
Anim Models Exp Med. 2021;4:319–328.	﻿�    |  319wileyonlinelibrary.com/journal/ame2

1  | INTRODUC TION

Oxygen is a key factor in the growth, reproduction and metabolism 
of aerobic organisms1 and oxygen content varies due to environmen-
tal factors, such as temperature, humidity, atmospheric pressure and 
altitude.2 O2 deficiencies may occur in environments of land-living 
animals such as high altitudes3 and underground caves.4

Although mammals are largely intolerant of hypoxia, there are a 
few rodent species that live in hypoxic niches. These animals have 
evolved complex physiological and molecular adaptive systems that 
enable them to survive in hypoxic environments.5 Low O2 can lead 
to an increase in the production of reactive oxygen species (ROS) in 

the organism,6 which in turn triggers oxidative stress.7,8 However, 
antioxidant defense systems in organisms can counteract the ad-
verse effects of ROS.9 Maintaining a balance between energy pro-
duction and consumption is also key to tolerating hypoxia.10,11 In 
general, in order to adapt to hypoxia, animals can produce energy 
through anaerobic metabolism to maintain their metabolism,12 and 
when the O2 supply is limited, the metabolic rate of most hypoxia-
tolerant animals shows a strong decline.5,13 In hypoxia-tolerant new-
born mammals, oxygen consumption (VO2) was shown not to exceed 
the baseline level during reoxygenation after hypoxia (15% O2), and 
rapidly returned to the pre-hypoxia level, and lactate accumulation 
was observed only in more severe hypoxia (10% O2).14
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Abstract
Oxygen is one of the important substances for the survival of most life systems on 
the earth, and plateau and underground burrow systems are two typical hypoxic en-
vironments. Small mammals living in hypoxic environments have evolved different 
adaptation strategies, which include increased oxygen delivery, metabolic regula-
tion of physiological responses and other physiological responses that change tis-
sue oxygen utilization. Multi-omics predictions have also shown that these animals 
have evolved different adaptations to extreme environments. In particular, vascu-
lar endothelial growth factor (VEGF) and erythropoietin (EPO), which have specific 
functions in the control of O2 delivery, have evolved adaptively in small mammals 
in hypoxic environments. Naked mole-rats and blind mole-rats are typical hypoxic 
model animals as they have some resistance to cancer. This review primarily summa-
rizes the main living environment of hypoxia tolerant small mammals, as well as the 
changes of phenotype, physiochemical characteristics and gene expression mode of 
their long-term living in hypoxia environment.
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The organism responds to hypoxic stress by regulating down-
stream gene expression primarily through hypoxia inducible factor-1 
(HIF-1).15 HIF-1 is a heterodimeric transcription factor consisting of 
two subunits, HIF-1α and HIF-1β, of which HIF-1α is the active sub-
unit.16 In hypoxia, HIF-1α is stably transferred to the nucleus and 
forms a heterodimeric complex with HIF-1β, which regulates the 
transcription of >150 target genes.17,18 These include the expression 
of two specific functional genes: vascular endothelial growth factor 
(VEGF) and erythropoietin (EPO).19,20 VEGF increases endothelial 
cell proliferation, survival and migration, promotes angiogenesis, and 
delivers O2 and nutrients21,22; EPO stimulates the proliferation and 
survival of red blood cell progenitors, which maintain the O2-carrying 
capacity of the blood.23 An inadequate hypoxic response is often as-
sociated with cardiovascular disease, cancer and COVID-19.24,25 This 
review discusses the possible evolutionary mechanisms of hypoxia 
adaptation in small mammals living in long-term hypoxic environ-
ments and the evidence related to their possible functional role in 
the treatment of hypoxia-related diseases.

2  | HYPOXIC ENVIRONMENTS ON L AND

O2 is essential for most aerobic organisms, and its reduction can 
produce significant physiological stress. At present, some hypoxia-
tolerant small mammals have evolved effective strategies to survive 
under hypoxic conditions which may be related to their long-term 
existence in hypoxic environments such as the extensively studied 
plateau areas26 and underground caves.3

2.1 | Plateau environments

Plateaus are special geographical areas of high lands that form 
unique natural landscapes and ecosystems.27 China's plateau area 
is large and rich in natural resources. The area above 3000 m above 
sea level accounts for about one-sixth of the total area of the coun-
try and includes Tibet, Qinghai, Xinjiang, Yunnan and other prov-
inces. The Qinghai-Tibet Plateau in particular is a large area known 
as ‘the roof of the world’ and contains Mount Everest.28 Low tem-
peratures, lack of O2, strong ultraviolet light and dryness are distinc-
tive features of the climate of the plateau.29 These climate factors all 
directly or indirectly affect the survival of organisms. Typical atmos-
pheric O2, N2 and CO2 levels are approximately 21%, 78% and 0.03% 
respectively. However, the concentration of O2 in the terrestrial en-
vironment can be altered by altitude and air circulation problems.30 
The atmospheric pressure and O2 partial pressure decrease by about 
0.67 and 0.14 kPa for every 100 m above sea level.31 For example, 
the O2 concentration at 4000 m above sea level is only 182.10 g/
m3, equivalent to 60.84% of sea level30; the absolute O2 level at the 
summit of Mount Everest, at an altitude of 8844 m, is less than 1/4 
of that at sea level.32

2.2 | Underground burrow systems

Globally, more than 300 mammals, such as blind mole rats (BMRs, 
Spalax galili),33 naked mole rats (NMRs, Heterocephalus glaber),34 
plateau zokors (Myospalax baileyi)35 and others, have settled in un-
derground niches.36 The absolute and relative amounts of O2 in 
subterranean caverns fluctuate widely in both time and space.37,38 
For example, summer rainfall and winter frozen soil tend to create 
transient or prolonged low-O2 conditions in the cave channels.2,39-41 
Spatially, the cave system can be a very complex structure.37,38,41 
For example, many colony-dwelling moles have deeper nests, an 
environment that can severely limit ventilation.42 In addition, the 
presence of a large number of mammals may also lead to rapid and 
dramatic changes in gas composition of subterranean tunnels.43 
Despite the advantages of subterranean tunnels such as microcli-
matic stability, relatively low temporal variability in the availability of 
food resources and low predation risk, this is still a highly stressful 
environment.42

3  | HYPOXIC ADAPTATION STR ATEGIES 
OF SMALL MAMMAL S

O2 is essential for the survival of organisms and is a key factor in 
maintaining normal life activities.44 However, hypoxia may affect the 
normal metabolic activities and physiological functions of tissues, 
and even the vital status of the organism.45

3.1 | Physiochemical properties related to 
adaptation to hypoxic environments

It is possible that the morphology, blood properties, physiology, 
biochemistry and gene product structure and function of small 
mammals living on plateaus or in underground caves may have 
changed as they adapted to life in a low oxygen environment.46-

54 For example, some subterranean mammals that live for long 
periods of time in anoxic and dark caves have specialized sen-
sory systems, such as specialized circadian rhythms,55-57 height-
ened hearing,58-60 degraded vision,55,59,61-63 and oxyosphresia64 
(Table 1).

In addition to the possible evolutionary strategies of hypoxia 
adaptation that are seen in the species shown in Table 1, African 
mole-rats living in subterranean burrows have developed mecha-
nisms to adapt to hypoxic, hypercapnic and hyperammonic tunnel-
ing systems.65,66 They are able to tolerate extremely low oxygen 
tensions for several hours without any significant cellular dam-
age.67,68 North American deer mice (Peromyscus maniculatus), which 
live in the colder alpine regions, have alsobevolved more oxidative 
muscles that can maintain high rates of lipid oxidation to support 
thermogenesis.69
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3.2 | Antioxidant defense

The antioxidant defense system mainly consists of an antioxidant en-
zyme system and a small molecule antioxidant system.70 The antioxi-
dant enzyme system is mainly composed of enzymatic antioxidants 

such as superoxide dismutase (SOD), catalase (CAT) and glutathione 
peroxidase (GPx).71 Under normal physiological conditions, ROS is a 
natural by-product of metabolism, and its production and clearance 
are in physiological equilibrium.72 Too much or too little ROS can 
cause damage to the organism72,73 (Figure 1). Hypoxia can lead to 

TA B L E  1   Evolution of hypoxic adaptations in hypoxic-tolerant small mammals

Species Significant physiological adaptations to hypoxic stress

Plateau pikasa (1) Low-O2 consumption and high-O2 carrying capacity without excessive blood viscosity147,148; (2) Hb, RBC 
and HCT are not sensitive to altitude149; (3) Lower pulmonary artery pressure with hypoxia150; (4) High 
mitochondrial content in skeletal muscle and cardiac muscle150; (5) High density of tissue microvasculature151

Root volesa High tissue-specific expression of HIF-1α and HIF-2α152

Qinghai volesa (1) Increases hemoglobin synthesis to facilitate O2 transport94; (2) Multiple genes (Acs16, Gpat4 and Ndufb7, etc) 
are involved in the regulation of lipid synthesis, fatty acid β-oxidation, hemoglobin synthesis and electron 
linkage transfer94

Naked mole ratsb (1) Lower overall O2 demand,102 hemoglobin with a higher O2 binding affinity153; (2) High ROS removal 
capacity,78 hypothermia,154 lower metabolic rate155 and reduced heart rate34,156 in the presence of hypoxic 
stress; (3) Substitution of residues 87 and 89 of HBA-T1 close to proximal histidine157

Mandarin volesb (1) Eye degeneration55; (2) Higher capillary density and blood parameters (hematocrit, mean red blood cell 
volume, mean red blood cell hemoglobin)39; (3) High O2 carrying capacity and low-O2 consumption1; DNA 
repair enhancement, damage prevention and perception enhancement2

Blind mole ratsb (1) Subcutaneous eyes cannot form images61,62; (2) Under hypoxic conditions, EPO and HIF-1α are 
overexpressed37,118 and the lungs have a greater capacity for gas exchange and a higher number of red blood 
cells52; Further elevation of hemoglobin oxygenase-125,79; (3) High vascular density,158 shorter O2 diffusion 
distances37,133,158; (4) HBA-T1 AA substituents are located in the proximal binding site159; (5) Different 
methylation modifications of p53 can block transcriptional repressors160-163

Plateau zokorsc (1) Increased myocardial mitochondrial surface density, microvessel density and myoglobin content164; (2) 
Increased skeletal muscle microvascular density, myoglobin content and mitochondrial number and area165; 
(3) High O2 partial pressure and O2 saturation of arterial blood, with high O2 utilization166; (4) Intramuscular 
lipid-soluble components, and alcohol-soluble components all have anti-hypoxic effects166

aHigh altitude.
bSubterranean.
cHigh altitude subterranean.

F I G U R E  1   The effect of ROS content in the organism
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increased ROS production in vivo,6 which in turn triggers oxidative 
stress.7,74 However, the antioxidant defense system in the organism 
can counteract the adverse effects of ROS.9 ROS are also essential 
signaling molecules for cell growth, so the scavenging of ROS does 
not completely eliminate them, but maintains them at a low equilib-
rium to prevent disruption of the redox dynamic balance.

Many studies have indicated that mammals living in chronic hy-
poxic environments have adaptive tolerance to hypoxic stress.74,75 
For example, the antioxidant defense system of the Gansu zokors 
(Myospalax cansus) has evolved as a response to hypoxia, with the 
activities and gene expression of SOD and CAT being elevated in 
the brain and liver after hypoxia treatment compared to normoxia.76 
Previous studies have also found that some hypoxia-tolerant species 
can survive reoxygenation-induced oxidative stress cycles and main-
tain oxidative damage at manageable levels.77 For instance, higher 
ROS scavenging capacity in NMRs may reduce oxidative damage 
associated with hypoxia/reoxygenation exposure (eg associated 
ischemia-reperfusion injury).78 However, blind mole rats (BMRs) 
have been shown to have higher levels of ROS-processing enzymes 
compared to hypoxia-tolerant mammals.79 One of a number of key 
transcription factors in BMRs, Nrf2, is essential for defense against 
oxidative stress and has a unique structure. Although Nrf2 is highly 
conserved in most mammals,79 it carries 27 specific amino acid sub-
stitutions in BMRs, and six of them are within the Neh6 structural 
domain, and are essential for stabilizing the protein and its transcrip-
tional activity under environmental oxidative stress.80 The power-
ful antioxidant mechanism of NMRs is able to quench ROS before 
it damages DNA and other macromolecules, thus providing cellular 
homeostasis.74,75 Another six species of African mole also showed 
no signs of protein or DNA damage during hypoxia and no change in 
the antioxidant capacity of the brain.66,81,82 It may be that the brains 
of these species increase or maintain high levels of gene/protein ex-
pression and enzymatic activity of antioxidant enzymes other than 
GPx under hypoxic conditions, while helps them to cope with epi-
sodic oxidative stress.79,83

3.3 | Energy metabolism under hypoxic stress

In order to survive better in low-O2 environments, O2 ‘adaptors’ either 
increase O2 utilization or decrease metabolic rates at the whole body 
and cellular level.84,85 In hypoxic environments, the body obtains en-
ergy through anaerobic glycolysis, and only 2 molecules of ATP can 
be produced from 1 molecule of glucose by anaerobic glycolysis.86-89 
Hence, the key for tolerating chronic hypoxia is to match metabolic 
demand with energy supply,90-92 and most hypoxia-tolerant animals 
exhibit a strong decrease in metabolic rate during O2 deprivation.5,13

The physiological responses to low-pressure hypoxia in small 
mammals at high altitude are diverse and numerous.93 One study 
found that when Qinghai voles (Neodon fuscus) were exposed to a 
hypoxic environment, they appeared to improve fatty acid oxida-
tion based on enhanced oxidative phosphorylation.94 While up-
regulation of Acot4 expression in the peroxisome of Qinghai voles 

helps them avoid excessive lipid depletion and deleterious effects 
on the plasma membrane.94 In contrast, down-regulation of Gpat4 
may reduce the synthesis of lysophosphatidic acid based on glyc-
erol 3-phosphoglycerate and acyl-coenzyme A (acyl-CoA), thereby 
reducing the synthesis of phospholipid and triglyceride.95,96 Down-
regulated Gpat4 may also promote more acyl-CoA entering mito-
chondria for β-oxidation.97 These adaptations may account for the 
maintenance of adequate energy supply to skeletal muscle tissue 
in Qinghai voles under hypoxic stress.94 In addition, the expression 
of lactate-dehydrogenase-C in the skeletal muscle of plateau pikas 
(Ochotona curzoniae) increases their anaerobic glycolytic capacity, 
reduces the animals' dependence on O2,98 and enhances their adap-
tation to the hypoxic environment of the plateau.99

One of the biggest challenges faced by mammals in underground 
tunnels is the high energy cost of excavation in order to find limited 
food resources underground and maintain cave structures.100,101 For 
example, NMRs, as is typical of the hypoxia-tolerant subterranean 
rats, have a basal metabolic rate that is about 30% lower than that 
of similarly sized mammals.102 NMRs show different behaviors from 
other adult mammals, mainly consuming lipids under normoxia and 
undergoing anaerobic fructose-fueled metabolism during severe 
hypoxia, while their dependence on carbohydrate metabolism is 
increased by the depletion of hepatic glycogen and the increase in 
blood glucose during hypoxia.34 Fructose-driven glycolytic respira-
tion in the tissues of this species avoids feedback inhibition of glycol-
ysis via phosphofructokinase, thereby supporting survival in hypoxic 
environments.103 Gansu zokors also use fructose to accelerate en-
ergy supply based on glucose as the main metabolic substrate.104

3.4 | Key genes under hypoxic stress

Higher organisms have evolved complex regulatory mechanisms to 
respond to changes in O2 concentration in the environment, and 
this key mechanism of adaptive change is closely connected to the 
hypoxia inducible activation pathway of hypoxia inducible factor-1α 
(HIF-1α).104-106 To date, a number of key genes and proteins associ-
ated with hypoxia adaptation in small mammals have been published 
(http://ihypo​xia.omics​bio.info/).

As a major regulator of the hypoxic response,107 HIF-1α can target 
and regulate hundreds of genes directly or indirectly.108 HIF-1α de-
grades rapidly under normoxic condition.109 But in low-O2 conditions, 
HIF-1α is responsible not only for the switch from oxidative phosphor-
ylation to glycolysis, but also for other adaptive processes such as an-
giogenesis, cell survival and proliferation.108,110,111 Interestingly, the 
expression level of HIF-1a mRNA in subterranean rats is significantly 
higher than that in ground mammals at all developmental stages.38

3.4.1 | Vascular endothelial growth factor

Vascular endothelial growth factor (VEGF) is a multifunctional 
growth factor that promotes angiogenesis and diastole, increases 

http://ihypoxia.omicsbio.info/
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vascular permeability, and promotes cell proliferation and survival.112 
Hypoxia can rapidly and strongly induce the mRNA expression of 
VEGF by increasing the stability and DNA ligation capacity of HIF-1α 
protein.113 Research has found that tight control of angiogenesis 
may be a new mechanism for hypoxia tolerance in animals surviving 
in hypoxic environments.25 For example, VEGF gene expression was 
significantly upregulated in the brains of BMRs under hypoxic condi-
tions114; The mRNA expression of the VEGF gene in brain tissue and 
skeletal muscle of plateau zokors was significantly higher than that in 
Sprague-Dawley (SD) rats111,115; VEGF was also upregulated in brain 
tissue of Mandarin voles (Lasiopodomys mandarinus).1,4 These studies 
provide further evidence that hypoxia-tolerant species may have a 
more effective angiogenic or neuroprotective mechanism for adapt-
ing to extreme subsurface hypoxic environments.

3.4.2 | Erythropoietin

Erythropoietin (EPO) is a hematopoietic cytokine that regulates 
erythropoiesis and promotes the differentiation and proliferation of 
relatively mature erythroid progenitor cells.116 Moreover, EPO also 
has a strong pro-endothelial expression effect on vascular endothe-
lial cells.37 Hypoxia is the most important inducer of EPO,37 and EPO 
expression in the kidneys of adult BMRs was significantly higher 
than in Rattus norvegicus under hypoxic stress.37,117 The BMRs can 
also cope with the extreme hypoxic conditions of underground bur-
rows during floods by overexpressing EPO in vivo.118 The relative 
EPO mRNA expression in liver and kidney of plateau zokors at dif-
ferent altitudes increased with altitude, and the increase in kidney 
was five times greater than that in liver.35,119 These findings provide 
important information for understanding the possible role of EPO in 
hypoxia-tolerant small mammals.

3.5 | Multi-omics studies on hypoxic adaptation in 
small mammals

With the rapid development of high-throughput sequencing, more 
and more data about the animal transcriptome or whole genome has 
been reported, and the discovery of large amounts of sequence in-
formation will provide useful reference data for animal evolutionary 
studies. Advances in high-throughput sequencing technologies have 
led to a number of studies using multi-omics approaches to analyze 
the adaptive evolution of extreme environments.120-122

Genome-wide data analysis has provided insights into the evo-
lution of genome-wide adaptations to subsurface stress in subter-
ranean mammals, in particular to the characterization of hypoxic 
adaptation, immune facilitation and sensory specialization responses 
to hypoxia-tolerant life.43 Genomic studies have revealed adaptive 
evolution of genes related to vision (Crygs, Crybb3, Gnat2, etc) and 
skin (Krt9, Pomp, Col4a4, etc) in subterranean mammals and of the 
subterranean stress resistance complex (shelterin complex, prote-
asome complex, ribonucleoprotein complex, etc) in BMRs.33,123,124 

Large-scale transcriptome sequencing studies in BMRs show that 
apoptosis is inhibited and angiogenic factor expression is tightly reg-
ulated in hypoxic environments.25,125

Comparative transcriptomics was used for the first time to ex-
plore the skeletal muscle tissue responses to hypoxic conditions in 
Qinghai voles, Brandt's voles and Kunming mice, and it was found 
that these species use different strategies of O2 transport and en-
ergy metabolism to cope with hypoxic conditions.94 Among them, 
Qinghai voles promotes oxygen transport by increasing hemoglo-
bin synthesis. This species also regulates lipid synthesis, fatty acid 
β-oxidation, hemoglobin synthesis, electron-linked transmission, 
and other biological processes through a combination of genes, 
including Acs16, Gpat4, and Ndufb7, and thereby ensures that the 
energy supply to skeletal muscle tissue remains sufficient under 
low-oxygen conditions.94 Analysis of transcriptomic data from pla-
teau zokors and NMRs focusing on amino acid loci and gene ex-
pression levels revealed the important adaptive evolution in the 
expression of amino acid sites and genes related to O2 transport, 
O2 metabolism, DNA repair and other hypoxia-adapted proteins in 
these two subterranean rats.126 Transcriptome analysis of the brain 
and muscle in BMRs also found significant overexpression of genes 
associated with anti-apoptotic, cancer, embryonic development and 
angiogenesis processes.25 These mechanisms help BMRs to survive 
in subterranean low-O2 environments. In addition, analysis of the 
brain transcriptome of Mandarin voles under hypoxic conditions 
also indicated that the upregulated pathways were mainly those that 
inhibited angiogenesis and responses to external stimuli, while the 
downregulated pathways were related to O2 consumption processes 
such as oxidative phosphorylation and protein secretion, suggesting 
that Mandarin voles have a greater ability to sense and regulate O2.2

4  | ANTI-TUMOR MECHANISMS OF 
SUBTERR ANE AN MAMMAL S

For many mammals, tumors are a major source of death in later 
life.127 Despite the importance of laboratory mice in understand-
ing the mechanisms of carcinogenesis, this model organism for 
cancer susceptibility has failed to provide satisfactory information 
about human cancer prevention mechanisms and treatment strat-
egies (http://www.safer​medic​ines.org/quote​s/cancer.shtm)149. 
Therefore, it would be extremely useful to study animals with nat-
ural anti-cancer abilities as models to find ways to prevent cancer 
before it occurs. Numerous studies have found that subterranean 
mammals such as NMRs and BMRs have anti-cancer abilities.128 
Further research on these mammals may benefit human health if 
these mechanisms can be activated in human cells.

4.1 | Blind mole rats

Due to their long-term subterranean habitat, the BMRs are well 
adapted to anoxic conditions,53 which makes them a hypoxia-tolerant 

http://www.safermedicines.org/quotes/cancer.shtm)149
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model organism.74 Spontaneous cancer has never been observed in 
BMRs.129 The anti-cancer effects of BMRs mainly derive from the 
following adaptations: (1) Expression of p53 target genes in hypoxia-
tolerant subterranean moles is hypoxia dependent and resembles 
the expression pattern in solid tumors.130 Cloning of p53 from BMRs 
reveals exchange of arginine (R) for lysine (K) at codons correspond-
ing to positions 174 and 209 in human for the p53 DNA binding do-
main. These two amino acid changes are identical to known human 
tumor-related mutations.131,132 (2) A unique acetyl heparinase splice 
variant significantly reduces tumor size and metastatic activity.75 (3) 
BMRs have an efficient DNA repair capability and editing mecha-
nism.33,133,134 (4) Compared to mice, BMRs have a more active innate 
immune system and elevated expression of tumor suppressor genes 
associated with the extracellular matrix.129 (5) Normal BMR fibroblasts 
can inhibit growth and kill cancer cells either through direct interaction 
with cancer cells or through soluble factors.128 (6) The somatostatin 
receptor-4 is more highly expressed in BMR tissue129 and can inhibit 
the proliferation of normal or tumor cells.135 These factors may also be 
the adaptive mechanism of BMRs resist cancer development.

4.2 | Naked mole rats

NMRs are remarkable for their longevity and almost complete re-
sistance to cancer.60,136 Hyaluronan and a new glycosaminoglycan 
variant have been identified as key substances in the anticancer 
mechanism of naked mole rats.137,138 The glycosaminoglycan sub-
stance is a high molecular weight hyaluronan (HMW-HA), which 
is 5 times larger than the corresponding variant in mice and hu-
mans.139 HMW-HA accumulates in large quantities in naked mole 
rat tissues due to the reduced activity of hyaluronan degrading en-
zymes and a unique sequence of hyaluronan synthase 2.139 In addi-
tion, 4422 high quality lncRNAs have been successfully identified 
in the NMR genome. The functions of lncRNAs in NMRs were pre-
dicted by co-expression analysis. It was found that about 61.93% 
of lncRNAs in NMRs were highly correlated with the expression of 
oncogenes.140,141 Moreover, the lncRNAs in NMRs may provide a 
natural anti-cancer mechanism by regulating the production of hya-
luronan.141 Although NMRs have a higher mutation rate than mice, 
they are less likely to develop tumors because they are less prone to 
inflammatory responses.142,143 As a tumor suppressor activated by 
carcinogenic stress, ARF is a tumor suppressor gene in NMR, but it is 
inhibited in most mammals.144,145

5  | CONCLUSION AND PROSPEC TS

China has the highest altitude plateau in the world and rich animal 
resources. Thus, it is an ideal area to study the adaptive evolution 
of hypoxic species at different altitudes. A large number of studies 
have been carried out using modern molecular biology methods to 
investigate the physiological and biochemical characteristics and 
molecular mechanisms of hypoxic adaptation in highland species, 

and breakthroughs have been made. These will provide important 
guidelines for the control of highland diseases in human and live-
stock. In addition, mammals living in subterranean caves for long pe-
riods of time may have evolved hypoxic adaptations, and the genetic 
basis and molecular mechanisms of these species have also been 
obtained through systematic analysis. This research will help to ad-
vance our understanding of human hypoxia-like diseases, particu-
larly COVID-19 (a new highly infectious disease caused by Severe 
Acute Respiratory Syndrome coronavirus infection,which can cause 
severe hypoxia in the body24,146). Interestingly, it has been found 
that naked mole rats and blind mole rats, typical hypoxic model ani-
mals, are not only well adapted to the hypoxic environment, but also 
have the ability to resist tumors.128 Their anti-tumor mechanisms 
make these animals ideal model species for human cancer research.

However, the mechanisms of hypoxia adaptation in hypoxia-
tolerant mammals are not yet sufficiently well studied. For example, 
the correlation analysis between the phenotypic, physiological and 
biochemical characteristics of these mammals and their gene evo-
lution and expression are not perfect, and further discovery and 
validation of signaling pathways related to hypoxia adaptation is ur-
gently needed. Studying the molecular mechanisms of adaptation in 
hypoxia-tolerant animals is indeed one of the topical issues in biology 
and medical research. Continuing investigation of the mechanisms 
of hypoxia adaptation in hypoxia-tolerant mammals through a com-
bination of whole genome sequencing, transcriptome sequencing, 
single-cells sequencing and epigenetics may provide a suitable ex-
perimental animal model for the study of human hypoxic diseases.
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