 9. Each Uij operation applies phases proportional to
the locally weighted edges connecting layers i and j, involving only the qubits representing
those layers. Also, due to the way in which phases add exponentially (Equation (13)),
the full path weight Wi for each |Pi〉 state is achieved from the product of Uij operations,
shown above in Equation (16). Importantly, note that nowhere in UP’s construction do
we compute a single Wi value. As mentioned earlier, this is a necessary requirement of
UP in order to truly consider it an oracle operation. Here we have achieved exactly that
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by splitting UP up into localized Uij operations for each section of the graph. For results
on how an N = 2 UP operation performs on IBM’s superconducting qubits, please see
Appendix A.

We would like to stress that the structure of Figure 9 is general for all geometry
sizes, which is one of the motivations for studying these sequential bipartite graphs.
The parameter N dictates the number of quantum states per layer, which in turn determines
the dimensionality of Uij. But for all graphs, the parameter L has no impact on circuit
depth, as the complete implementation of UP can always be achieved through two sets of
parallel Uij operations, shown by the dashed grey line in Figure 9.

4.4. Qudit Quantum Circuit

To compliment the results from the previous section for constructing UP on a qubit-
based quantum computer, here we shall briefly mention how qudits can be used to greatly
expand beyond simply N = 2n sized graphs, as well as further reduce circuit depth. Since
we will be interested in using qudits again in Section 8, let us now introduce the notation
for a general d-level quantum bit:

|Q〉d ≡
d−1

∑
i=0

αi|i〉d (17)

As shown in Equation (17), the quantum state for any d-dimensional qudit can be
expressed as a superposition of orthogonal basis states, spanning |0〉 through |d − 1〉.
Experimentally, the realization of qudits has been steadily progressing over the past
decade [33–36], which makes it an exciting time to start considering their applications
for quantum algorithms. Here, the use of qudits allows us to represent graphs beyond
N = 2n. For example, a qutrit-based computer (d = 3) can encode graphs of size N = 3n.
Better still, a mixed qudit computer grants us the ability to encode graphs with a different
N at each layer, such as in Figure 10.

Figure 10. (top) A sequential bipartite graph of varying N at each layer. (bottom) A mixed qudit
quantum state capable of representing all possible paths through the geometry.

Note that it is still possible to create a varying N graph using qubits, so long as
every layer has N = 2n nodes. However, even for geometry sizes that are implementable
using qubits, the use of qudits is still advantageous for several reasons. Consider the two
quantum circuits shown below in Figure 11, which both achieve a Uij operation connecting
two N = 4 layers, applying the same 16 phases in total.

The primary issue with using qubits is that there is a hidden resource cost when
constructing higher-order control operations. In order to achieve an N-control phase gate,
the true quantum circuit requires N additional ancilla qubits to serve as intermediate
excited states [53]. This is because the qubit operations from which we build up higher-
order control-phase gates are P(θ) (single-qubit phase), CX (control-X), and CCX (Toffoli).
The significant advantage that the d = 4 qudit circuit has is the absence of Toffoli gates, as all
16 control-phase operations only need to occur between the two qudits. Thus, the qudit
circuit is advantageous in both resource cost (two qudits vs. seven qubits) and circuit depth
(reduction of four Toffoli gates per each of the 16 phase operations). Of course, the trade-off
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is that qudit technologies are still primitive compared to the more popular qubit, and as
such would be expected to come with much higher error rates. Nevertheless, we will return
to the use of qudits again in Section 8, as the Hilbert space sizes they offer will be necessary
for unlocking meaningful problems to solve.

Figure 11. Quantum circuits for Uij connecting two layers of N = 4 nodes. (top) A qubit-based
quantum circuit (bottom) A d = 4 qudit-based quantum circuit. More information on qudit unitary
operations and circuits can be found in the review study by Wang et al. [54], such as the X−d operator
shown here.

5. Gaussian Amplitude Amplification

With the construction of UP outlined in Section 4, here we discuss how this cost oracle
operator can be used to solve for Wmin or Wmax. Because UP applies phases to every
quantum state, substituting it for UG in Grover’s algorithm has dramatic consequences on
the way in which the amplitude amplification process plays out.

5.1. Solution Space Distributions

The motivation for studying directed graphs according to Figure 4 is only partially
due to their circuit implementation (Figures 8–11). Additionally, these sequential bipartite
graphs possess a second important quality necessary for the success of the algorithm: their
W distributions. In Equation (7) we restricted each edge weight ωi to be an integer value,
for a reason that we will now discuss. By forcing each ωi to be an integer within [0, R], we
can create directed graphs that have a high likelihood of repeat Wi values. Consequently,
two independent paths |Pi〉 and |Pj〉 will both yield the same cumulative weights Wi = Wj,
from different contributing ωi’s. As we let N and L increase, these repeat values lead to
W distributions which become describable by a gaussian function, given in Equation (18),
where the majority of Wi values cluster around the expected mean µ ≈ R

2 (L− 1).

G(x) = αe−
(x−µ)2

2σ2 (18)

Figure 12 illustrates a few example problem sizes for various N and L, and their
resulting W histogram distributions. These distributions represent the range of expected
outcomes from picking a path through the directed graph at random and seeing what Wi
value one gets. The odds of picking the optimal path are 1 in NL, while the most probable
Wi corresponds to the peak of the gaussian. Importantly, the tail ends of the distribution
represent our desired solutions Wmin and Wmax (top left plot in Figure 12), which are always
maximally distanced from the cluster of states around the mean. Also note that letting ωi
be continuous within [0, R] still produces the same gaussian effect, but discrete bin sizes
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are necessary for viewing the resulting W histogram distributions, hence our choice to let
ωi be integers only.

Yi = pop.(Wi) Y′i = G(Wi)

Rcorr =

√
∑i(Y′i −Yi)2

NL (19)

Shown above in Figure 13 is an example distribution and accompanying gaussian
best-fit. This particular distribution was derived from a graph of size N = 6, L = 10,
in anticipation of results later to come (Figures 16, 22 and 24). With an Rcorr value of
approximately 3.98, given by Equation (19), it is clear that the gaussian approximation
for this example is not perfect. Even for a problem such as this one, composed of over
60 million in possible solutions, the resulting W distribution still has non-negligible devia-
tions from a perfect Gaussian, which will be a primary focus of Section 7. Nevertheless,
these approximate Gaussian profiles are sufficient for the success of the algorithm.

Figure 12. Histograms of Wi for randomly generated graphs of various N and L sizes, with R = 100.
As N and L increase while keeping R constant, the profile of these W distributions approach perfect
gaussians, given by Equation (18).

Figure 13. ( black circles/blue lines) A histogram of W for a randomly generated graph with
parameters: N = 6, L = 10, R = 100. (red dash) A best-fit gaussian plot of the form given in
Equation (18), minimizing Equation (19) (Rcorr ≈ 3.981), with gaussian parameter values reported in
the top-right.
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5.2. Mapping to 2π

When using the cost oracle as defined in Equation (14), one must be mindful that UP
does not only mark the states corresponding to Wmin and Wmax, but all states uniquely.
This is quite different from the standard Grover oracle UG, which only marks the state(s) of
interest. For this reason, the use of UP for amplitude amplification can be viewed as less
flexible than UG. While UG can in principle be used to boost any of the NL quantum states
in |Ψ〉, UP on the other hand is better suited for boosting a much smaller percentage of
states. However, the states which UP is effective at boosting are |Pmin〉 and |Pmax〉, perfect
for solving a directed graph problem.

In viewing the W histograms in Figure 12, let us now consider the effect of applying
UP from Equation (14) on an equal superposition state |s〉 ≡ H⊗n|0〉⊗n. Each point along
the x-axis corresponds to a particular path length Wj, while the y-axis represents the total
number of quantum states which will receive a phase proportional to that weight: eiφj |Pj〉.
Thus, the net result of UP will apply all NL phases in a gaussian-like manner, with the
majority of states near the mean receiving similar total phases (from different contributing
ωi’s). And in order to capitalize on this distribution of phases, we will introduce a phase
scaling constant ps into the oracle operation, which affects all states equally:

UP(ps)|Ψ〉 =
NL

∑
j

ei(ps·Wj)|Pj〉 (20)

The scaling constant ps in Equation (20) is a value which must be multiplied into every
cumulative Wj phase throughout the oracle. This can be achieved by setting each individual
phase in Uij to ps ·ωi, such that the cumulative operation of UP is equal to Equation (20).
The phase ps can be thought of as simply the translation of any problem’s W, for any scale
of numbers used, into a regime of phases which can be used for boosting. More specifically,
a range of phases [x, x + 2π] for which the state |Pmin〉 or |Pmax〉 is optimally distanced from
the majority of states in amplitude space (complex plane). See Figure 14 for an illustrated
example, and note the location of the red ‘x’ corresponding to |Ψ〉’s collective mean after UP.

Figure 14. (left) An example histogram of all Wi paths for the case of N = 4, L = 10, R = 100. (right)
The same distribution mapped to a complete 2π cycle of phases via the cost oracle UP acting on the
equal superposition state |s〉. Additionally, the resulting mean (red ‘X’) and |Pmin〉/|Pmax〉 states
(blue diamond) are shown. An accompanying color scale is provided on the far right, illustrating the
percentile distribution of states for both plots.

Without ps, the numerical Wi values from a given directed graph have no guarantee
of producing any meaningful amplitude amplification. However, when scaled properly
with an optimal ps (which is discussed in Sections 6 and 7), UP can be made to distribute
phases like shown in Figure 14, where the phases picked up by |Pmin〉 and |Pmax〉 form a
range of [x, x + 2π]. This in turn ensures that the majority of states will cluster near x + π,
pulling the amplitude mean (red ‘X’) away from |Pmin〉 and |Pmax〉 (blue diamond).
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5.3. UG vs. UP Diffusion

As with the standard Grover search Algorithm [1], the UP oracle operation in isolation
is not enough to solve for Wmin or Wmax. A second mechanism for causing interference
is necessary in order to boost the probability of measuring the desired state. For this, we
once again use the standard Grover diffusion operator Us, given in Equation (1). With UP
distributing phases to each state, and Us causing reflections about the average, we now
have sufficient tools for quantum pathfinding, shown in Algorithm 3.

As noted previously, the algorithm outlined here is identical to that of Grover’s search
algorithm, with UG swapped out for UP. However, this replacement significantly changes
the way in which the states of |Ψ〉 go through amplitude amplification, illustrated in
Figure 15. For comparison, the amplitude space when using the standard UG is also shown.

Figure 15. Examples of amplitude amplification, comparing the use of UP vs. UG for five iterations,
both with the same number of total states N′ = 24,000. In both plots, the origin (0,0) (black ‘+’),
the mean point (red ‘x’), the desired boosted state (blue diamond), and all other points (black circles)
are shown. For scale, the radius of the equal superposition state |s〉 (blue circle) is also shown
(1/
√

N′), as well as the probability of measuring the blue diamond state (which can be used to infer
distance to the origin).

Algorithm 3 Quantum Pathfinding

1: Initialize Qubits: |Ψ〉 = |0〉⊗N

2: Prepare Equal Superposition: H⊗N |Ψ〉 = |s〉
3: for k ≈ π

4

√
NL do

4: Apply UP(ps)|Ψ〉 (Phase Oracle)
5: Apply Us|Ψ〉 (Diffusion)
6: Measure

Step 1 of Figure 15 shows the effect of using the diffusion operator Us immediately
following the first application of UP (see Figure 14). The location of the mean point (red ‘X’)
causes states near |Pmin〉 and |Pmax〉 (blue diamond) to reflect further than those around
the mean of the gaussian. However, when compared with the lower plots using UG, this
increase in probability is always smaller than that of standard Grover’s. Geometrically, this
is a consequence of having states with phases spread out over a 2π range, resulting in a
mean amplitude point that is closer to the origin (similar to U′G2 from Section 2).
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What follows after step 1 for the case of UP is a process with no simple mathematical
description. As illustrated in steps 2–5, repeat applications of UP and Us result in quantum
superposition states which exhibit a ‘spiraling’ effect around the mean point, which itself is
also moving around the complex plane. Although quite clearly different from standard
Grover’s, two key elements remain the same: (1) the distance between the mean point and
the origin gradually decreases with each step, while (2) the distance between |Pmin〉/|Pmax〉
and the origin increases (i.e., incremental probability gains with each step). Just like
Grover’s, both of these statements hold true for O(

√
NL) iterations, after which the process

begins to rebound.
Shown above in Figure 16 is a step-by-step comparison of probabilities for standard

Grover’s versus gaussian amplitude amplification (i.e., amplitude amplification using a
2π gaussian distribution of phases), both for problem sizes of 610 quantum states (N = 6,
L = 10). The blue-dashed line tracks the probability of measuring the marked state as
it approaches 1, while the red-solid line represents the probability of measuring |Pmin〉.
Notably, the probability of |Pmin〉 achieves a lower peak PM, and at a later step count.
This is the trade-off for using UP versus UG: a lower boost in probability, but a solution
to an inherently different problem (unstructured search vs. weighted directed graph).
Importantly, however, the combination of iterations and peak probability for |Pmin〉 is still
high enough for a potential quantum speedup under certain conditions, which we discuss
in the next two sections.

Figure 16. A comparison of probability boosting using UG (blue-dashed) vs. UP (red-solid) as a
function of steps (oracle + diffusion iterations), both acting on a quantum system of 610 states. For UG

we track the probability of the marked state, while the UP case tracks the probability of measuring
|Pmin〉.

6. Simulating Gaussian Amplitude Amplification

Much like the analysis of U′G2 from Section 2, here we present results which illustrate
the capacity for successful amplitude amplification one can expect from a gaussian distribu-
tion of phases encoded by UP. To do this, we use a classical python-based simulator, capable
of mimicking the amplitude amplification process outlined in Algorithm 3, allowing us to
track quantum states and probabilities throughout. Results from various simulations are
provided in the coming subsections, as well as their significance for identifying properties
of problems that are viable for amplitude amplification.

6.1. Modeling Quantum Systems

As illustrated in Figure 14, amplitude amplification is viable for solving optimization
problems with naturally gaussian solution spaces W, scaled down to a 2π range of phases
via ps. In the next section, we address the challenges of finding ps, while here we will focus
solely on how the amplitude amplification process performs under ideal conditions.

G(θ) = αe−
(θ−π)2

2σ2 , θ ∈ [0, π] (21)
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Let us now outline our methodology for creating and simulating discrete UP’s derived
from Equation (21), shown in Figure 17. In step 1, we begin with a normalized gaussian
(α = 1) centered at π, with σ (standard deviation) as the only free parameter. Next we
discretize the gaussian by using (x,y) points along the function (x = θ, y = G(θ)), taken in
evenly spaced intervals of θ based on how many unique phases we want to model between
0 and 2π. These x and y values are then stored in two vectors: Gx and Gy. At this stage,
Gx represents the various phases encoded by some UP, but together with Gy they do not
represent a valid oracle yet. This is because the values of Gy need to model a histogram of
states, which means: (1) every value in Gy must be an integer, and (2) the sum of Gy is the
Hilbert Space size of the quantum system. Analogous to the histograms shown throughout
this study, Gx represents the space of possible Wi solutions, while Gy represents how many
states will receive a phase proportional to Wi. Thus, a viable UP operator is finally achieved
in step 3 of Figure 17, after all the values of Gy are multiplied by a constant factor and
rounded to integers (preserving σ from step 1).

Figure 17. (1–3) Illustrations of how our python-based simulator creates gaussian W distributions
for testing. In step 1, we pick a standard deviation σ and create a continuous gaussian from 0 to 2π,
with α = 1 and µ = π. In step 2 we select how many unique Wi phases we want to model, and use
this number to discretize the continuous gaussian into two discrete arrays Gx and Gy. In step 3 we
select a target Hilbert space size N to model, and scale all of the values in Gy up to integers, such that
the sum(Gy) is as close to N as possible. And finally in step 4 we similuate amplitude amplification
using Gx and Gy, tracking the probability of |Pmin〉.

For each simulation according to Figure 17, the full construction of UP is based upon
three free parameters of our choosing: σ, size(Gx), and the sum(Gy), shown in steps 1, 2,
and 3 respectively. The motivation for these three parameters is based on their direct ties to
the quantities N, L, and R from Equations (7)–(12). For example, the combination of N and
L determines the Hilbert space size of the quantum system needed to represent all possible
paths, which we can control with the sum(Gy). Simultaneously, L and R together dictate
the maximum number of possible Wi weights: [0, R · (L− 1)], which we can model with
the size(Gx). And finally, σ is impacted by all three parameters together, and as we show
next, has the strongest correlation to whether or not amplitude amplification is viable.

6.2. Long Tail Model

Using the methodology put forth in Figure 17, there is still one important choice that
impacts the nature of the quantum system we are modeling, namely rounding. In step
3 of Figure 17, we must implement a rounding protocol to meet the requirement that all
Gy values be integers. For phases near the central region of the gaussian, the choice in
rounding is practically inconsequential for the amplitude amplification process, but not
for the tails where Wmin and Wmax lie. This can be seen in the two UP|s〉 plots in Figure 18,
where in one case all Gy values are rounded up to the nearest integer (left), and one where
all values are rounded down (right).
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Figure 18. (top) An example distribution created from our simulator, before rounding in stage 3,
with properties of the distribution given on the left. (bottom) Two different UP interpretations of the
distribution shown on top. (left) The long tail model, whereby all values of Gy are rounded up to
the nearest integer. Grey dashes indicate the region where pop(Wi) = 1. (right) The short tail model
where all values are rounded down, causing pop(Wi) values near the tails to be zero for small σ.

In this subsection, we shall focus on simulated distributions according to the left UP|s〉
encoding in Figure 18, which we refer to as the ‘long tail’ model. Compared to the randomly
generated distributions in Figure 12, this turns out to be an unrealistic model for problems
where we expect Wmin to be larger than the theoretical minimum. Nevertheless, this long
tail model will serve to illustrate the most ideal case for Gaussian amplitude amplification.
In particular, it allows us to simulate the theoretical limit of a gaussian distribution as
σ goes to zero, for which the resulting amplitude amplification process is most nearly a
replication of standard Grover’s.

Shown in Figure 19 are results from simulated amplitude amplifications for quantum
systems of size N ≈ 60 · 106 (sum(Gy)). Each UP oracle represents 700 unique weights
Wi (size(Gx)) scaled to a 2π range, for σ values ranging from [0, 1.2]. The top plot shows
the peak probabilities PM achievable for the |Pmin〉 state, while the bottom plot shows the
corresponding number of needed UPUs iterations SM.

Beginning with σ = 0, we note how close the results from Figure 19 are to that of
standard Grover’s: PM is ∼0.997 vs. ∼1, and SM is 6089 vs. 6083. For this σ, we are
modeling an oracle where N − 699 states all receive π phase, |Pmin〉 receives a phase of 0,
and the remaining 698 states all receive phases of varying π/350 multiples. If instead these
698 states were also set to receive phases of π, then UP would be exactly UG. But by having
them evenly spread out over a full 2π range, their impact on the amplitude amplification
process can be seen in PM and SM.

While the special case of σ = 0 can be thought of as the theoretical limit where UP
approaches UG, the remaining results shown in Figure 19 illustrate how gaussian amplitude
amplification performs for σ values which represent more realistic optimization problems.
As one might expect, the top plot shows a steadily decreasing trend in PM as σ increases,
accompanied by similar incremental increases in SM. These trends continue smoothly up to
approximately σ ≈ 0.64, which we shall refer to as σcutoff, at which point both plots change
dramatically. The critical difference between the quantum systems we are modeling above
and below σcutoff is that beyond this point the Gaussian distributions of UP are so wide that
they begin to populate multiple states with the value Wmin. Consequently, if there are M
states all with the same Wmin, then they will all share 1/Mth of the probability boosting
from amplitude amplification. For this reason, we’ve included the red-dashed line in the top
plot of Figure 19, which multiplies each peak PM by the pop.(Wmin). Thus, the red-dashed
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line is a more accurate representation of the relation between PM and σ for this particular
Hilbert space size, independent of how many Wmin’s are present in the system.

Figure 19. Results for simulated gaussian distributions of Hilbert space size N = 60 · 106, following
the long tail model, as a function of standard deviation σ. (top) Black data points indicate the highest
achievable probabilities PM for |Pmin〉, while the red-dashed line shows PM·pop(Wmin) for cases with
multiple Wmin solutions. (bottom) The number of required iterations SM in order to reach PM.

The value σcutoff can be interpreted as the limit where a particular optimization prob-
lem is expected to have more than one optimal solution. For sequential bipartite graphs,
we can manipulate the odds of getting multiple Wmin paths by increasing N while si-
multaneously decreasing L and R. Importantly, the presence of multiple Wmin’s does not
detract from a UP’s aptitude for boosting states, as evidenced by the red dashed line which
represents the shared probability across all |Pmin〉 states. However, it does significantly
impact the expected optimal number of iterations SM, which can be seen in the bottom plot
of Figure 19. Having multiple states share the optimal phase is analogous to a result from
1998 [5], where the step count for Grover’s search algorithm is reduced from O( π

4

√
N) to

O( π
4

√
N/M) for M marked states. Here the same effect can be observed in the SM plot,

where each increase in the pop.(Wmin) results in a factional reduction to SM.

6.3. Short Tail Model

One important trend from long-tail model and Figure 19, which will continue through-
out this study, is the inverse relation between the standard deviation σ of a problem’s
solution space W, and UP’s ability to boost |Pmin〉. Thus, the ideal optimization problem
for amplitude amplification is one with a naturally small σ, and Wmin as distanced from
the mean as possible (i.e., long tails). More realistically, however, these two conditions are
contradictory to each other: the smaller σ is for a given problem, the closer we expect Wmin
to be to the mean.

Returning now to the bottom right Us|s〉 plot of Figure 18, here we present results
from our simulator which model problems more akin to Figure 12. We refer to these W
distributions as the ‘short tail’ model, by which we mean the expected number of solutions
where pop.(Wi)= 1 is small, and the expected number of solutions where pop.(Wi)= 0
increases as σ decreases. Unlike the long tail model, this represents an optimization problem
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where Wmin is unknown (changing as a function of σ), making it more difficult to find an
effective ps scaling factor, such as Equation (24) below.

Wmin · ps = x (22)

Wmax · ps = x + 2π (23)

ps =
2π

Wmax −Wmin
(24)

Because we have full information of the quantum systems we are modeling, both Wmin
and Wmax are known for every simulation so we are able to use Equation (24) to find the
optimal ps for each UP. In the long tail model no ps scaling was necessary, whereas here it
is required in order to align |Pmin〉 for optimal boosting. Shown below in Figure 20 is an
illustration of this rescaling process, analogous to Figure 14.

Figure 20. (top left) An example distribution created from our simulator following the short tail
model, causing Wmin and Wmax to be located away from 0 and 2π. (top right) The same distribution
scaled by ps to a full 2π range. (bottom) Below each histogram distribution is an amplitude space
plot of UP|s〉, tracking the location of |Pmin〉 (blue diamond) and the mean point (red ‘X’).

The process shown in Figure 20 takes place in our simulations immediately following
step 3 of Figure 17, before simulating amplitude amplification for PM and SM. The conse-
quence of this rescaling can be seen in the statistics of the top right distribution, resulting
in new σ′ and size(Gx) values from the original. This rescaled size(Gx) value comes from
the number of Gy 6= 0 states (pop.(Wi) = 0) in the system, which have no impact on the
amplitude amplification process. Consequently, the boosting of |Pmin〉 is driven by a new
effective standard deviation σ′, which notably is always σ′ ≥ σ.

Shown in Figure 21 are results of simulated amplitude amplification for the short tail
model, for a range of initial σ values [0, 0.8] and initial size(Gx)= 700. In all four plots
there are three sets of data for various Hilbert space sizes: N = 60 · 106 (blue), N = 10 · 106

(orange), and N = 2 · 106 (green). In contrast to the long tail model results of Figure 19,
Figure 21 illustrates a different trend for PM vs. σ up to σcutoff. The highest PM achievable
for N = 60 · 106 at σ = 0 was previously ∼0.997, now only ∼0.917 following the short
tail model. However, if we look at the top right plot of σ′ vs. σ, we can see where this
lower PM value comes from. Over the range of initial σ values [0 , σcutoff], the consequence
of rescaling with ps are σ′ values between [0.54 , 0.59]. Comparing these σ′ values with
Figure 19, the long tail model predicts PM values around 0.89∼0.92, which is exactly what
we find for PM’s reported in Figure 21.
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Figure 21. Results for simulated gaussian distributions of various Hilbert space sizes (blue = 60 · 106,
orange = 10 · 106, and green = 2 · 106), following the short tail model, as a function of initial standard
deviation σ. (left) PM and SM plots for boosting |Pmin〉. (top right) The standard deviation σ′ after
rescaling each distribution by the ps value which maximizes PM (see Figure 20). (bottom right) The
total number of unique Wi phases modeled by each distribution.

To explain this new relation between σ′ and PM, we must note the two additional
Hilbert sizes N (orange and green data points) shown in Figure 21. For any given initial
σ, all three simulation sizes were derived from the same normalized gaussian in step 1
of Figure 17. Yet due to their differing N values, each system size populates a different
number of unique Wi states, shown in the bottom right plot of size(Gx) vs. σ. For each σ,
the largest Hilbert space N = 60 · 106 always results in the biggest size(Gx) after rounding,
which consequently yields the largest distance between Wmin and Wmax. This distance
dictates the necessary amount of rescaling by ps (Equation (24)), resulting in different σ′

values, which in turn determine achievable PM’s for |Pmin〉.
To summarize, the findings presented here for the long and short tail models demon-

strate the range of success that gaussian amplitude amplification can produce. For any
optimization problem, we must consider not only the solution space W’s natural σ, but how
the distribution of Wi’s can be mapped to a 2π range of phases for UP. This was the
motivation for introducing σ′ via the short tail model, which demonstrated that problem
size N is just as important as σ. Even for a problem that may possess a naturally small σ,
if N isn’t sufficiently large enough to probabilistically produce Wmin/Wmax solutions away
from the mean, then the problem may not be viable for a quantum solution. Conversely,
if we are able to encode large optimization problems into UP oracles, then we can expect
successes analogous to the long tail model with small σ.

7. Algorithmic Viability

The hope of quantum computers isn’t to solve artificially created ideal scenarios,
but problems that arise naturally with inherent difficulties. Following the simulated
Gaussian amplitude amplification results from the previous section, we now ask how
reliable this boosting mechanism is for W distributions with imperfections that one would
expect from realistic problems. What follows in the coming subsections are observations
and techniques for applying the quantum pathfinding Algorithm 3 to randomly generated
W distributions according to Equations (7)–(12).

7.1. Finding an Optimal ps

In order to achieve a successful gaussian amplitude amplification on |Pmin〉/|Pmax〉,
for a W distribution with deviations from a perfect gaussian, the key lies in finding an
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optimal scaling parameter ps. In Section 5.2 we introduced ps as a necessary means for
translating the full range of W down to [x, x + 2π], and again in the short tail model for
Section 6.3.

The approach outlined in Equation (24) is a way of ensuring |Pmin〉 and |Pmax〉 form
a complete 2π range, but it is not necessarily the optimal ps for amplitude amplification.
Firstly, it causes the states |Pmin〉 and |Pmax〉 to share the boosting effect equally, which is
not ideal for problems where we are interested in finding only one or the other. But more
importantly, randomness in W means that the overall distribution of phases from UP is very
likely to be not symmetric. This means that the optimal ps for boosting |Pmin〉 will differ
from the optimal ps for |Pmax〉. These different ps’s correspond to values which best align
|Pmin〉/|Pmax〉 with a π phase difference from the mean. Figure 22 illustrates an example
of this, as well as the margin for error in finding the optimal ps value before accidentally
boosting an unintended state.

Figure 22. A plot of ps vs. achievable probabilities via amplitude amplification, for the W distribution
shown in Figure 13. The state |Pmin〉 represents the solution to the pathfinding problem Wmin, while
|P′min〉 corresponds to the next smallest Wi.

Derived from the same directed graph used to produce Figure 13, the two plots shown
in Figure 22 were created by carefully simulating Algorithm 3 over the range of ps values
shown along the x-axis, for |Pmin〉 as well as the second best solution state |P′min〉. It is clear
by the two spikes in probability, and the space in between, that the role of ps for unlocking
successful amplitude amplifications cannot be ignored. For this particular example, using a
scaling factor of ps ≈ 0.008957 causes the state |Pmin〉 to reach a peak probability of about
80.37%, while using ps ≈ 0.008982 causes |P′min〉 to boost to about 80.47%. Thus, a margin
of error on the order of ∼3 · 10−5 in ps is enough to change what state gets boosted.

Additional notables from Figure 22 are as follows: (1) Despite a single optimal ps for
boosting |Pmin〉, the plot shows a range of ps values around the optimal case for which the
algorithm can still be successful. (2) The range of ps values between the two peaks can be
regarded as a ‘dead zone’, where no state in the system receives a meaningful probability
boost. (3) Because states near |Pmin〉 are also able to receive meaningful amplitude amplifi-
cations (|P′min〉), this suggests that the algorithm may be viable for a heuristic technique.
(4) From an experimental viewpoint, the scale of precision shown for ps must be achievable
via phase gates, which means the size of implementable problems will be dictated by the
technological limits of state-of-the-art quantum devices.

7.2. Single vs. Multiple ps

The two plots shown in Figure 22 represent potential amplitude amplification peaks,
where a single ps scaling factor is used for every iteration of UsUP. However, in principle
this is not necessarily the optimal strategy for boosting |Pmin〉, as ps could theoretically be
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different with each iteration. The choice of ps at each step is an extra degree of freedom
available to the experimenter, which we explore here as a potential tool for overcoming
randomness in W.

In order to better quantify the advantage a step-varying ps approach has to offer, let us
first define our metric for a successful amplitude amplification in Equation (28) below. We
refer to this metric as ‘probability of success’, labeled Psucc, which combines an amplitude
amplification’s peak probability and step count into a single number, quantifying the
probability of a quantum speedup over classical.

Csteps = N2 · (L− 1) (25)

r = bCsteps/Qstepsc (26)

PM = Prob.( |Pmin〉) (27)

Psucc = 1− (1− PM)r (28)

To summarize the components making up Equation (28): Csteps is the number of
classical steps needed to find Wmin (equal to the total number of edges), Qsteps is the
number of UsUP iterations needed in order to reach the peak probability PM, and r is the
number of allowable amplitude amplification attempts to measure |Pmin〉 before exceeding
Csteps. Altogether, Psucc represents the probability that |Pmin〉 will be successfully measured
within r attempts. Using dice as a simple example, the probability of success that one will
roll a 1–5 in four attempts is Psucc = 1− (1− 5

6 )
4 ≈ 99.92%.

The quantity Psucc is a simplified way of comparing quantum vs. classical speeds,
more specifically query complexity, which ignores many of the extra complicating factors
of a more rigorous speed comparison (classical CPU speeds, quantum gate times, quantum
decoherence and error correction, etc.). Here, we are simplifying one step in classical as the
processing of information from a single weighted edge ωi (steps 4–6 in Algorithm 2), versus
one step in quantum as a single iteration of UsUP (steps 4 & 5 in Algorithm 3). This is the
typical manner in which Grover’s search algorithm is considered a quadratic speedup,
and is sufficient for our study’s purpose.

With Psucc now defined, we return to the question of whether a step-varying approach
to ps can improve gaussian amplitude amplification. For details on how an optimal ps
can be computed at each step of the algorithm, please see Appendix B for our technique.
To summarize, we simulate a range of ps values at each step such that the distance in
amplitude space between |Pmin〉 and the mean point is maximized, resulting in the largest
reflection about the average from Us per step. Figure 23 shows an example for the case
N = 30, L = 4, and resulting PM & Psucc.

As evidenced by the accompanying numbers in Figure 23, a step-varying approach
to ps is indeed advantageous for getting the maximal peak probability PM out of a given
W. However, it is also clear that the exact sequence of ps values (bottom plot) are non-
trivial, and likely unpredictable from an experimental perspective when dealing with
randomized data. Although the majority of ps’s are near a single value, there are constant
sharp fluctuations at every step, some small while others are quite large. These fluctuations
can be understood as a signature of the W distribution, unique to every problem, actively
counteracting the randomness of the graph’s weighted edges at every step.

The result shown in Figure 23 for improving PM was found to be very consistent.
More specifically, every randomly generated graph that was studied, for all N and L, could
always be optimized to produce a higher PM using a step-varying ps approach versus only
a single ps. However, in some cases it was found that the larger PM value did not directly
translate to a better Psucc, as the resulting higher Qstep count caused Psucc to be lower (fewer
attempts to measure |Pmin〉). In general, our tests found the step-varying ps approach to be
most effective at improving PM and Psucc for smaller problem sizes. But these smaller cases
oftentimes produced ps vs. step plots (bottom of Figure 23) which were highly chaotic and
irregular from problem to problem, even for the same N and L. Conversely, as problem
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sizes increase, the difference between the single vs. step-varying approaches became more
negligible, with much more regular and stable ps vs. step plots.

Figure 23. (top) An example W histogram distribution for the case N = 30, L = 4, R = 200. (bottom)
A plot of all ps values used at each step in order to optimized the probability of measuring |Pmin〉.
Note the small black arrow, marking the ps value at step 1. To the right of each plot are accompanying
details about the success of each amplitude amplification process for each approach.

7.3. Statistical Viability

While the results from the previous subsection can be regarded as a more theoretical
strategy for optimizing PM, here we address the issue of finding ps from a more practical
perspective. In any realistic optimization problem, it is fair to assume that the experimenter
has limited information about W. Consequently, using a strategy for finding a suitable ps
such as Equation (24) may be impossible, which then begs the question: how feasible is
gaussian amplitude amplification when used blindly? To help answer this question we
conducted a statistical study, shown in Figure 24. The general idea is to imagine a scenario
in which the experimenter needs to solve the same sized directed graph problem numerous
times, with randomized but similar values each time (for example, optimal driving routes
throughout a city can change hourly due to traffic patterns). Under these conditions, we are
interested in whether a quantum strategy can use information from past directed graphs in
order to solve future ones.

The results shown in Figure 24 illustrate the varying degrees of success one can expect
using three different ps approaches. The Figure showcases 100 randomly generated directed
graphs of size N = 6, L = 10, R = 100, and their resulting peak PM probabilities. Optimal
PM values for each graph were found through simulating amplitude amplification using
(1) (light blue) a step-varying ps approach, (2) (green) a single optimal ps, and (3) (dark
red) an average ps. For the average ps, this value was computed by averaging together the
100 single optimal ps values: ∼0.0083478.

Two notables from Figure 24 are as follows: (1) Even for this appreciably large prob-
lem size (over 60 million paths), about 15% of the W distributions studied could not be
optimized for PM values over 50%. We found this to be of interest for a future study: what
is it about these W distributions and their randomness that makes them inherently difficult
to boost? (2) The large discrepancy between the single optimal and average ps plots can
be seen quite clearly across the 100 trials. However, returning to the question posed at the
top of the subsection, the average PM of these blind attempts is roughly 20% (top right
corner of Figure 24). If a quantum computer could reliably be trusted to find |Pmin〉 20% (or
more) of the time using a single ps, this could be a viable use case for quantum, used in
conjunction with a classical computer for a hybrid approach.
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Figure 24. Results from testing on 100 randomly generated W distributions, for N = 6, L = 10,
R = 100. For each trial, we report the highest PM probability found for the state |Pmin〉 using (light
blue) a step-varying ps approach, (green) a single optimal ps approach, and (dark red) an average ps

approach. Reported on the right side of the figure are the averages found for all three approaches.

8. The Traveling Salesman

As the final topic of this study, here we present results for a theoretical application of
gaussian amplitude amplification as a means to solve the Traveling Salesman problem [25]
(TSP). Solving the TSP in this manner is an idea that goes back to 2012 [32], which we build
upon here using the new insights gained from this study, particularly Sections 6 and 7.
Because the adaptation of UP discussed here relies on qudit technologies, which we will
not explicitly cover, we encourage interested readers to see [54] for an overview of unitary
operations and quantum circuits for qudits.

8.1. Weighted Graph Structure

Let us begin by defining the exact formalism of the Traveling Salesman Problem that
we seek to solve using amplitude amplification. Shown in Figure 25 is an example TSP
for the case of N = 8, where N corresponds to the total number of cities (nodes). Just
as with the sequential bipartite graphs from Sections 3–6, a TSP can be represented as a
weighted directed (or undirected) graph. Here we are interested in the most general case,
an asymmetric TSP, where each edge has two unique weights wij and wji, one for traveling
in either direction across the edge.

Figure 25. (left) Geometric structure for the Traveling Salesman Problem, for the case N = 8. Each
edge contains a weighted value wjk, where j and k are the two connected nodes. (right) An example
path, touching each node exactly once. Each path Pi is defined by a unique ordering of all N nodes
(N! in total), with Wi corresponding to the sum of all weighted edges composing the path.

Once again, the solution we seek is Wmin or Wmax, given in Equations (29) and (30).
For clarity, here we are defining a path Pi as shown in Figure 25, traversing every node in
the graph exactly once (and not returning to the starting node). In total, this produces a
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solution space of N! unique path permutations for a given TSP (for a symmetric TSP the
number of permutations is the same, but the number of unique solutions is halved). We
will continue to denote the set of all possible paths as P, and similarly the set of all possible
solutions as W.

ωjk ∈ [0, R] (29)

Wi = ∑
jk ∈ Pi

ωjk (30)

8.2. Encoding Mixed Qudit States

In order to realize a Hilbert space of size N! such that every possible path Pi can be
encoded as a quantum state |Pi〉, we require a mixed qudit quantum computer. Given in
Equation (17) is the quantum state of a d-dimensional qudit, capable of creating superpo-
sition states spanning |0〉d through |d− 1〉d. When using qudits of different dimensions
together, their combined Hilbert space size is the product of each qudit’s dimensionality,
as shown in Equation (31) below. If one is restricted to a quantum computer composed of
a single qudit size d, then only quantum systems of size dn are achievable. Thus, a single
d-qudit computer can never produce the needed N! Hilbert space size (unless d = N!,
which is impractical) for solving the TSP.

|Ψ〉24 = |Q〉4|Q′〉3|Q′′〉2 =
3

∑
i=0

2

∑
j=0

1

∑
k=0

αijk|i〉4|j〉3|k〉2 (31)

The quantum state shown above in Equation (31) is the mixed qudit composition
which can encode an N = 4 TSP, capable of creating a superposition of 4! = 24 states. These
24 states span every combination from the lowest energy state |0〉|0〉|0〉, up to the highest
energy level for each qudit |3〉|2〉|1〉. Each of these basis states will serve as a |Pi〉, receiving
a phase proportional to its total path weight Wi via the oracle UP. See Figure 26 for an
N = 4 TSP example.

Figure 26. (left) Geometric illustrations for 12 of the possible solution paths for an N = 4 TSP
weighted graph. (right) Quantum state representations for the 12 paths shown, plus 12 additional
states with opposite direction.

The quantum states shown in Figure 26 are meant to be symbolic, representing the
information needed to specify each of the 24 unique paths (order of nodes traversed).
For the realization of UP however, we must encode the information of these 24 paths into
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the orthogonal basis states |i〉|j〉|k〉 via phases. But unlike the convention used in Figure 7,
where individual qubit states represent a single node in the graph, where we cannot use
qudits in the same manner. To understand why, it is helpful to visualize the problem from
a different geometric perspective, as shown in Figure 27.

Figure 27. Spanning tree representation of all possible paths for an N = 4 Traveling Sales-
man problem.

The spanning-tree representation shown in Figure 27 is equivalent to the weighted
directed graph in Figure 25, with the same solution Wmin. The motivation for looking at
the problem in this manner is to highlight the decreasing number of possible choices with
each successive layer. Returning now to Equation (31), |Ψ〉24’s mixed qudit composition
was chosen to exactly mimic the dimensionality of choices at each layer in Figure 27.
For example, the largest qudit |Q〉4 in the system has four available states, one to represent
each of the four possible starting nodes. Similarly, the next largest qudit |Q′〉3 provides
three possible states, one for each of the remaining untouched nodes, and so forth until the
final qubit. However, while the four states of |Q〉4 can all be exactly assigned to one of the
four starting nodes, the same cannot hold true for the states of |Q′〉3 and |Q′′〉2.

If we want to repeat the strategy for labeling |Pi〉 states like in Figure 7, then we require
N total d = N qudits, such that each |i〉d basis state can be uniquely specified as a particular
node in the graph. However, this leads to a Hilbert space size of NN , which is more than
the number of total possible paths (for N = 4, this is 256 states for only 24 paths). These
extra states are problematic because they represent invalid solutions to the TSP we want to
solve, i.e., paths that traverse a single node more than once. Thus, in order to solve an N!
sized problem, we must use a Hilbert space created from a mixed qudit approach like in
Equation (31).

Our solution to this N! path/state encoding problem is outlined in Figure 28, for the
case N = 5. The strategy for identifying each basis state of |Ψ〉 as a particular |Pi〉 follows
from two rules: (1) initially label all nodes in the TSP graph with a unique |i〉d basis state for
the d = N largest qudit (leftmost graph). (2) For subsequent d < N qudits, each |j〉d basis
state corresponds to one of the remaining untraversed nodes, ordered clockwise from the
position of the previous qudit state. See Figure 28 for two example paths, where possible
qudit states at each step are shown in blue, and previous qudit states in black.

The two rules specified above are enough to guarantee every |Pi〉 is unique, even
though the meaning of individual qudit states are not. while this encoding is sufficient,
we note that other encodings are equally valid as well. So long as UP is able to apply each
phase ps ·Wi to the correct basis state |Pi〉, then the amplitude amplification results of the
following subsection are applicable.

8.3. Simulated TSP Results

To conclude this discussion of the Traveling Salesman problem, here we present results
which demonstrate how amplitude amplification performs as a function of N. To do this,
we analyzed each problem size from two approaches: (1) Analogous to Figure 24, find
the optimal single ps for randomly generated graphs of each size, and record PM values.
(2) Compare these results against our simulator from Section 6.3 by gathering average
statistics for Wmin, Wmax, and σ′, and use these along with N! to predict expected PM values.
Results for method (1) are shown in Figure 29 below.
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Figure 28. (leftmost) Initial mapping of an N = 5 TSP to the quantum states |0〉–|4〉, and their
accompanying city names. (panels 1–4) Step by step outline of two different paths through the
geometry, illustrating the ‘clockwise’ nomenclature outlined in this section. At each step, the path
thus far is illustrated in solid black lines/states, while potential next nodes are shown in blue
arrows/states.

Starting with σ′, indicated by the black dots in Figure 29, we find a trend that is
consistent with the sequential bipartite graphs from earlier in this study. As N increases,
the rescaled standard deviation σ′ of the solution space distribution W decreases, and conse-
quently we find higher PM values (blue dots). Accompanying each average PM are intervals
that represent the top 90% of all values found. These bars are in agreement with Figure 24,
whereby the average values may be high, but working with randomized data is always
subject to occasional W distributions which are inherently difficult to boost |Pmin〉. Even
for N = 11, which was the largest size studiable with our computing resources, we still
found the effects of randomness to be strong enough to cause PM values to be under 40%.

Figure 29. Results from using a single optimal ps for randomly generated TSP weighted graphs as
a function of problem size N, R = 100. (dots) Average values for σ′ (black) and PM (blue). (bars)
Intervals indicating the top 90% of all PM values found.

Finally, using average W statistics in our simulator, we found predicted PM val-
ues which were in strong agreement with those shown in Figure 29. For problem sizes
N = 9, 10, 11, the simulator predicted PM values which were all within 5% of the averages
found experimentally. For smaller N sizes, the resulting W distributions become less and
less resemblant to Gaussian profiles, making their comparison to our perfect gaussian
simulator less meaningful. Overall, the two trends shown in Figure 29 are positive for
quantum, indicating that as N increases so too does the viability of boosting |Pmin〉.
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9. Conclusions

Amplitude amplification is a powerful tool for the future success of quantum comput-
ers, but it is not strictly limited to the unstructured search problem proposed by Grover
over two decades ago [1]. In this study, we’ve demonstrated the viability of amplitude
amplification as a means for solving a completely different problem type, namely pathfind-
ing through a weighted directed graph. This was made possible by two key factors: (1) a
cost oracle capable of encoding all possible solutions via phases, and (2) the gaussian-like
manner in which the solution space naturally occurs. It is because of these Gaussian-like
distributions that we are able to boost the desired solution state to high probabilities.
More specifically, we are able to utilize the central cluster of states around the mean of
the gaussian to create an oracle UP which produces a mean point away from the desired
solution state in amplitude space. This in turn allows for reflections about the average
at each step via Us to incrementally increase the probability of the desired solution state
up to some maximum (PM), which can be related to the distribution encoded into UP.
And finally, we’ve demonstrated that such oracles are implementable for the gate-based
model of quantum computing, such that the answer to the optimization problem is not
directly encoded into the quantum circuit for UP.

Future Work

The algorithmic potential for gaussian amplitude amplification presented in this study
is a promising first step, but there is still much to be learned. We view the process illustrated
in Figure 15 as an open question for a more rigorous mathematical study. Throughout this
study, we were able to simulate Gaussian amplitude amplification classically because each
Hilbert Space had a finite number of states. However, studying a truncated continuous
Gaussian function as it undergoes UsUP through many steps is more difficult, but could
lead to the improved success of the algorithm. Additionally, studying the same process
but with a skewed gaussian could yield highly valuable insight into more realistic problem
cases, such as why certain W distributions in Figure 24 performed better than others.

Much of the discussion in Section 7. was centered around the scaling constant ps
and its role in unlocking successful amplitude amplification. This is arguably the biggest
unknown for the future success of the algorithm. We demonstrated that given an optimal
ps the algorithm can solve for the desired solution, but it is still unclear under what
circumstances an experimenter can reliably obtain ps since it changes from problem to
problem. We also showed the degree to which an average ps could be used, which we
believe is a viable application for quantum under certain circumstances, requiring further
research. Alternatively, it is possible that an optimal ps could be found through a learning
style algorithm, such as QAOA [55,56] or VQE [57], whereby the results of each attempted
amplitude amplification are fed back to a classical optimizer.

Finally, the Traveling Salesman oracle in Section 8. is a theoretical application, but with
the highest upside for a quantum speedup (O(

√
N!)), relying on future qudit technology

for realization. Critically, we neglected to provide an efficient quantum circuit for UP (an
inefficient circuit is easy to construct, but too cumbersome to provide a quantum speedup),
which is an open question we are still pursuing. Beyond the TSP, however, we plan to
investigate more optimization problems which also naturally give rise to gaussian solution
space distributions, making them candidates for amplitude amplification.
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Appendix A. UP Fidelity Results

Here we present experimental results which demonstrate the viability of implementing
UP on IBM’s state-of-the-art qubit architectures ‘Casablanca’ and ‘Lagos’ [58]. Because UP
only applies phases (which are undetectable through measurements), each experiment
consists of an application of UP followed by U†

P, ensuring that each experiment has a
definitive measurement result for calculating fidelity (the state of all |0〉’s). Equation (A2)
below shows the fidelity metric used.

|Ψ〉 = H⊗LU†
PUPH⊗L|0⊗L〉 (A1)

f = 〈0⊗L|Ψ〉 (A2)

Because of the multiplicative nature of fidelities, the actual fidelity of a single UP
application can be estimated as higher than the values shown in Figure A1. Also note the
dramatic decrease in fidelity between experiments L = 2 and L = 3. This drop off can be
explained by revisiting Figure 9, and noting the difference in circuit depth for UP when
using 2 versus 3 qubits. For the special case of L = 2, we have UP = Uij (Equation (15)),
while for all other cases UP requires two sets of Uij operations (Figure 9). This difference in
circuit depth explains the high fidelity for L = 2 versus L = 3, 4, 5.

Figure A1. Fidelity results as defined in Equation (A2), for the case N = 2, L ∈ 2, 3, 4, 5, performed
on IBM’s superconducting qubits.

Appendix B. Step-Varying ps

In order to compute the maximal PM values displayed in Figures 23 and 24, we used a
classical simulation of the quantum state |Ψ〉 at each step of the amplitude amplification
process in order to determine optimal ps values. At each step of the algorithm we test a
range of ps values when applying UP, tracking the distance in amplitude space between
the state |Pmin〉 and collective mean, given in Equation (A6). Once a maximal D is found at
each step, the corresponding ps value is stored, the diffusion operator Us is applied to |Ψ〉,
and the resulting probability PM for |Pmin〉 is recorded. This process is repeated until the
simulation finds a PM value which is smaller than the previous step, signaling the rebound
point of the algorithm.
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|Ψ〉 =
NL

∑
k

αk|Pk〉 (A3)

Dist(α, β) ≡
√

real(α− β)2 + imag(α− β)2 (A4)

αmean =
1

NL

NL

∑
k

αk (A5)

D = Dist(αmean, αmin) (A6)

Figure A2 illustrates an example W distribution, along with three ps values and their
effect on |Ψ〉 after the first application of UP. In each UP|s〉 amplitude plot, the value of D
and ps are shown, along with a line connecting the locations of αmin and αmean.

Figure A2. Illustration of the classical simulation technique used to determine the optimal ps value
at each step by maximizing the distance between |Pmin〉 and the mean point.
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