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Abstract

We derived analytically and checked numerically a set of novel conditions for the existence

and the stability of phase-locked modes in a biologically relevant master-slave neural net-

work with a dynamic feedback loop. Since neural oscillators even in the three-neuron net-

work investigated here receive multiple inputs per cycle, we generalized the concept of

phase resetting to accommodate multiple inputs per cycle. We proved that the phase reset-

ting produced by two or more stimuli per cycle can be recursively computed from the tradi-

tional, single stimulus, phase resetting. We applied the newly derived generalized phase

resetting definition to predicting the relative phase and the stability of a phase-locked mode

that was experimentally observed in this type of master-slave network with a dynamic loop

network.

1 Introduction

Oscillatory neural activity is ubiquitous and covers a wide spatial and temporal scale from sin-

gle neural cells to whole brain regions and from milliseconds to days. Neural oscillations are

believed to be relevant for a wide range of brain activities from sensory information processing

to consciousness [1]. It is believed that the phase of low frequency theta oscillations (4-8 Hz)

drives the pyramidal cells and is used for information processing in the hippocampus [2–4].

Visual stimuli binding is believed to be related to the phase resetting of the fast frequency

gamma band (30-70 Hz) [5]. Positive phase correlations between the theta rhythm and the

amplitude of gamma oscillations were found during visual stimuli processing and learning [1,

6, 7] and during fear-related information processing [8, 9]. Theta rhythm resetting also drives

cognitive processes [10]. Theoretical studies suggested that phase resetting could explain

cross-frequency phase-locking of gamma rhythm within a theta cycle [11], which is the hall-

mark of successful memory retrieval [12, 13]. The phase of neural oscillations is also used to

bridge a much wider frequency range from slow theta rhythms of large neural networks, such

as those in the hippocampus, up to the individual fast spiking neurons used for speech decod-

ing [14]. It was found that speech resets background (rest) oscillatory activity in specific fre-

quency domains corresponding to the sampling rates optimal for phonemic and syllabic

sampling [14, 15]. Phase resetting is also critical in the functioning of suprachiasmatic nucleus

that produces a stable circadian oscillation by light-induced resetting of endogeneous rhythm
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[16, 17]. It was also shown that single sensory stimulus [18, 19] and periodic train of inputs

[20, 21] induce phase resetting in electroencephalograms, which manifest as event-related

evoked potentials.

Most of neurobiologically inspired interval timing theories assume that neural oscillators

and their relative phases could be used as internal clocks for biological rhythms [22]. It was

experimentally and computationally found that noisy neural oscillators could produce accu-

rate timing that also obeys scalar property, i.e. the temporal estimation error increases propor-

tionally with the duration [23–25]. The attention mechanism phase resets neural oscillators

and can produce either a stop or a delay in conditioned stimuli timing with intrudes such as

gaps [26] or fear stimuli [27].

Recent optogentic experiments shown that the steady gamma rhythm of medial prefrontal

cortex can be reset and entrained by light stimuli and modulated by amphetamines [28]. Delay

embedding reconstruction of the phase space gave a low dimensional attractor suggesting a

phase coupled model of medial prefrontal cortex that is reset by light stimuli [29].

Unidirectional coupling between neural oscillators, i.e. a master-slave system, suggests the

simplest possible synchronization mechanism that uses phase resetting to drive a neural popu-

lation to a desired phase-locked firing pattern. Phase resetting methodology has been success-

fully used for predicting one-to-one entrainment in networks where the receiving population

always follows the driving population [30–32]. It was recently shown that unidirectional cou-

pling also allows for “anticipated synchronization” [33] in which the receiving population

anticipates the states of the driving population [34]. It has been analytically proven and numer-

ically verified that time-delayed feedback can force coupled dynamical systems onto a synchro-

nization manifold that involves the future state of the drive system, i.e. “anticipating

synchronization” [33]. Such a result is counterintuitive since the future evolution of the drive

system is anticipated by the response system despite the unidirectional coupling. It has been

suggested that delayed coupling in dynamical systems separated by some distance can still pro-

mote synchronization despite the slow signal transmission and the unidirectional coupling.

The first anticipating synchronization study of excitable systems was done by Ciszak et al [35],

followed by more recent behavioral-related investigations [36, 37]. Synaptic delay and synaptic

plasticity was recently extensively investigated as potential control parameters that can lead to

tunable delayed and anticipating synchronization in neural networks [38–40].

We investigated analytically and numerically a three-neuron master-slave system with a

dynamic inhibitory loop that was previously shown experimentally to exhibit anticipating syn-

chronization [41, 42]. The three-neuron network investigated here was shown to produce both

delayed synchronization, in which pre-synaptic neuron fires a spike before post-synaptic neu-

ron, and anticipating synchronization. It was argued that the delayed synchronization is a pos-

sible mechanism for spike-timing dependent plasticity [40], whereas anticipating

synchronization could contribute to long term depression of synaptic couplings [40–42]. This

study focuses on deriving analytic criteria for the existence and the stability of phase-locked

modes in a three-neuron network that was found to generate both delayed and anticipated

synchronization. For this purpose, we used the method of phase response curve (PRC) [32,

43–50]. The novelties of this study are (1) the generalization of PRC to multiple inputs per

cycle and (2) the prediction of phase-locked modes in a neural network that is no longer lim-

ited to one-to-one firing patterns.

2 Phase response curve method

The phase response curve (PRC) method has been extensively used for predicting phase-

locked modes in neural networks [51–54]. It assumes that the only effect of a stimulus is to
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reset the phase of the ongoing oscillation of a neuron. Traditionally, the PRC tabulates the

transient change in the firing frequency of a neural oscillator in response to one external stim-

ulus per cycle of oscillation. The term PRC has been used almost exclusively in regard to a sin-

gle stimulus per cycle of neural oscillators. Recently, we suggested a generalization of the PRC

that allowed us to account for the overall resetting when two or more inputs are delivered dur-

ing the same cycle [55]. As a result, we expanded the PRC theory from the prediction of the

traditional one-to-one phase-locked modes to arbitrary phase-locked firing patterns. Here we

present the first quantitative application of such generalized PRC approach to a realistic neural

network with a dynamic feedback loop.

In the case of a single stimulus, the PRC measures the change of the free running period Pi

of a neural oscillator to a new value P1 (see Fig 1A). The stimulus time ts is measured from an

arbitrary phase reference φ = 0. In our numerical simulations, the phase reference was the zero

crossing of the membrane potential with a positive slope. The relative change in the duration

of the current cycle, i.e. the cycle that contains the perturbation, with respect to the unper-

turbed duration Pi determines the first order PRC in response to a single stimulus (for detailed

mathematical definitions see Appendix 1). As a result of the perturbation, the new firing

period becomes P1 = Pi(1 + F(1)(φ)), where F(1) represents the relative shortening/lengthening

of the intrinsic firing period Pi due to the stimulus applied at phase φ = ts/Pi [47, 48, 50].

A saddle-node bifurcation, which presents a continuous frequency versus bias current (f-I)

curve that extends to arbitrarily low frequencies (see solid circles in Fig 1B) usually leads to a

type 1 PRC that looks unimodal as in Fig 1C (although for counterexamples see [49, 56]). Fig

1C shows a typical type 1 PRC in response to a brief excitatory current perturbation that pro-

duces only phase advances (period shortening), i.e. negative resettings. A type 1 PRC looks

unimodal and is often associated with a class I excitable cell, i.e. a cell that can produce stable

oscillatory activity with arbitrarily low frequency [57, 58]. Usually, such excitable cells produce

stable oscillations via a saddle node bifurcation on an invariant circle [59]. A type 2 PRC looks

bimodal (see Fig 1D) and is often associated with a class II excitable cell [57, 58]. Class II oscil-

lations usually emerge through a Hopf bifurcation [59] (see Fig 1B). As a side note, it was

recently shown that type 1 (unimodal) PRCs do not always come from a class I excitable cell

[56] and in fact all PRCs are bimodal with varying degrees [49, 50].

Close to the bifurcation point, accurate analytical formulas called normal forms describe

the PRCs (see [57] and Appendix 1 for mathematical details), which we used in this study to

get some analytical insights into the general behavior of the three-neuron network with a

dynamic loop shown in Fig 1E.

The key assumption in generalizing the PRC method to multiple inputs per cycle was that

the resetting induced by one stimulus takes effect “almost” instantaneously, i.e. before the

arrival of the next stimulus [55]. Therefore, the effects of two stimuli applied during the same

cycle are independent of each other. As a result, we used the single stimulus PRCs (F(1)) shown

in Fig 1C and 1D to compute the phase resetting in response to two or more stimuli (see

Appendix 1 for the detailed mathematical derivation of F(2) and its generalization). Briefly, the

first stimulus delivered at stimulus phase φa = tsa/Pi produces a transient change in the firing

period to Pa = Pi(1 + F(1)(φa)). The second stimulus that arrives at a stimulus phase φb = tsb/Pa

> φa further changes the firing period to Pb = Pa(1 + F(1)(φb)) (see Appendix 1). Combining

the above effects of the two stimuli applied at phases φa and φb, the new firing period Pb

becomes Pb = Pi(1 + F(2)(φa, φb)) (see Appendix 1 for a detailed mathematical derivation).

A typical two stimuli protocol (see Fig 2A) and the corresponding phase resetting F(2) are

shown in Fig 2B, where the three-dimensional surface is given by Eq (22) in Appendix 1 and a

two-dimensional contour plot also shows the contours of equal phase resetting. For this plot

we used the analytical normal form of the PRC (see Eq (17) in Appendix 1) where P2i = 70 ms

Generalized phase resetting and phase-locked modes prediction
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and the coupling strengths from neuron 1 to neuron 2 was g12 = 0.015 (excitatory) and from

neuron 3 to neuron 2 was g32 = 0.002 (inhibitory) (see section 3 for a detailed description of

the neural model and the synaptic couplings).

3 The neural model

In their seminal work on giant squid axon, Hodgkin and Huxley [60–64] experimentally iden-

tified three classes, or types, of axonal excitability: class I, where the repetitive firing is

Fig 1. Typical PRCs for different classes of excitable cells. (A) The free running neural oscillator (continuous line) with an intrinsic period Pi is perturbed at

stimulus time ts by a brief current pulse (see shaded rectangle). As a result, the membrane potential is perturbed (dashed line) and the period of oscillation is

transiently modified to P1, which induces a phase shift of all subsequent spikes. The time it takes a neuron to recover from a stimulus until it reaches the

arbitrary zero phase reference again is called recovery time tr. Higher order PRCs measure the relative change in the firing period of the second and

subsequent cycles (not shown). (B) Class I excitable cells can fire with arbitrarily low frequency by adjusting a bias current (solid circles), whereas class II

excitable cells can only start firing at a minimum frequency (solid squares). The experimentally observed class I/class II distinction between neural oscillators

translates in an (almost) one-to-one correspondence in type 1 (unimodal) PRCs (C) and, respectively, type 2 (bimodal) PRCs (D). The vertical arrow indicates

a stimulus delivered at phase φ� 0.2 that produces a 5% shortening of the intrinsic firing period in a type 1 (C) and 1% resetting in a type 2 (D) neural

oscillator. The neural network for which we used the PRC to predict the phase-locked modes has three neurons: #1 is the pacemaker (master) of the network

as it receives no feedback and drive the half-center formed with neurons #2 and #3; neuron #2 (slave) receives two inputs: one forward excitatory (open

triangle) from the master neuron #1 and the other inhibitory (solid circle) from the interneuron #3; the interneuron #3 only receives one excitatory input (open

triangle) from neuron #2 (slave) (E).

https://doi.org/10.1371/journal.pone.0174304.g001
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controlled by the intensity of an external stimulus; class II, where the firing frequency is almost

independent on stimulus intensity; and class III, where there are no endogenous bursters

regardless of stimulus intensity or duration.

Our simulations were performed using a class I, single compartment, neural oscillator

described by a standard conductance-based, or Hodgkin-Huxley (HH), mathematical model

[64–66]. The rate of change of membrane potential is:

dV=dt ¼ � ICa � IK � ILeak þ I0

¼ � �gCamðVÞðV � ECaÞ � �gKwðV � EKÞ � �gLeakðV � ELeakÞ þ I0;
ð1Þ

where V is the membrane potential, �g ch and Ech are the maximum conductance and, respec-

tively, the reversal potential for ionic channel ch (only calcium, potassium and leak were con-

sidered), w is the instantaneous probability that a potassium channel is open, and I0 is a

constant bias current. Each ionic current is the product of a voltage-dependent conductance

and a driving force Ich = gch(V)(V − Vch) where gch(V) is the product of the maximum conduc-

tance for that channel and a specific voltage-dependent gating variable. Morris and Lecar

(ML) mathematical model has two non-inactivating voltage-sensitive gating variables: one

instantaneous, voltage-dependent, calcium activation m(V) and a delayed voltage-dependent

potassium w given by a first order differential equation [67]:

dw=dt ¼ �ðw1ðVÞ � wÞ=tðVÞ; ð2Þ

where ϕ is a temperature-dependent parameter, and a voltage-dependent relaxation time con-

stant is defined by τ(V) = cosh−1((V − Vw,1/2)/(2Vw,slope)). All open-state probability functions,

Fig 2. Typical two stimuli PRC. (A) Two brief stimuli delivered at stimulus times tsa and, respectively, tsb. The first stimulus transiently modifies the intrinsic

firing period Pi to a new value Pa = Pi(1 + F(1)(φa)), where φa = tsa/Pi. The second stimulus arrived at a new phase φb = tab/Pa that found a modified firing period

Pa and, therefore, further reset the firing period to Pb = Pa(1 + F(1)(φb)). (B) A typical two stimuli phase response surface for a class I excitable cell.

https://doi.org/10.1371/journal.pone.0174304.g002
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or steady-state gating variables x, have a sigmoidal form [67]:

xðVÞ ¼ ð1þ tanh ððV � Vx;1=2Þ=Vx;slopeÞÞ=2; ð3Þ

where Vx,1/2 is the half-activation voltage and Vx,slope is the slope factor for the gating variable

x. The ML model is widely used in computational neuroscience because it captures relevant

biological processes and, at the same time, by changing only a small subset of parameters it can

behave either as a type 1 or a type 2 neural oscillator. The dimensionless parameters for a type

1 ML neuron are: Vm,1/2 = −0.01, Vm,slope = 0.15, Vw,1/2 = 0.1, Vw,slope = 0.145, VK = −0.7, VLeak

= −0.5, VCa = 1.0, �gCa ¼ 1:33, �gK ¼ 2:0, �g Leak ¼ 0:5, I0 = 0.070, and f = 0.6 (Ermentrout,

1996). The model’s equations and its parameters are in dimensionless form with all voltages

divided by the calcium reversal potential VCa0 = 120 mV, all conductances divided by �gCa0 ¼ 4

mS/cm2, and all currents normalized by VCa0�gCa0 ¼ 480mA=cm2 (Ermentrout, 1996). For

example, a dimensionless reversal potential for a leak current of VLeak = −0.5 means VLeak =

−0.5VCa0 = −0.5 × 120 mV = -60 mV.

The Synaptic Model. We implemented fast chemical synapses between neurons given by a

synaptic current Isyn ¼ �g synsðtÞðVpost � EsynÞ, where �g syn is the maximum synaptic conductance,

s(t) is the fraction of channels activated by neurotransmitters, Vpost is the membrane potential

of the postsynaptic neuron, and Esyn is the reversal potential of the synaptic coupling. We used

Esyn = 0 for excitatory and Esyn = −0.6 for inhibitory coupling. The synapses activation was

described by a first order kinetics s0 = αT(1 − s) − βs, where α = 15, β = 1.5, and neurotransmit-

ter binding was described by a sigmoidal function T(Vpre) = 1/(1 + e(−Vpre − 0.2)120/5)) where Vpre

is the membrane potential of the presynaptic neuron.

We numerically computed the PRCs in open loop setup, i.e. by injecting a single synaptic

input from a corresponding presynaptic neuron for neurons 2 and 3 shown in Fig 3 for our

neural network configuration.

Fig 3. Typical phase-locked mode with one neuron receiving two inputs per cycle. Neuron #1 is the driver of the entire network and

its intrinsic firing period P1i was used as reference duration for all other intrinsic periods. The neuron’s spike is represented by a thick

vertical line. The coupling between the neurons is marked by vertical dashed lines that terminate either with an excitatory (empty triangle) or

a inhibitory (solid circle) synapse. Neuron #2 receives 2 inputs during one cycle: the first is an inhibition at stimulus time t2sa from the

interneuron #3 and later on it receives an excitatory input from neuron #1 at stimulus time t2sb. The neuron recovers from the last stimulus

after t2r and fires again. Neuron #3 only receives one excitatory input per cycle from neuron #2.

https://doi.org/10.1371/journal.pone.0174304.g003
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4 The neural network model

In order to use the PRC method (see section 2) for predicting the relative phases of neurons in

a phase-locked firing pattern, we assumed a fixed firing order of the three neurons with the

goal of determining if such a pattern exists and if it is stable. Based on the neural network

model proposed for delayed and anticipated synchronization by Matias et al [40–42], we iden-

tified the following definitions for the firing period of each neuron (see Fig 3):

P1 ¼ t2r½n � 1� þ t2sb½n�;

P2 ¼ t2sb½n� þ t2r½n�;

P3 ¼ t2sb½n� � t2sa½n� þ t2r½n� þ t2sa½nþ 1�;

ð4Þ

where t2r is the recovery time of neuron #2 after its last input, t2sa and t2sb are the correspond-

ing stimulus times for the first and, respectively, the second input to neuron #2, and the index

of the cycle is marked with the square brackets [. . .]. The subscript index refers to the neural

oscillator index according to Fig 3. From Eq (4) we eliminated t2r[n − 1] = P1i − t2sb[n] and

substituted it into the other two equations, which led to:

P2 ¼ t2sb½n� þ P1i � t2sb½nþ 1�;

P3 ¼ t2sb½n� � t2sa½n� þ P1i � t2sb½nþ 1� þ t2sa½nþ 1�:
ð5Þ

Based on the definitions of the PRCs (see Eqs (16) and (22) in Appendix 1), we further

expanded Eq (5) the transiently modified firing period in terms of experimentally determined

PRCs:

P2ið1þ Fð2Þðt2sa½n�; t2sb½n�ÞÞ ¼ t2sb½n� þ P1i � t2sb½nþ 1�;

P3ið1þ Fð1Þðts3½n�ÞÞ ¼ t2sb½n� � t2sa½n� þ P1i � t2sb½nþ 1� þ t2sa½nþ 1�:
ð6Þ

The above system of two recursive equations has two unknowns, i.e. t2sa and t2sb, that describe

the temporal evolution of the relative phase of neural oscillators from the firing cycle [n] to

[n + 1].

5 The existence of phase-locked modes

Let us assume that there is a steady state solution ðt�
2sa; t

�
2sbÞ for the recursive Eq (6) that mimics

the activity of the neural network shown in Fig 3, i.e. the following limits exist limn1t2sa½n� ¼
t�
2sa and limn1t2sa½n� ¼ t�

2sa. By substituting the steady state, i.e. phase-locked mode, solution

ðt�
2sa; t

�
2sbÞ into Eq (6) one obtains:

P2ið1þ Fð2Þ2 ðt�2sa; t
�
2sbÞÞ ¼ P1i;

P3ið1þ Fð1Þ3 ðP1i � t�
2saÞÞ ¼ P1i;

ð7Þ

where we used the fact that t�
3s ¼ t�

2sb � t�
2sa þ t�

2r and that t2r[n − 1] = P1i − t2sb[n], which led to

t�
3s ¼ t�

2sb � t�
2sa þ P1i � t�

2sb ¼ P1i � t�
2sa:

As we notice from the second equation in Eq (7), the steady state value t�
2sa could be imme-

diately determined and it only depends on P1i, P3i, and the PRC of the third neuron, which

depends on the coupling strength g23. It results that the steady state value t�
2sa is given by:

Fð1Þ3 ðP1i � t�
2saÞ ¼

P1i

P3i
� 1: ð8Þ

Since the coupling from neuron #2 to neuron #3 is excitatory, the PRC is negative (only
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advances the next spike), i.e. Fð1Þ3 ðφÞ < 0. As a result of Eq (8), the steady states t�
2sa can only

exist for P1i< P3i which means that the interneuron (neuron #3) must be slower than the pace-

maker (neuron #1) of the network. Moreover, since a type 1 PRC in response to excitatory

inputs has only one negative minimum (Fð1Þ3;min) that determines the magnitude of the strongest

possible resetting, then
P1i
P3i
� 1 � Fð1Þ3;min, which means the the interneuron intrinsic period is

bounded by P1i < P3i < P1i=ð1þ Fð1Þ3;minÞ:

Once we determined the steady state t�
2sa from Eq (8), then we plugged it into the first Eq (7)

and found t�
2sb: Using the PRC definition (see Eq (22) from Appendix 1) we obtained:

P2ia 1þ Fð1Þ2

t�
2sb

a

� �� �

¼ P1i; ð9Þ

where a ¼ 1þ Fð1Þ2 ðt�2saÞ: The above equation can be reduced to:

Fð1Þ2

t�
2sb

a

� �

¼
P1i

P2ia
� 1; ð10Þ

We must emphasize that Fð1Þ2 ðt�2saÞ and Fð1Þ2 ðt�2sbÞ are two different single stimulus PRCs for the

same neuron. Here Fð1Þ2 ðt�2saÞ is the single stimulus phase response curve of the second neuron

to an input received from the third neuron, i.e. Fð1Þ2 ðt�2saÞ is determined by g32. Similarly,

Fð1Þ2 ðt�2sbÞ is the single stimulus phase response curve of the second neuron in response to an

input received from the first neuron, i.e. Fð1Þ2 ðt�2sbÞ is determined by g12.

5.1 Explicit steady state solutions using normal form generic type 1

PRCs

In order to get insights into the general existence criteria for steady state (phase-locked modes)

derived above, we assumed that the single stimulus and the generalized PRCs are quite well

approximated by the corresponding normal forms given by Eq (16) and, respectively, by

Eq (22) in Appendix 1. Then the steady state solution t�
2sa of Eq (8) can be analytically written

as:

cos 2p
P1i

P3i
�

t�
2sa

P3i

� �� �

¼ 1 �
1

c23P3i

P1i

P3i
� 1

� �

: ð11Þ

By least square fitting the numerically generated PRCs for each neuron in response to a single

spike from its corresponding presynaptic neuron with the theoretical formula of the normal

form given by Eq (17), we found a quantitative relationship between the abstract coupling

strength coefficient c and the physiologically measurable maximum synaptic couplings �g (see

Appendix 1). Therefore, in order to simplify the mathematical notation, throughout the rest of

the paper we only write, for example, c23 when referring to the coefficient of the theoretical

normal form of the PRC with the understanding that it is a known function of the synaptic

conductance, i.e. c23 = c23(g23).

Since −1� cos(x)�1, it results that 0 � 1

c23ðg23ÞP3i

P1i
P3i
� 1

� �
� 2, which determines the mini-

mum coupling strength g23 for a given ratio of the two intrinsic firing periods
P1i
P3i

to attain a

phase-locked mode pattern. Based on the above relationship, for excitatory coupling, i.e. Esyn =

0, the master (pacemaker) neuron #1 (see Fig 3) must be faster than the interneuron #3, i.e. P1i

< P3i. At the same time, the coupling strength g23 must also be strong enough to reset the lon-

ger intrinsic period P3i to match the shorter period of the network’s pacemaker, i.e. to ensure

Generalized phase resetting and phase-locked modes prediction
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that P3i < P1i=ð1þ Fð1Þ3;minÞ. The above relationship allowed us to estimate that, if the coupling is

very strong (g231), then the steady state from Eq (11) has the solution t�
2sa ¼ P1i þ kP3i with

k = 0,±1,±2,. . ., which is marked by vertically downward arrows in Fig 4. Furthermore, if the

two firing periods are approximately equal (P1i� P3i), then from Eq (11) it results that t�
2sa ¼

kP1i with k = 0,1,2,. . . (see also Fig 4). Fig 4 also shows that for each intrinsic period ratio P3i/

P1i there is a minimum coupling strength g23 that ensures appropriate resetting of the inter-

neuron. For example, the minimum coupling for P3i/P1i = 1.5 (dotted red line in Fig 4) is g23 =

0.024. A stronger coupling of g23 = 0.036 is necessary for a larger ratio P3i/P1i = 2 (dashed blue

line in Fig 4)).

The phase-locked modes ðt�
2sa; t

�
2sbÞ given by Eq (6) depend on three intrinsic periods P1i,

P2i, P3i and three synaptic conductances g12, g23, and g32. Since the master neuron receives no

input, all durations were measured relative to P1i. The bias current for the computational

model was set such that P1i = 60 ms, P2i = 70 ms and P3i = 80 ms (see section 3 for details and

supplemental files for a computational implementation). Intuitively, the phase-locked solution

t�
2sa is the stable interspike interval between neurons #2 and #3 (the interneuron). The other

phase-locked solution t�
2sb is the stable interspike interval between neurons #2 and #1 (net-

work’s driver). However, this simplification only reduces the parameter space to five

dimensions.

Fig 4. Minimum coupling strength g23 required for a given phase-locked mode time t�
2sa. (a) There are

multiple possible solutions for t�
2sa for the same coupling strength between neurons #2 and #3 due to the PRC

periodicity. In the limit case of a very strong coupling (g231) the phase-locked stimulus time becomes t�
2sa ¼

P1i þ kP3i (see the vertically downward arrows).

https://doi.org/10.1371/journal.pone.0174304.g004
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In order to reduce the parameter space to four dimensions, we only show examples of

phase-locked modes for a fixed inhibitory coupling with g32 = 0.002 (arb. units). For a fixed

intrinsic period of the second neuron P2i/P1i = 70/60, the parameter space further reduces to

three dimensions, which allowed us to visualize the phase-locked modes. The solution t�
2sa of

the second equation in Eq (6) only depends on P3i/P1i and the coupling strength g23 (see the

green surface in Fig 5).

However, the phase locked solution t�
2sb of the first equation in Eq (6) depend on the addi-

tional coupling g12. Therefore, to gain insight into how g12 affects the solution t�
2sb, we used the

same axis P3i/P1i and g23 as for t�
2sa, but with different constant values of coupling g12 = 0.012

(red surface) and g12 = 0.05 (blue surface) in Fig 5A. We notice from Fig 5A that increasing the

strength of the excitatory coupling g12 leads to an increased stimulus time t�
2sb and a wider

parameter domain of the phase-locked solution.

Similarly, if we hold constant the synaptic coupling g12 = 0.015 (arb. units) between the

master and the slave neurons, then we could visualize the phase-locked solution for variable

intrinsic period of the second neuron P2i/P1i = 60/60 (red surface in Fig 5B) and P2i/P1i = 70/

60 (blue surface in Fig 5B). We notice that for smaller intrinsic periods P2i the range of control

parameters P3i/P1i and g23 is broader. This is because for more similar firing frequencies it is

easier to bring the driven neuron to the firing frequency of the driving neuron.

6 The stability of phase-locked modes

The possible phase-locked modes given by Eq (6) may not all be stable and, therefore, they

may not be all experimentally observable. To determine the stability of the steady solutions

ðt�
2sa; t

�
2sbÞ, we assume small perturbations:

t2sa½n� ¼ t�
2sa þ dt2sa½n�;

t2sb½n� ¼ t�
2sb þ dt2sb½n�;

ð12Þ

where the nth cycle perturbation dt2s½n� << t�
2s is assumed very small for both stimuli. By

Fig 5. Phase-locked solutions t�
2sa and t�

2sb (vertical axes) versus the intrinsic period of the interneuron P3i and the coupling strength g23. (A) The first

stimulus time t�
2sa only depends on P3i/P1i and g23—see green surface. For a fixed intrinsic period ratio P2i/P1i = 70/60, the second stimulus time t�

2sb depends

also on the coupling strength g12 = 0.012 (red surface) and g12 = 0.05 (blue surface). (B) For a fixed coupling g12 = 0.015, the second stimulus time t�
2sb

dependence on the intrinsic firing periods P2i/P1i = 60/60 (red surface) and P2i/P1i = 70/60 (blue surface) shows that the solution space is wider for shorter

intrinsic periods.

https://doi.org/10.1371/journal.pone.0174304.g005

Generalized phase resetting and phase-locked modes prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0174304 March 21, 2017 10 / 20

https://doi.org/10.1371/journal.pone.0174304.g005
https://doi.org/10.1371/journal.pone.0174304


substituting Eq (12) into the existence criteria from Eq (7) and using a Taylor series expansion

one obtains:

m2að1þ Fð1Þ2 ðφ�2bÞ � φ�
2bÞdt2sa½n� þm2bdt2sb½n� ¼ dt2sb½n� � dt2sb½nþ 1�;

m3ðdt2sb½n� � dt2sa½n� � dt2sb½nþ 1�Þ ¼ dt2sb½n� � dt2sa½n�

¼ � dt2sb½nþ 1� þ dt2sa½nþ 1�;

ð13Þ

where m2a ¼
@Fð1Þ

2

@φ

� �

φ�
2a

is the slope of the second neuron’s PRC at the phase of the first stimu-

lus φ�
2a ¼

t�s2a
P2i

, m2b ¼
@Fð1Þ

2

@φ

� �

φ�
2b

is the slope of the second neuron’s PRC at the phase of the sec-

ond stimulus φ�
2b ¼

t�s2b
P2ið1þFð1Þ

2
ðt�

2saÞÞ
, m3 ¼

@Fð1Þ
3

@φ

� �

φ�
3

is the slope of the third neuron’s PRC at the

phase of the stimulus φ�
2
¼

t�s3
P3i

. The stability Eq (13) can be rewritten in a matrix form as:

0 � 1

1 m3 � 1

 !
dts2a

dts2b

 !

½nþ1�

¼
m2að1þ Fð1Þ2 ðφ�2bÞ � φ�

2bÞ m2b � 1

1 � m3 m3 � 1

0

@

1

A
dts2a

dts2b

 !

½n�

; ð14Þ

which led us to a first order recursive relationship for the perturbations:

dts2a

dts2b

 !

½nþ1�

¼
a11 a12

a21 a22

 !
dts2a

dts2b

 !

½n�

; ð15Þ

where a11 = (1 − m3)(1 − b), a12 = (m3 − 1)m2b, a21 = −b, and a22 = 1 − m2b with b ¼
m2að1þ Fð1Þ2 ðφ�2bÞ � m2bφ�2bÞ: The stability of the steady state is determined by the eigenvalues

of Eq (15) (see the Appendix 2 for the general stability conditions in a two-dimensional recur-

sive map).

We also must keep track of the third stability condition as the original recursive system in

Eq (4) contained three variables, which were reduced to two coupled recursive equations (see

Eq (5)) by eliminating the third variable, i.e. t2r[n − 1] = P1i − t2sb[n]. As a result, the steady

state of the previous substitution gives t�
2r ¼ P1i � t�

2sb and the corresponding infinitesimal per-

turbation is δt2r[n − 1] = −δt2sb[n]. Therefore, the stability of t�
2r solution is determined by the

stability of δt2sb[n], which is already covered by Eq (15) without involving additional control

parameters.

The general stability conditions for any first order recursion of two variables is discussed in

details in the Appendix 2. Briefly, the trace Tr(A) = a11 + a22 and the determinant Det(A) =

a11 a22 − a12 a21 of the recursion matrix in Eq (15) determine the stability of each steady state

obtained by solving Eq (7).

7 Numerical validation of the existence and the stability criteria

The analytically derived criteria for the existence (see section 5) and stability (see section 6) of

phase-locked modes in a master-slave network with a dynamic loop (see Fig 3) were only

based on PRCs in response to a single stimulus. We checked our theoretical predictions based

on open loop PRCs against the numerical simulations of the actual neural networks imple-

mented according to the model presented in section 3, i.e. closed loop (fully connected neural

network).
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The analytical normal form PRC formulas (see Eq (17) in Appendix 1) were convenient

analytical tools and even led us to some analytical results in the preceding sections. However,

for the actual comparison between the multiple stimuli PRC-based phase-locked mode predic-

tion (open loop) and the numerical simulations results of the fully coupled neural network

(see Fig 3) we used numerically generated open lopp PRCs. The reason is that, although the

analytical normal form of type 1 PRC given by Eq (17) (see dashed red line in Fig 6A) is close

to the numerically (experimentally) generated open loop PRC (see dotted blue curve in Fig

6A), we wanted a more accurate prediction based on the real-world PRC as it is generated in

wet lab/numerical experiments.

We also used the least square minimization to fit actual PRCs (see dotted curve in Fig 6A)

with the theoretical formula given by Eq (17) in order to establish the conversion factor

between the model-dependent coupling constant c in the theoretical formula given by Eq (17)

and the synaptic constant gsyn used in our numerical simulations. The Mathematica file that

contains the implementation of the neural network shown in Fig 3 based on the model equa-

tions provided in section 3 is available in supplemental files section.

The synaptic couplings used for the example shown in Fig 6B were g12 = 0.015, g32 = 0.002,

and g23 = 0.0275, which led to a phase locked mode with t�
2sa ¼ 15:2 ms and t�

2sb ¼ 40:2 ms.

The PRC-based predictions were t�
2sa ¼ 18:0 ms (about 18% error) and t�

2sb ¼ 44:1 ms (about

10% error). We found that the eigenvalues of the stability matrix were λ1 = 0.489, and λ2 =

0.779, which indicated that the predicted mode was stable.

Discussion

Since even for a small unidirectionally coupled three-neuron network the parameter space is

six-dimensional, i.e. three intrinsic firing periods (P1i, P2i, and P3i), one unidirectional synaptic

coupling between master-slave neurons (g12), and two coupling constants for the feedback

loop (g23 and g32), we reduced it to manageable dimensions in order to visualize the phase-

Fig 6. Phase-locked modes in fully coupled neural network. (A) The numerically generated PRC in open loop setup in response to a single triangularly

shaped stimulus (solid circles) was fitted to the theoretical PRC given by Eq (17) to determined the conversion factor between the model-dependent coupling

constant c in Eq (17) and the synaptic coupling gsyn. (B) A typical stable phase locked mode in which neuron #2 (dashed line) receives two inputs during a

single cycle: first from neuron #3 (dotted line) at t�
2sa and then from neuron #1 (continuous line) at t�

2sb. The experimental values for the phase locked mode as

measured from panel (B) were t�
2sa ¼ 15:2 ms and t�

2sb ¼ 40:2 ms whereas the PRC-based predictions were t�
2sa ¼ 18:0 ms and t�

2sb ¼ 44:1 ms. The network’s

firing period was P = 60 ms = P1i.

https://doi.org/10.1371/journal.pone.0174304.g006
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locked solution. Since the master neuron receives no feedback from the network, its intrinsic

firing period P1i was considered the reference duration, which reduces the parameter space to

five dimensions. We further reduced the parameter space to four dimensions using a fixed

value for the inhibitory coupling of the interneuron, i.e. g32 = 0.002 (arb. units). We numeri-

cally found the phase locked modes ðt�
2sa; t

�
2sbÞ by considering two separate cases: (1) fixed

period of slave neuron #2, of which we only show two examples with P2i/P1i = 60/60 and

P2i/P1i = 70/60 in Fig 5A and (2) fixed master-slave synaptic coupling, of which we only

showed two examples with g12 = 0.012 and g12 = 0.05 in Fig 5B. In all numerical simulations,

the free parameters were the intrinsic period of the interneuron P3i and the excitatory synaptic

coupling to that neuron (g23). The reason is that it was previously shown that the interneuron

through its intrinsic properties and its synaptic coupling can lead to either delayed or antici-

pating synchronization in this neural network [40, 42] and our goal was to closely match previ-

ous experimental findings using the newly developed generalized PRC method. Based on

Fig 5, an increase in the strength of the master-slave synaptic coupling g12 leads to a larger

phase difference between the two steady states t�
2sa and t�

2sb. At the same time, the parameter

space of the interneuron (P3i, g22) becomes wider. Another possibility for broadening the

parameter space was to bring the intrinsic firing period of the slave neuron #2 closer the the

master neuron #1, i.e. by reducing network heterogeneity. All out numerical simulations are in

agreement with previously observed firing patterns in this type of neural network [40, 42].

Conclusions

We used a phase response curve method to predict the existence and the stability of phase-

locked modes in a master-slave networks with a dynamic feedback loop. This study brings two

novel solutions to phase-locked mode prediction in neural networks. First, we generalized the

the phase response curve definition to include the more realistic case when neural oscillators

receive more than one input per cycle. Secondly, we applied the generalized phase resetting

definition to a biologically relevant neural network that has been shown to produce both

delayed and anticipated synchronization.

Predicting phase-locked modes in large neural networks usually requires as a first step a

complexity reduction to manageable subnetworks of two neurons [68, 69] or, whenever possi-

ble, reduces the entire network to a two-population network [70]. Our PRC generalization to

multiple inputs per cycle is a significant advance in phase resetting theory that allows investiga-

tion of large networks in which individual neurons receive multiple inputs per cycle without

assuming special network connectivity. Furthermore, our generalization of phase response

curve and its proof of concept application to predicting phase-locked modes existence and sta-

bility in a biologically relevant three-neuron network with a dynamic feedback loop is not lim-

ited to weak coupling nor to only one-to-one firing patterns. Indeed, the coupling strengths

used were quite large such that it reset the firing period of the interneuron #3 by 25% from 80

ms to 60 ms.

Appendix 1

Single stimulus phase response curve method

There are two main experimental protocols for measuring the single stimulus PRC in isolated

cells: (1) single stimulus and (2) recurring (periodic) stimuli. In the case of a single stimulus

protocol, a free running neural oscillator with the intrinsic period Pi is perturbed at a certain

instant called stimulus time ts, which is measured from an arbitrary phase reference φ = 0, e.g.

zero crossing of the membrane potential with a positive slope. As a result of the perturbation,
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the length of the current cycle that contains the stimulation (see Fig 1A) may be transiently

shortened or lengthened to a new duration P1. The relative change in the duration of the cur-

rent cycle with respect to the unperturbed duration Pi determines the first order PRC in

response to a single and nonrecurring stimulus:

Fð1ÞðφÞ ¼ P1=Pi � 1; ð16Þ

where the superscript (1) emphasizes that the resetting is due to a single input per cycle, which

has been used as the “classical” definition of PRC. Based on Eq (16), a negative value of the

PRC means that the next spike is advanced, otherwise it is delayed. Others [58, 71] prefer to

flip the sign in Eq (16) and associate a positive sign to a phase advance. Oftentimes, the effect

of a single stimulus extends to subsequent cycles and is measured by higher order PRCs [47,

48, 50]. Usually, one records at least five cycles until the neural oscillatory returns back to its

unperturbed oscillatory activity [31, 32]. Afterwards another single stimulus is applied at a dif-

ferent phase to quantify its effect on the isolated neuron (open loop experimental setup).

In the case of recurring external stimuli, the interpretation of the phase resetting and its

usage in phase-locked mode prediction is complicated by (1) the fact that the measured reset-

ting compounds multiple PRC orders in a potentially nonlinear manner and (2) the activation

of slow currents and/or long term potentiation (see [72] for examples and [32] for higher

order PRC applications).

Normal Forms of Single Stimulus Phase Response Curves. A saddle-node bifurcation,

which presents a continuous frequency versus bias current (f-I) curve that extends to arbi-

trarily low frequencies (see solid circles in Fig 1B) usually leads to a type 1 PRC that looks

unimodal as in Fig 1C (although for counterexamples see [49, 56]). Close to the bifurcation

point, type 1 unimodal PRCs are described analytically by the following equation [57]:

Fð1ÞðφÞ ¼
cSN

o
ð1 � cos ð2pφÞÞ; ð17Þ

where cSN is a constant determined by the neural model and ω = 2π/Pi is the intrinsic angular

frequency of the oscillator. In this study, we used the simplified analytical form given by

Eq (17) to get analytical insights into the general behavior of the three-neuron network with a

dynamic loop shown in Fig 3.

By least square fitting the numerically generated PRCs for each neuron in response to a sin-

gle spike from its corresponding presynaptic neuron with the theoretical formula of the nor-

mal form PRC given by Eq (17), we found coupling strengths c are proportional to the

maximum synaptic couplings �g : c12 = −6.1733g12 − 0.0003, c23 = −6.9555g23 − 0.0005, and c32 =

7.2764g32 + 0.0002.

Phase resetting in response to multiple stimuli

Assuming that the resetting induced by one stimulus takes effect “almost” instantaneously, i.e.

before the arrival of the second stimulus, then the effects of two stimuli applied during the

same cycle are independent of each other and we could use the single stimulus PRC defined by

Eq (16) (shown in Fig 1C and 1D) to compute the phase resetting in response to two or more

stimuli. In order to compute the phase resetting induced by the second stimulus based on

Eq (16) we need to correctly compute its phase (see Fig 2A). The phase of the first stimulus

that arrives at a stimulus time tsa is φa = tsa/Pi. The first stimulus produces an “almost” instan-

taneously phase resetting and changes the firing period to:

Pa ¼ Pið1þ Fð1ÞðφaÞÞ ¼ Pi 1þ Fð1Þ
ta
Pi

� �� �

: ð18Þ
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When the second stimulus arrives at a stimulus time tsb> tsa, the neuron already has a differ-

ent firing period Pa due to the previous stimulus. As a result, the phase of the second stimulus

is φb = tsb/Pa and the new firing period due to the second stimulus is:

Pb ¼ Pað1þ Fð1ÞðφbÞÞ ¼ Pa 1þ Fð1Þ
tb
Pa

� �� �

; ð19Þ

where we used the same definition of the first order phase resetting for a single stimulus as in

Eq (16). By substituting Eq (18) into Eq (19) one obtains:

Pb ¼ Pað1þ Fð1ÞðφbÞÞ ¼ Pi 1þ Fð1Þ
ta
Pi

� �� �

1þ Fð1Þ
tb

Pi 1þ Fð1Þ ta
Pi

� �� �

0

@

1

A

0

@

1

A; ð20Þ

which could be rewritten in a form that resembles Eq (16) as:

Pb ¼ Pið1þ Fð2Þðφa;φbÞÞ; ð21Þ

where the superscript (2) emphasizes that the new transient period Pb is computed in response

to two stimuli arriving at phases φa and, respectively, φb> φa during the same cycle. By com-

paring the definition from Eq (21) against the derived resetting from Eq (20), we found that:

Fð2Þðtsa; tsbÞ ¼ 1þ Fð1Þ
ta
Pi

� �� �

1þ Fð1Þ
tb

Pi 1þ Fð1Þ ta
Pi

� �� �

0

@

1

A

0

@

1

A � 1; ð22Þ

which has the advantage that can predict the phase resetting in response to two stimuli by

recursively using the single stimulus PRC defined in Eq (16). A typical two stimuli phase

response curve F(2) is shown in Fig 2B.

Furthermore, our novel derivation of PRC in response to two stimuli given by Eq (22) gen-

eralizes to an arbitrary number of inputs per cycle as follows:

Pnðts1; ts2; . . . ; tsnÞ ¼ Pi

Yn

k¼1

1þ Fð1Þ
tsk

Pk� 1

� �� �

; ð23Þ

where P0 = Pi is the intrinsic firing period of the isolated neuron, tsk> ts(k + 1), and tsk< Pk−1

(stimulus k still falls inside the transiently modified period due to the previous stimulus).

Appendix 2

Stability Conditions for Two-Dimensional Recursive Maps. The characteristic polynomial

of any first order recursive equation of two variables, such as Eq (6), is:

PðlÞ ¼ l
2
� ðTrðAÞÞlþ DetðAÞ; ð24Þ

where Tr(A) and Det(A) are the trace and, respectively, the determinant of the recursion

matrix of the perturbations (δt2sa, δt2sb), such as the Eq (15). The first order recursions have

the following solution:

dt½n� ¼ C1l
n
1
þ C2l

n
2
; ð25Þ

where C1 and C2 are some constants determined from the initial conditions and λi (with

i = 1, 2) are the solutions of the characteristic polynomial Eq (24). For the perturbations to die

out, all characteristic roots must be less than unit, i.e. |λi|<1 for both i = 1, 2. To ensure
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stability, there are two possibilities: (1) the roots of the characteristic polynomial are real and

both less than the unit, or (2) the roots are complex conjugated with a magnitude less than the

unit.

Real characteristic roots. In this case, the following conditions must be met

Pð� 1Þ ¼ 1þ TrðAÞ þ DetðAÞ > 0;

Pðþ1Þ ¼ 1 � TrðAÞ þ DetðAÞ > 0;

DetðAÞ � ðTrðAÞÞ2=4 > 0:

ð26Þ

The region where all three conditions are met is shown in Fig 7 with crossed hashing, i.e. the

region below the parabolic curve and above the two straight, tangent, lines.

Imaginary characteristic roots. In this case, the discriminant of the characteristic polyno-

mial is negative, i.e. −Det(A) + (Tr(A))2/4< 0. At the same time, the magnitude of each com-

plex conjugated characteristic root is jlj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DetðAÞ

p
< 1, i.e. Det(A)< 1. As a result, the

stability region in the case of complex characteristic root is above the parabolic shape shaded

with horizontal lines in Fig 7.

Supporting information

S1 File. Mathematica code. The Mathematica code simulates the driven-driver neural net-

work with adaptive feedback. It uses Morris-Lecar type 1 neurons and chemical couplings

between neurons to produce a stable phase-locked firing pattern.
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