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Recurrent spontaneous abortion (RSA) is a serious pregnancy complication with an
increasing clinical incidence. The various causes of recurrent abortion are complicated.
Developments in genetics, immunology, and cell biology have identified important roles of
non-coding RNAs (ncRNAs) in the occurrence and progress of recurrent abortion. NcRNAs
can affect the growth, migration, and invasion of placental trophoblasts by regulating cell
processes such as the cell cycle, apoptosis, and epithelial-mesenchymal transformation.
Therefore, their abnormal expression might lead to the occurrence and development of
RSA. NcRNAs include small nuclear RNA (snRNA), small nucleolar RNA (snoRNA),
ribosomal RNA (rRNA), transfer, RNA (tRNA), circular RNA (cRNA), and Piwi-interacting
RNA (piRNA). In this review, we discuss recent research that focused on the function and
mechanism of microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNA
(circRNA) in regulating placental trophoblasts. The use of ncRNAs as potential diagnostic
and predictive biomarkers in RSA is also discussed to provide future research insights.
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INTRODUCTION

Recurrent spontaneous abortion (RSA) refers to spontaneous abortion for two or more consecutive
times before 20 weeks of pregnancy (Practice Committee of the American Society for Reproductive
Medicine, 2020). About 5% of women of childbearing age worldwide experience RSA (Garrido-
Gimenez and Alijotas-Reig, 2015). Therefore, determining the etiology, prevention, and treatment
of RSA are vital for human reproductive health and survival. Etiologically, the main known causes
of RSA are anatomical abnormalities (Salim et al., 2003), endocrine diseases (Arredondo and
Noble, 2006), hereditary diseases (Ogasawara et al., 2000), immune diseases (McNamee et al.,
2012), infectious diseases (Kasper et al., 2010), and male factors (Kohn et al., 2016). However, in
about 50% of patients, the etiology remains unknown, and these patients are considered to suffer
from unknown RSA (URSA) (Sugiura-Ogasawara et al., 2014). In the early stages of a normal
pregnancy, the correct execution of the various functions of placental trophoblasts affects the
survival of embryos directly. After placenta implantation, the cytotrophoblast (CTB) differentiates
into the syncytiotrophoblast (STB) and extravillous trophoblasts (EVTs) (Pollheimer et al., 2018).
Subsequently, the EVTs invade the maternal uterus, which allows the placenta to be fixed to the
uterine wall, and results in the maternal spiral artery being reshaped to provide nutrition for the
developing fetus. Errors at any step in this process can lead to placenta-related pathological
pregnancies, including RSA (Wu et al., 2020).
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An RNA that does not encode a protein is termed a non-
coding RNA (ncRNA). NcRNAs include circular RNAs
(circRNAs), long non-coding RNAs (lncRNAs), and
microRNAs (miRNA). Despite not encoding proteins, ncRNAs
perform important biological functions at the RNA level. For
example, they can regulate a variety of important life activities by
participating in chromosome remodeling, gene transcription, and
post-transcriptional modification (Zhu et al., 2021). MicroRNAs
are approximately 20–24 nucleotides in length, and are mainly
involved in post-transcriptional regulation. They completely or
incompletely bind to the 3′ untranslated region (UTR) of the
target mRNA, leading to inhibition of translation or mRNA
degradation (Ambros, 2004; Carthew and Sontheimer, 2009).
LncRNA refers to an RNA that is more than 200 bp long but does
not encode a protein (Mercer et al., 2009; Marchese et al., 2017).
LncRNAs have a variety of important biological functions, in
which they bind directly to specific DNA, RNA, and protein
molecules to affect their transcription, splicing, or translation.
LncRNAs can also recruit RNA and proteins in the cytoplasm or
nucleus to form functional complexes (Quinn and Chang, 2016).
CircRNAs are circular endogenous non-coding RNA molecules
without a 5′ cap and 3′ poly (A) tail that are formed by reverse
splicing (Zhang et al., 2020). Initially, scholars thought that
circRNAs were “junk products” in gene expression; however,
advances in DNA and RNA sequencing technology and the
development of bioinformatic tools have revealed that
circRNAs play important roles in life activities (Hsu and
Coca-Prados, 1979; Kristensen et al., 2018). CircRNAs contain
a variety of miRNA binding sites, allowing them to act miRNA
sponges, by which they act as competing endogenous RNAs
(ceRNAs) to ameliorate the miRNA-induced inhibition of
target genes, thus enhancing their expression level; and by
interacting with disease-related miRNAs, circRNAs play an
important regulatory role in the occurrence and development
of diseases (Hsu and Coca-Prados, 1979; Kristensen et al., 2018).

In this review, we summarize the role and potential
mechanism of ncRNAs in regulating placental trophoblasts,
and discuss the latest information about ncRNAs in patients
with RSA to further understand their role in RSA.

OVERVIEW OF NCRNAS

MicroRNAs
MiRNAs are highly conserved and participate in almost all
pathological and physiological bodily processes, including cell
proliferation, growth, development, differentiation, and
apoptosis (Bartel, 2004). The first miRNA, lin-4, was identified
in 1993 in Caenorhabditis elegans (Lee et al., 1993), which paved
the way for further research into miRNAs. Lin-4 regulates
the expression of lin-14 mRNA negatively by binding to its 3′
UTR, resulting in a decrease in the level of the lin-14 protein. At
the same time, the loss of function caused by lin-4 mutation was
consistent with the effect caused by mutation of the gene
encoding lin-14, which led to a disorder of worm
development. Therefore, it was speculated that lin-4 can
regulate stages of embryonic development (Wightman et al.,

1993). Subsequently, the researchers found a large number of
similar endogenous non-coding, single-stranded RNA, composed
of 19,023 nucleotides, collectively referred to as miRNAs(Dong
et al., 2013). To date, more than 1000 kinds of miRNA have
been found in the human body, representing a class of
powerful gene regulators. MiRNAs can bind to the mRNA of
its target downstream gene and affect the stability and
transcription of the targeted mRNA. In mammals, miRNAs
affect approximately 60% of protein-coding genes (Griffiths-
Jones et al., 2008; Friedman et al., 2009; Kozomara et al., 2019;
Wang et al., 2020).

LncRNAs
LncRNAs are similar to mRNAs in terms of their structure, and
are longer than 200 nt (Schmitt and Chang, 2016; Pan et al.,
2020). LncRNAs have a complex secondary or tertiary structure
and do not show high sequence conservation. LncRNAs can be
transcribed from any part of the genome, similar to mRNA, and
have a 5′ cap structure and a 3′ poly-A tail structure; however,
their coding region is short or non-existent, and they are
expressed at low levels in cells (Derrien et al., 2012; Huarte,
2015). The GENCODE database (version 29) shows that there are
19,940 protein coding genes, 16,066 lncRNA genes, and 29,566
lncRNA transcripts in the human genome, and the number of
identified lncRNA genes is still increasing (Hadjicharalambous
and Lindsay, 2019). In organisms, lncRNAs are expressed widely,
functioning in a variety of vital biological activities, such as
intracellular signal transduction, chromatin modification, and
genomic imprinting (Engreitz et al., 2016).

CircRNAs
CircRNA are connected to the upstream shear acceptor site
through the downstream splicing donor site, and reverse
splicing is carried out to form a covalently closed continuous
loop (Seimiya et al., 2020). CircRNAs in the cytoplasm of
eukaryotic cells were observed using electron microscopy in
1979, and were subsequently found as a pathogenic RNA
infection in higher plants (Hsu and Coca-Prados, 1979).
Initially, circRNAs were believed to be by-products of splicing
(Guo et al., 2014). However, further in-depth study of circRNAs
revealed thousands of them in eukaryotic transcriptomes, such as
those of human, mouse, nematode, and yeast (Wang et al., 2014).
CircRNAs are widely distributed in blood, urine, amniotic fluid,
tissues, and organs (Kirby et al., 2019; Vo et al., 2019). In contrast
to linear RNA, a circRNA is a closed cyclic molecule without a 5′
cap or 3′ poly (A) tail, making them difficult to degrade by RNA
exonuclease and branching enzymes, and providing them with a
relatively long half-life compared with linear RNA (Hanan et al.,
2017). In addition, researchers identified differences in the types
and levels of circRNA expression in different developmental
stages of the same tissues and organs, and among different
tissues and organs (Hanan et al., 2017). The biological
functions of circRNAs have been studied widely. They act as
miRNA sponges to regulate the function of miRNAs(Piwecka
et al., 2017), as transcriptional or translational regulators to affect
protein expression (Memczak et al., 2013; Li C.-H. et al., 2017),
and can interact with proteins to regulate gene expression (Du
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et al., 2017; Dong et al., 2019); surprisingly, some of them also
have the potential to encode proteins (Pamudurti et al., 2017).

EFFECT OF NCRNAS ON THE FUNCTION
OF PLACENTAL TROPHOBLASTS
Overview of Early Placental Development
and Spiral Artery Remodeling
The placenta is an important organ between the fetus and the
mother that plays an important role in the growth and
development of the fetus, such as transporting nutrients and
metabolic wastes, uric acid, urea, and gas exchange. The
placenta also has the biological functions of hormone
secretion (e.g., human chorionic gonadotropin) and immune
defense, which are closely associated with trophoblast cells
(Baines and Renaud, 2017; Chatuphonprasert et al., 2018;
Martínez-Razo et al., 2021). The precursor of all trophoblast
cells is the trophoblast, which forms the outer layer of the
human blastocyst, with fertilization as the time axis. At about
4–5 days after fertilization, the human blastocyst forms and the
trophectoderm is separated from the inner cell mass (Knöfler
et al., 2019). At about 6–7 days after fertilization, the interaction

between the trophectoderm adjacent to the endometrial stroma
and the uterine lumen epithelium leads to implantation, at
which time the first step in placental development begins (Ali
et al., 2020). On the 8th day after fertilization, the
trophectoderm in contact with the uterine epithelium is
transformed into the highly proliferative cytotrophoblast
(CTB) and multinucleated syncytiotrophoblast (STB)
(Pötgens et al., 2002; James et al., 2012; Gamage et al., 2016;
Boss et al., 2018); at about the 10th day of fertilization, the
proliferated CTBs pass through the expanding STBs, resulting in
the formation of villi (Prakobphol et al., 2006). At about the 15th
day after fertilization, the distal STBs continue to expand to
form a trophoblast shell, i.e., anchored villi (Vicovac et al., 1995;
Burton and Jauniaux, 2017). Some CTBs anchor the tip of the
villi to destroy the covering layer of STBs, invade the uterine
stroma, and are transformed into extravillous trophoblasts
(EVTs) (Adu-Gyamfi et al., 2020). On the 16th day after
pregnancy, two different EVTs appear, i.e., once the detached
CTBs come into contact with the decidual extracellular matrix,
they differentiate into interstitial extravillous trophoblast cells
(iEVTs) (Kemp et al., 2002), which reach the vascular lumen and
differentiate into intravascular extravillous trophoblast cells
(enEVTs) (Anin et al., 2004; Espinoza et al., 2006). The

FIGURE 1 | Maternal-fetal boundary in early pregnancy. EnEVT, intravascular extravillous trophoblast; iEVT, interstitial extravillous trophoblast; CTB,
cytotrophoblast; STB, syncytiotrophoblast.
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invasion and migration of EVTs to the maternal spiral artery is
another key step in the development of the human placenta,
namely spiral artery remodeling (Lyall et al., 2001; Pijnenborg
et al., 2006). In early pregnancy, natural killer cells and
macrophages surround the spiral artery, while iEVTs are
recruited by natural killer cells and macrophages to replace
vascular endothelial cells in the spiral artery to initiate the
remodeling process (Smith et al., 2009; Wallace et al., 2012)
(Figure 1). Understanding the mechanism of ncRNA regulation
of abnormal trophoblast function might help to find new
treatments for placenta-derived diseases. Below we summarize
the role of microRNAs, long non-coding RNAs (lncRNAs), and
circular RNAs (circRNAs) in regulating placental trophoblasts and
their potential mechanisms (Table 1).

Trophoblast Proliferation and Apoptosis
Trophoblast proliferation is a key factor in the normal growth of
the placenta. Studies have found that many ncRNAs regulate the
proliferation of trophoblasts. For example (Teng et al.,
2020),showed that long non-coding RNA nucleus-rich
transcript 1 (NEAT1) could inhibit trophoblast proliferation in
preeclampsia rats through the microRNA-373/Fms related
receptor tyrosine kinase 1 (FLT1) axis. Arthurs et al. (Arthurs
et al., 2019) pointed out that microRNA mimics targeting
the placental renin-angiotensin system could inhibit the
proliferation of trophoblast cells (Zhou et al., 2019).found that
downregulating the expression of circPAPPA inhibited

trophoblast invasion and proliferation through miR-384/signal
transducer and activator of transcription 3 (STAT3) pathway.

Trophoblast apoptosis is another key factor in normal
placental development. In placental diseases such as
preeclampsia (PE) and intrauterine growth restriction (IUGR),
an increase in trophoblast apoptosis is the significant
pathophysiological feature (Zha et al., 2020). hypothesized that
trophoblasts’ biological functions are regulated by let-7a;
therefore, they investigated its mechanism in the progress of
early-onset severe PE. This led to the identification of the
presumptive target genes of let-7a, BCL2L1 (encoding BCL2
like 1, also known as BCL-XL) and YAP1 (encoding Yes1
associated transcriptional regulator). It was found that let-7a
could inhibit BCL2L1 and YAP1 expression in trophoblasts
(Tao et al., 2020).studied the induction of apoptosis of
trophoblasts in early-onset severe PE, and found that miR-
124–3p promoted trophoblast apoptosis by targeting placental
growth factor. In women suffering from gestational diabetes
mellitus, Ji et al. (Ji et al., 2020) detected miR-193b expression,
and then simulated the diabetic environment in vitro by culturing
human trophoblasts in high glucose medium. They then
investigated the effects of miR-193b on apoptosis and
autophagy in the simulated diabetic environment. The results
showed that miR-193b inhibited the apoptosis and autophagy of
diabetic trophoblasts by targeting IGFBP5 (encoding insulin like
growth factor binding protein 5) (Zhang WM. et al., 2019).
showed that miR-133 participates in the development and

TABLE 1 | Effect of ncRNAs on the function of placental trophoblasts.

NcRNA The function of trophoblast References

lncRNA NEAT1 Overexpression of NEAT1 inhibits the proliferation, migration, invasion, and
colony formation of trophoblast cells, and promotes apoptosis

Teng et al. (2020)

miR-181a-5p, miR-378, miR-663, miR-483-3p, miR-514, miR-
181a-3, miR-892, miR-34c, and miR-454

Affect the proliferation of trophoblast cells Arthurs et al. (2019)

circPAPPA Knockout of circPAPPA results in reduced proliferation and invasion of HTR8-
S/Vneo trophoblast cells

Zhou et al. (2019)

MicroRNALet-7a Inhibition of tumorigenicity and enhancement of apoptosis of JEG-3 cells Zha et al. (2020)
MiR-124–3p Inhibits the invasion and migration of trophoblast cells and promotes apoptosis

partly through the PLGF-ROS pathway
Tao et al. (2020)

MiR-193b Targets IGFBP5 to inhibit autophagy and apoptosis of trophoblasts induced by
high glucose

Ji et al. (2020)

miR-133 Affects the apoptosis of trophoblasts in placental tissue Zhang WM et al.,
2019

MiR-125b Targets MCL1 to induce apoptosis of HTR8/SVneo cells Gu et al. (2019)
MiR-200c Regulation of placental trophoblast apoptosis in rats with preeclampsia Zhang X. et al.

(2019)
MiR-183 Inhibition of trophoblast migration and invasion Lai and Yu. (2020)
MiR-125b Regulation of migration and invasion of extravillous trophoblast cells Tang et al. (2021)
MiR-215–5p Reduces the ability of trophoblast to migrate and invade Yang and Meng.

(2020)
miR-181b-5p Regulation of trophoblast migration and invasion Miao et al. (2020)
MiR-384 Regulation of proliferation and migration of trophoblast cells Zhou et al. (2020)
MicroRNA-125b Inhibits the invasion of cytotrophoblasts and damages endothelial cell function Li Q et al. (2020)
miRNA-29b Inhibit the growth and migration of trophoblasts Sun et al. (2020)
LncRNA HOTAIR Inhibits trophoblast proliferation, migration and invasion Zhao et al. (2020)
CircTRNC18 Inhibition of trophoblast cell migration and epithelial-mesenchymal

transformation
Shen et al. (2019)

lncRNA H19 Regulation of angiogenesis of EVTs Zeng et al. (2020)
lncRNA TUG1 Promotes trophoblast proliferation, invasion, and angiogenesis, and inhibits

apoptosis
Li et al. (2019)
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process of PE through the Rhodopsin/Rho associated coiled-coil
containing protein kinase 1 (ROCK) signaling pathway, which
might affect the apoptosis of trophoblasts in placental tissue (Gu
et al., 2019).determined the apoptotic effects of miR-125b on
HTR-8/SVneo cells in vitro. The results showed that in HTR-8/
SVneo cells, the expression and translation of the mRNA of miR-
125b’s target geneMCL1 (encoding myeloid cell leukemia 1) were
inhibited. In addition, overexpression of miR-125b induced
trophoblast cell apoptosis in HTR-8/SVneo cell (Zhang X.
et al., 2019). found that in preeclampsia rats, placental
trophoblast apoptosis was regulated by miR-200c via the Wnt/
β-catenin signal pathway.

Through abundant in vitro and in vivo experiments,
researchers have identified the regulatory mechanisms of
ncRNAs, on trophoblast proliferation and apoptosis during
embryonic development, and confirmed that ncRNAs play an
important role in regulating trophoblast proliferation and
apoptosis.

Epithelial to Mesenchyme transition(EMT),
Invasion, and Metastasis
EMT refers to the loss of cell junction and polarity of epithelial
cells, which then acquire the phenotypic characteristics of stromal
cells, such as decreased adhesion and enhanced migration ability
(Horikawa et al., 2017). EVT cell migration and invasion of the
decidua and myometrium is an indispensable event in a series of
processes from embryo implantation to development. First, at the
maternal-fetal interface, mature blastocysts will adhere to
decidual tissue, and EVTs will undergo EMT and then invade
the endometrial matrix, finally completing embryo implantation
(Shu et al., 2020). Then, during implantation and placental
development, EVTs, which invade the endometrium, begin to
reshape the uterine spiral artery and promote the formation of the
blood vessels of the placental bed and the development of the
embryo (Pijnenborg et al., 1983; Hustin et al., 1990; Romero et al.,
2011; Liu H.-N. et al., 2020). Notably, trophoblast migration and
invasion are regulated by ncRNAs (Lai and Yu, 2020). found that
increased miR-183 expression could impair the migration and
invasiveness of trophoblasts by downregulating the expression of
FOXP1 (Forkhead box P1) and GNG7 (G protein subunit gamma
7) during preeclampsia (Tang et al., 2021). showed that miR-125b
could regulate the migration and invasion of extravillous
trophoblast cells through the STAT3 signaling pathway and
participate in the occurrence of PE (Yang and Meng, 2020).
compared the expression level of miR-215–5p and the assumed
target gene CDC6 (cell division cycle 6) in the placenta of 30
patients with PE and 30 women with normal pregnancies. MiR-
215–5p inhibited trophoblast migration and invasion by
regulating CDC6 in PE (Miao et al., 2020). found that
trophoblast migration and invasion was inhibited in many
abnormal events related to trophoblast invasion via miR-181b-
5p targeting S1PR1 (sphingosine-1-phosphate receptor 1) (Zhou
et al., 2020). showed that trophoblast proliferation and migration
was inhibited by miR-384 targeting of PTBP3 (polypyrimidine
tract binding protein 3) (Li C. et al., 2020).analyzed PE-associated
miRNA expression patterns in plasma and identified disordered

expression of 16 miRNA in patients with PE. In PE, the
expression of hsa-miR-125b in circulation was upregulated
abnormally during early pregnancy, but decreased significantly
after delivery. The underlying mechanism was discovered to be
miR-125b targeting of KCNA1 (potassium voltage-gated channel
subfamily A member 1), which inhibited human trophoblast
invasion. In addition downregulation of miRNA-29b in the
placenta was observed during gestational diabetes, which
might change placental development by regulating trophoblast
migration and invasion (Sun et al., 2020). Zhao et al. (Zhao et al.,
2020) found that high levels of lncRNA HOTAIR inhibited the
proliferation, migration, and invasion of trophoblasts by targeting
miR-106 in an enhancer of zeste 2 polycomb repressive complex 2
subunit (EZH2)-dependent manner. In addition (Shen et al.,
2019), showed that CircTRNC18 inhibits trophoblast cell
migration and epithelial-mesenchymal transformation by
regulating the miR-762/grainyhead like transcription factor 2
(GRHL2) pathway of preeclampsia.

Thus, we concluded that ncRNAs can affect trophoblast cell
migration and invasion through various signaling pathways, thus
participating in the occurrence and development of placental
abnormality-related diseases.

Placental Angiogenesis
Adequate blood vessels at the fetal-maternal interface facilitate
the transport of nutrients and oxygen from the mother to the
embryo, thus ensuring the establishment and maintenance of
early pregnancy (Torry et al., 2007). Many studies have shown
that abnormal angiogenesis at the maternal-fetal interface might
lead to pregnancy complications such as RSA (Banerjee et al.,
2013; Ishii et al., 2014). There is limited direct evidence of the
involvement of ncRNAs in placental vascular and spiral artery
remodeling; however, some scholars have suggested that ncRNAs
might regulate placental angiogenesis. For example, researchers
examined the clinical samples of pregnant patients (Zeng et al.,
2020) and found that lncRNA H19 was highly expressed in
human trophoblasts of early pregnancy, and could regulate the
angiogenic ability of extravillous trophoblasts through the H19/
miR-106a-5p/vascular endothelial growth factor A (VEGFA) axis
(Li et al., 2019). found that lncRNA TUG1 could target miR-29b
to regulate angiogenesis, invasion, apoptosis, and proliferation of
trophoblast cells. In addition (Hu and Zhang, 2019), outlined how
the abnormal expression of miRNAs in PE and IUGR affects
trophoblast infiltration and uterine placental vascular adaptation
gene expression; therefore, that article will not be described in
detail.

NCRNAS AND RSA

Overview of RSA
In the past, three or more consecutive miscarriages in a couple
before 20 weeks of pregnancy were considered as RSA (Regan,
1991; Kolte et al., 2015). Studies have shown that women who
have two consecutive miscarriages are more than 50% likely to
have another miscarriage; therefore, some scholars believe that
two consecutive abortions can be defined as recurrent abortion
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(Practice Committee of the American Society for Reproductive
Medicine 2012). Generally, RSA has an incidence of about 5%;
however, the incidence is increasing (Garrido-Gimenez and
Alijotas-Reig, 2015). The etiology of more than half of the
cases of RSA is still unexplained (Sugiura-Ogasawara et al., 2014).

Below we briefly describe a number of studies of ncRNAs in
RSA (Figure 2 and Table 2).

MiRNAs and RSA
Previously, researchers pointed out that the expression profile of
miRNAs in chorionic villi might be related to RSA (Tang et al.,
2016). The expression of miR-93 in clinical samples was
significantly increased in the chorionic villi of patients with
RSA. The upregulation of miR-93 inhibited the proliferation,
migration and invasiveness of human trophoblast HTR-8/SVneo
cells, and promoted apoptosis in vitro. By contrast, the
downregulation of miR-93 reversed these effects (Liu H.-N.

et al., 2020). (Tian et al., 2020) investigated the potential
regulatory relationship of PTEN (phosphatase and tensin
homolog) and miRNAs in the placental villi of patients with
RSA. The results showed that the overexpression of PTEN plays
an important role in the pathogenesis of RSA, and the synergistic
effect of miR-19b and miR-494 regulates PTEN directly. These
ncRNAs are involved in the abnormal role of villi (Ding et al.,
2019). analyzed the expression of USP25 (ubiquitin specific
peptidase 25) in the placental villi of patients with RSA, and
then evaluated the role of USP25 in the invasion and migration of
trophoblast EMT. In addition, the effects of miRNAs on USP25
expression were explored using luciferase reporter gene analysis
and bioinformatic prediction. In trophoblasts, USP25 expression
was evaluated after transfection with microRNA mimics or
inhibitors. The miR-27a-3p/USP25 axis was observed to
inhibit trophoblast migration and invasion in the pathogenesis
of RSA (Zhao et al., 2017). pointed out a newmechanism whereby

FIGURE 2 | NcRNA regulate placental trophoblast function and participate in recurrent abortion.

TABLE 2 | NcRNAs related to the pathogenesis of RSA.

NcRNA Expression in RSA Model (in vivo,
in vitro, human)

Regulation of trophoblast References

MiR-93 Upregulation In vitro, human Proliferation, migration, invasion and apoptosis Liu X. et al. (2020)
miR-19b Upregulation In vitro, human Apoptosis Tian et al. (2020)
miR-494 Downregulation
miR-27a-3p Upregulation In vitro, human EMT, migration and invasion Ding et al. (2019)
miRNA-365 Upregulation In vitro, human Apoptosis Zhao et al. (2017)
miR-520 Upregulation In vitro, human Apoptosis Dong et al. (2017)
MicroRNA-16 Upregulation In vivo, in vitro, human Angiogenesis Zhu et al. (2016)
lncRNA PVT1 Downregulation In vitro, human Proliferation, migration, invasion and apoptosis Yang et al. (2020)
lncRNA MALAT1 Downregulation In vitro, human Proliferation, migration, invasion, apoptosis and

angiogenesis
Wang et al. (2019), Wang et al. (2018)

lncRNA SNHG7-1 Downregulation In vitro, human Proliferation, migration, invasion and apoptosis Xiang et al. (2019)
circ-ZUFSP Downregulation In vivo and in vitro Migrate and invade Li Z. et al. (2020)
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miRNA-365 regulates trophoblast apoptosis in RSA. Another
studies showed that miR-520 can promote trophoblast apoptosis
induced by DNA damage by targeting PARP1 (poly (ADP-ribose)
polymerase 1), thus participating in the occurrence and
development of RSA (Dong et al., 2017). In addition, miR-16
regulates placental angiogenesis and development by targeting
the expression of vascular endothelial growth factor (VEGF), and
participates in the pathogenesis of RSA (Zhu et al., 2016). (Wang
et al., 2016)determined the miRNA expression profile in the
decidua or villi using deep sequencing analysis, which
indicated that the pathogenic process of RSA might be related
to changes in the miRNA expression profile in the decidua
and villi.

LncRNAs and RSA
LncRNAs have been noted as important regulators of a variety of
cellular processes, including pregnancy (Kung et al., 2013;
Bouckenheimer et al., 2016). Previously, researchers identified
1449 differentially expressed lncRNAs from chorionic villi of
patients with recurrent miscarriage (RM) patients, providing
evidence that lncRNAs could participate in the physiological
and pathogenic pathways of human RM(Wang et al., 2017).
Yang et al. (Yang et al., 2020) studied the transcriptional
regulation of lncRNA PVT1 and its effects on the biological
behavior of trophoblasts, which might be related to the
pathogenesis of RSA. A study (Wang et al., 2019)found that
the levels of NEAT1 and metastasis associated lung
adenocarcinoma transcript 1 (MALAT1) in tissue samples of
patients with RSA were significantly decreased, and knockdown
of theMALAT1 gene could lead to a decrease in proliferation and
an increase in apoptosis of trophoblasts and primary chorionic
trophoblasts.

LncRNAs can regulate the transcription and expression of
downstream genes by targeting miRNAs, thus promoting disease
development (Li Z. et al., 2017; Ling et al., 2017). For example, the
level of MALAT1 in chorionic villi of 36 patients with RSA
decreased, and it was found that MALAT1 interacts directly
with an miRNA (Wang et al., 2018). Subsequent functional
experiments showed that MALAT1 regulates cell invasion,
migration, apoptosis, and proliferation through direct
interactions with miR-375, miR-205, miR-15, and miR-383,
which might lead to the pathogenesis of RSA. Xiang et al.
(Xiang et al., 2019) found that the level of SNHG7 (small
nucleolar RNA host gene 7) in RSA villi decreased, and it
could cause RSA by regulating miR-34a to inhibit the
proliferation and invasion of trophoblast cells.

CircRNAs and RSA
To date, there have been few studies on circRNAs and RSA. Li
et al. found that compared with women with normal
pregnancies, 123 differentially expressed circRNAs were
found in patients with early RSA, including 78 upregulated
and 45 downregulated circRNAs (Li Q. et al., 2020). Another
study investigated the effects of circ-ZUFSP on trophoblast
function by overexpressing and downregulating circ-ZUFSP
in vitro, which demonstrated the molecular mechanism of
circ-ZUFSP regulation of trophoblast migration and invasion,

and provided new indicators to diagnose and treat RSA (Li Z.
et al., 2020).

NcRNAs AS DIAGNOSTIC BIOMARKERS
AND POTENTIAL THERAPEUTIC TARGETS
FOR RSA
Disease biomarkers should be highly specific and sensitive, exist
stably in the circulatory system, and their acquisition should be
inexpensive and fast. At present, few molecules meet these
criteria. The clinical prediction of RSA is limited to low-
specificity biomarkers, such as antiphospholipid antibodies
(Balasch et al., 1996) and progesterone (Jordan et al., 1994).
The circulatory system is rich in ncRNAs, such as miRNA,
lncRNA, and cirRNA, which are either secreted actively as
acellular circulating RNA or are released passively released
from tissue or via cell injury. The ncRNAs in these circulatory
systems are quite unstable, so they usually bind to lipoproteins or
are wrapped by exocrine bodies to avoid denaturation (Barth
et al., 2020). Increasing evidence shows that ncRNA, such as
miRNAs, lncRNAs, and circRNAs in the circulatory system of
patients with RSA are promising biomarkers for early diagnosis
and treatment. Moreover, circulating ncRNAs might also play an
important role in the development and pathogenesis of RSA.
Consequently, identifying and evaluating potential circulating
biomarkers for RSA will contribute to the diagnosis and
prevention of RSA. In this review, we summarized several
studies on the potential role of ncRNAs as a plasma and
serum biomarkers of RSA.

As mentioned earlier, ncRNAs play an important role in the
occurrence and development of RSA (such as trophoblast
proliferation and apoptosis, EMT, invasion and metastasis, and
placental angiogenesis). Therefore, ncRNAs could be regarded as
diagnostic markers and therapeutic targets for RSA. In different
diseases, ncRNAs can be detected in the tissue, blood, and urine of
patients, and their levels plays an important role in the early
diagnosis and late prognosis of the disease (Adachi et al., 2010;
Zhang et al., 2010). Notably, miRNAs usually exists in peripheral
blood in a more stable form than traditional biomarkers
(Vasilescu et al., 2009; Wang et al., 2010). LncRNAs are
relatively more resistant to endogenous ribonucleases, which
makes them more stable in the blood (Tong et al., 2015). In
addition, the high abundance, diversity, structural stability, and
tissue specificity of circRNAs also make them more persistent in
the circulatory system or body fluids (Memczak et al., 2013;
Salzman et al., 2013). Therefore, ncRNAs are generally more
stable and representative than traditional biomarkers. Based on
this characteristic, ncRNAs might emerge as ideal diagnostic
clinical biomarkers and therapeutic targets in RSA. Qin et al.
(Qin et al., 2016) used gene microarrays and real-time
quantitative reverse transcriptase polymerase chain reaction
(qRT-PCR) to analyze the difference in miRNA expression
between plasma samples from patients with RSA and
from women with normal pregnancy (NP), and found that
four circulating miRNA (miR-320b, miR-146b-5p, miR-
221–3p, miR-559) were upregulated and one circulating
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miRNA (miR-101–3p) was downregulated. This suggested that
circulating miRNAs might be involved in the pathogenesis of
RSA and could become new biomarkers for RSA diagnosis.
Coincidentally, some researchers (Yang et al., 2018)verified the
expression of miRNAs (miR-23a-3p, 27a-3p, 29a-3p, 100–5p,
127–3p, and 486–5p) in the peripheral plasma and serum of
women with RSA and NPs using qRT-PCR. The results showed
that compared with those in women with NPs, the levels of miR-
127–3p, miR-100–5p, miR-29a-3p, and miR-27a-3p, and in the
peripheral blood plasma of women with RSA were significantly
higher. The level of miR-486–5p in plasma decreased
significantly. In contrast, serum miR-23a-3p and miR-127–3p
decreased significantly, while serum miR-486–5p increased
significantly. This suggested that circulating levels of these
miRNAs might be associated with the pathogenesis of RSA
and could represent diagnostic biomarkers for RSA. At the
same time, the authors found that in recurrent abortion, the
levels of miR-127–3p and miR-486–5p in plasma correlated
negatively with the levels of miR-127–3p and miR-486–5p in
serum, and speculated that this phenomenon was caused by the
different sources of these miRNAs. However, we disagree with
this speculation and think that phenomenon is more likely to be
caused by individual differences; therefore at present, more
research is required to investigate the role of miRNAs as
biomarkers of the increased risk of recurrent spontaneous
abortion. In conclusion, miRNAs in circulation as biomarkers
of the increased risk of recurrent abortion have a good prospect
and clinical value; however, more clinical evidence is needed to
support their clinical use.

Restrictions on the use of Non-coding RNA
in Clinic
Although research into non-coding RNAs has become a hot
topic, it is still a long way from clinical application. Currently,
the main limitations for clinical use of non-coding RNA are as
follows: 1) ncRNAs are often dynamic in the circulatory system,
and the samples collected from patients in a certain period of
time only represent the expression status at that time (May
et al., 2021). Therefore, continuous dynamic and standardized
monitoring is essential if ncRNAs are to be used as biomarkers
of increased risk of RSA; however, this will lead to an increase in
the cost of treatment. 2) Most of studies of RSA and ncRNAs
are still at the stage of in vitro and animal experiments;
therefore, it is difficult to know whether ncRNAs will cause
changes in the expression of other genes when used as a
targeted therapy, which needs more clinical experimental
evidence. 3) The use of RNA to treat diseases often requires
a suitable vector transport. Currently, the most commonly used
vectors are recombinant viruses (such as adenoviruses and
lentiviruses); however, the use of viruses as vectors might
lead to the risk of infection in other organs and could
trigger immune responses in the body (Dong et al., 2021).
The arrival of the CRISPR/Cas9 system hold promise for
ncRNA therapy; however, because of potential off-target

effects and ethical restrictions that might apply to gene
editing technology, further research and exploration are
needed to put it into clinical use (Luo et al., 2021). 4)
Clinical treatment requires high purity, high stability, and
high bioactivity of ncRNA. At present, the main method of
RNA synthesis is chemical synthesis, and the purification
method is mainly high performance liquid chromatography;
however, highly pure and bioactive ncRNA would induce
higher costs, which will obviously increase the financial
burden on patients. Therefore, it is very important to
develop more effective and economical methods for RNA
synthesis and purification (Baptista et al., 2021).

CONCLUSION

The present review summarized the latest advances in the
role, potential clinical application, and potential molecular
mechanisms of ncRNAs related to the occurrence and
development of RSA. The incidence of RSA in women of
childbearing age is increasing, which seriously affects their
quality of life and the health of mothers and infants. In
addition, it has an impact on parents’ mental health, and
might even hinder the reproduction of the whole human
population. Therefore, how to improve the pregnancy
success rate of patients with RSA has been the focus of
clinical research. Intensive research has identified novel
molecules, such as immune factors, which have improved
the diagnosis, prevention, and treatment of this disease.
Recent research has partially clarified the contribution
and mechanism of ncRNAs in RSA. However, we still lack
a comprehensive understanding of the process, and many
issues remain to be discussed. Thus, their inclusion in
medical guidelines is still a long way off. Therefore, we
suggest that researchers study larger population samples
to obtain sufficient evidence-based medicine to prove that
ncRNAs are clinically applicable in to diagnose and treat
disease of early pregnancy, such as RSA.
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