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Transvenous vagus nerve stimulation does
not modulate the innate immune response
during experimental human endotoxemia:
a randomized controlled study
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Abstract

Introduction: Vagus nerve stimulation (VNS) exerts beneficial anti-inflammatory effects in various animal models of
inflammation, including collagen-induced arthritis, and is implicated in representing a novel therapy for rheumatoid
arthritis. However, evidence of anti-inflammatory effects of VNS in humans is very scarce. Transvenous VNS (tVNS) is
a newly developed and less invasive method to stimulate the vagus nerve. In the present study, we determined
whether tVNS is a feasible and safe procedure and investigated its putative anti-inflammatory effects during experimental
human endotoxemia.

Methods: We performed a randomized double-blind sham-controlled study in healthy male volunteers. A stimulation
catheter was inserted in the left internal jugular vein at spinal level C5–C7, adjacent to the vagus nerve. In the tVNS group
(n = 10), stimulation was continuously performed for 30 minutes (0–10 V, 1 ms, 20 Hz), starting 10 minutes before
intravenous administration of 2 ng kg−1 Escherichia coli lipopolysaccharide (LPS). Sham-instrumented subjects
(n = 10) received no electrical stimulation.

Results: No serious adverse events occurred throughout the study. In the tVNS group, stimulation of the vagus
nerve was achieved as indicated by laryngeal vibration. Endotoxemia resulted in fever, flu-like symptoms, and
hemodynamic changes that were unaffected by tVNS. Furthermore, plasma levels of inflammatory cytokines increased
sharply during endotoxemia, but responses were similar between groups. Finally, cytokine production by leukocytes
stimulated with LPS ex vivo, as well as neutrophil phagocytosis capacity, were not influenced by tVNS.

Conclusions: tVNS is feasible and safe, but does not modulate the innate immune response in humans in vivo during
experimental human endotoxemia.

Trial registration: Clinicaltrials.gov NCT01944228. Registered 12 September 2013.
Introduction
Inflammatory cytokines are pivotal in the pathogenesis
of rheumatoid arthritis (RA) [1]. Biologics that antagonize
these cytokines (or their receptors) are very effective and
have revolutionized the treatment of RA [2]. However,
they are very expensive and can have serious side
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effects [3]. Therefore, innovative non-pharmacological
anti-inflammatory therapies for RA are highly warranted.
More than a decade ago, the group of Kevin Tracey

discovered the so-called “cholinergic anti-inflammatory
pathway” [4]. In rats, it was demonstrated that electrical
stimulation of the efferent vagus nerve (vagus nerve stimu-
lation (VNS)) inhibits the systemic inflammatory response
to endotoxin (lipopolysaccharide (LPS)) administration
through release of the vagal neurotransmitter acetylcholine
[4]. Since these initial discoveries, multiple studies in ro-
dents have shown that VNS limits the immune response
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during endotoxemia [5, 6], and exerts beneficial effects in
animal models of live bacterial sepsis, trauma, ische-
mia–reperfusion injury, and hemorrhagic shock [7–
10]. Moreover, VNS as well as pharmacological stimu-
lation of the cholinergic anti-inflammatory pathway at-
tenuates collagen-induced arthritis in mice and rats [11–
13]. As such, VNS has been implicated as a novel treatment
modality for RA [14, 15].
In humans, VNS is FDA-approved for the treatment of

epilepsy and depression using an implantable VNS system in-
cluding a cuff electrode wrapped around the left vagus nerve
[16, 17]. However, until now there is very little evidence for
anti-inflammatory effects of VNS in humans [18, 19], and no
standardized models of inflammation have been exploited to
investigate these putative anti-inflammatory effects. Further-
more, the methods to apply VNS that have been used so far
require invasive surgery [18, 19]. Recently, a novel method to
apply VNS, transvenous VNS (tVNS), has been developed
[20, 21]. tVNS employs electrodes placed in the internal
jugular vein (IJV) at spinal level C5–C7, where the IJV runs
adjacent to the vagus nerve, representing a less invasive way
to stimulate the vagus nerve.
The anti-inflammatory potential of biologics that are cur-

rently used for the treatment of RA was first established
during human endotoxemia [22, 23], a standardized, con-
trolled model of systemic inflammation in humans in vivo
[24–26]. This illustrates the relevance of the model to test
novel therapies for RA. In the present study, we determined
whether tVNS is a feasible and safe procedure and investi-
gated if it exerts anti-inflammatory effects in healthy male
volunteers during experimental human endotoxemia.
Methods
Subjects and randomization
After approval from the ethics committee of the Radboud
University medical center, 20 healthy young non-smoking
male volunteers gave written informed consent to participate
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Fig. 1 Schematic overview of the study procedures. LPS lipopolysaccharide
in this randomized, double-blind, sham-controlled
study (Clinicaltrials.gov NCT01944228). All experiments
were conducted in accordance with the declaration of
Helsinki. Screening took place within 14 days before
the experiment and showed no abnormalities in physical
examination, electrocardiography, and routine laboratory
tests. Subjects taking prescription medication or experien-
cing clinically significant illness within 14 days before the
endotoxemia experiment day were not allowed to partici-
pate. The day before the experiment, subjects were not
allowed alcohol and caffeine intake and 10 hours before ex-
perimental endotoxemia they refrained from ingesting food.
Subjects were randomly assigned in pairs to receive either
tVNS (n = 10) or sham tVNS (n = 10). Randomization was
performed by unblinded personnel through numbered
envelopes.

Study outline
Figure 1 provides a schematic overview of the study proce-
dures. Briefly, on the experimental endotoxemia day
(day 1), after a re-check of exclusion criteria, a cannula
was placed in the antecubital vein of the non-dominant
arm, and the radial artery of the same arm was cannulated
under local anesthesia (lidocaine HCl 20 mg mL−1) using a
20-gauge arterial catheter for continuous monitoring of
blood pressure and sampling of blood. Subjects received
1.5 L of 2.5 % glucose/0.45 % saline solution for 1 hour
(prehydration) before LPS administration, followed by
150 mL h−1 until 6 hours after LPS infusion and 75 mL h−1

until the end of the experiment (8 hours after LPS adminis-
tration). Heart rate was measured continuously using a
3-lead electrocardiogram. Every 30 minutes, temperature
was measured using an infrared tympanic thermometer
(First-Temp Genius, Sherwood Medical, Crawley/Sussex,
UK), and symptoms (nausea, headache, muscle ache, back
pain, and shivering) were scored (ranging from 0 (symptom
not present) to 5 (worst ever experienced), in case of vomit-
ing 3 points were added), forming an arbitrary total
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Table 1 Stimulation parameters in the transvenous vagus nerve
stimulation group

Laryngeal threshold (V) Start (V) End (V)

Subject 1 2.3 5.5 8.0

Subject 2 3.0 4.5 6.1

Subject 3 2.0 7.5 9.5

Subject 4 3.0 7.9 8.5

Subject 5 1.0 2.0 2.4

Subject 6 1.0 2.0 3.0

Subject 7 1.5 2.5 3.8

Subject 8 2.0 4.5 8.1

Subject 9 1.0 6.4 8.8

Subject 10 2.0 8.0 10.0

Laryngeal threshold the lowest voltage at which laryngeal vibrations were felt.
Start voltage used at the start of the 30-minute stimulation period. End voltage
used at the end of the 30-minute stimulation period. Start and end indicate
maximum voltages at which the subject still felt comfortable
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symptom score with a maximum of 28 points. Purified
LPS (US Standard Reference Endotoxin Escherichia
Coli O:113) obtained from the Pharmaceutical Devel-
opment Section of the National Institutes of Health
(Bethesda, MD, USA), supplied as a lyophilized powder,
was reconstituted in 5 mL saline 0.9 % for injection and
vortex-mixed for at least 20 minutes after reconstitution.
The LPS solution was administered as an intravenous bolus
injection at a dose of 2 ng kg−1 body weight over 1 minute
at T = 0 hours. tVNS/sham stimulation (detailed below)
started 10 minutes before LPS administration and was
stopped 20 minutes after LPS administration.

tVNS/sham stimulation procedure
Subjects were prepared for catheter insertion by standard
methods of disinfecting an IJV entry site. After local
anesthesia (lidocaine HCL 20 mg mL−1) the left IJV was
cannulated under ultrasound guidance, using a two-lumen
central venous catheterization set with blue FlexTip®
(Arrow international, Inc., Reading, PA, USA). A stimula-
tion catheter with eight electrodes on a circular distal loop
(Achieve Medtronic model 990063-20, Medtronic, Heerlen,
The Netherlands) was connected to the electrode switch
box (Medtronic model 19038) with a catheter cable
(Medtronic model 990066). A N’Vision Clinical Programmer
(Medtronic model 8840) was used to program the external
neurostimulator (Medtronic model 37022), which was con-
nected to the electrode switch box via the Trialing System
cable (Medtronic model 19039). The stimulation catheter
was positioned at the C5–C7 spinal level, which was shown
to result in vagus nerve stimulation in previous clinical
studies [20, 21]. The position of the distal loop of the stimu-
lation catheter adjacent to the vessel wall was confirmed by
ultrasound. During positioning of the catheter and (sham)
stimulation, blinded study personnel left the room. The
subjects were blinded by being told that they could either
feel the stimulation, but not necessarily so, and that the
sham group would also receive stimulation but with a
“non-therapeutic pattern”. Determination of the correct
electrode pair for stimulation in the tVNS group was
attained by first switching between different electrode pair
combinations with the stimulator turned on until laryn-
geal vibration was felt, a reliable indicator of actual
stimulation of the vagus nerve [20, 21, 27–29]. Subse-
quently, the voltage thresholds at which laryngeal vibrations
were still felt were determined for the respective electrode
pair and the adjacent electrode pair. The electrode pair with
the lowest laryngeal threshold was selected for stimulation.
Next, the voltage was raised to determine the maximum
voltage output at which the subject still felt comfortable. In
the tVNS group, stimulation was continuously applied dur-
ing 30 minutes using the following stimulation parameters:
2–10 V amplitude (see Table 1 for laryngeal thresholds and
stimulation voltages used in each subject), 1 ms pulse
width, 20 Hz frequency, consistent with the settings used
in preclinical and clinical studies and well within safety
margins obtained from these studies [6, 20, 21].
Due to anticipated stimulation-related side effects, the

voltage was gradually increased during the stimulation
period, ensuring it did not result in discomfort for the
subjects. In the sham group, the exact same procedures
were performed, but the stimulator was not switched on.
To be consistent in the procedures (for the blinded sub-
jects) and to exclude a possible stimulation effect we
verified that no vagus nerve stimulation occurred as
confirmed by the absence of laryngeal vibration. Subjects
were told to report any discomfort. If the subject felt
pain or discomfort, the stimulation amplitude was re-
duced until the sensation was eliminated. Catheter loca-
tion, stimulation parameters, laryngeal vibration, and
any side effects were noted on a data collection form
that was kept in a separate folder until unblinding of the
study.
Plasma cytokine measurements
Ethylenediaminetetraacetic acid (EDTA) anti-coagulated
blood was immediately centrifuged at 2000 g for 10 mi-
nutes at 4 °C after which plasma was stored at –80 °C
until analysis. Cytokine concentrations were determined
using a Luminex Assay according to the manufacturer’s
instructions (Milliplex, Millipore, Billerica, MA, USA).
Lower detection limit was 3.2 pg mL−1 for all cytokines.
Leukocyte counts
Analysis of leukocyte counts was performed in EDTA
anticoagulated blood using routine analysis methods also
used for patient samples (flow cytometric analysis on a
Sysmex XE-5000 (Etten-Leur, The Netherlands)).



Table 2 Demographic characteristics

Sham (n = 10) tVNS (n = 10) p-value

Age (years) 24 (22–26) 26 (23–27) 0.32

Height (cm) 185 (177–188) 184 (181–186) 0.97

Weight (kg) 76 (69–86) 80 (68–81) 1.00

BMI (kg m-2) 22.2 (20.6–25.5) 22.0 (20.1–25.0) 0.91

Data are presented as median (interquartile range). p-values calculated using
Mann-Whitney U-test. BMI body mass index, tVNS transvenous vagus
nerve stimulation
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Ex vivo whole blood stimulation
Leukocyte cytokine production capacity was determined
before (sham) tVNS (time-point T = –1 hours), during
(sham) tVNS immediately before LPS administration
(time-point T = 0), and at 2, 4, and 8 hours after LPS ad-
ministration. Cytokine production capacity was assessed
by challenging whole blood from the subjects with LPS
ex vivo using an in-house developed system with pre-
filled tubes described in detail elsewhere [30]. Briefly,
0.5 mL of blood was added to tubes pre-filled with 2 mL
culture medium or 2 mL culture medium supplemented
with 12.5 ng mL−1 LPS (end concentration of LPS
10 ng mL−1). Cultures were incubated at 37 °C for
24 hours, centrifuged, and supernatants were stored at –
8 °C until analysis. Concentrations of tumor necrosis
factor (TNF)-α and interleukin (IL)-6 were determined
using enzyme-linked immunosorbent assays according
to the manufacturer’s instructions (Duosets, R&D sys-
tems, Minneapolis, MN, USA). Cytokine concentrations
in supernatants obtained from negative control tubes
were subtracted from concentrations in supernatants ob-
tained from LPS tubes.

Neutrophil phagocytosis assay
Phagocytosis capacity was determined at the same time-
points as ex vivo whole blood stimulation (see previous
paragraph) using the pHrodo Red Escherichia coli Bio-
Particles Phagocytosis Kit for Flow Cytometry according
to the manufacturer’s instructions (Life Technologies,
Bleiswijk, The Netherlands). Briefly, 100 μL lithium-heparin
anticoagulated blood was incubated with pHrodo Red E.
coli BioParticles at 37 °C for 15 minutes after which eryth-
rocytes were lysed. After several washing steps, leukocytes
were stored in 1 % paraformadelhyde solution until flow
cytometric analysis on a Beckman Coulter Cytomics FC500
flow cytometer (Beckman Coulter, Galway, Ireland).
Neutrophils were gated using forward side-scatter char-
acteristics. Percentage of pHrodo-positive neutrophils
(phycoerythrin channel) were determined using a nega-
tive control (blood incubated with pHrodo Red E. coli
BioParticles on ice). Furthermore, mean fluorescence
intensity (MFI) of the pHrodo-positive neutrophil popula-
tion was determined and the phagocytic index was calcu-
lated using the formula: percentage pHrodo positive
neutrophils ×MFI of pHrodo-positive neutrophils.

Statistical analyses
Data are expressed as mean and standard error of the
mean (SEM) or median with interquartile ranges (IQR)
of the 25th and 75th percentile based on distribution
(determined using Shapiro-Wilk tests). Statistical tests
were used as appropriate based on distribution and are
indicated in the text and table and figure legends. A
p value < 0.05 was considered statistically significant.
Statistical analyses were performed using Graphpad Prism
5.03 (Graphpad Software, San Diego, CA, USA).

Results
Demographic characteristics and safety
There were no significant differences in baseline charac-
teristics between the study groups (Table 2). No serious
adverse events occurred during the conduct of the study.

tVNS/sham stimulation procedure
In all 20 subjects, placement of the stimulation electrode
was successful and uneventful. In all 10 subjects of the
tVNS group, laryngeal vibration was felt, indicating
stimulation of vagal fibers (Table 1). Placement of the
stimulation catheter and determination of the correct
electrode pair and stimulation voltage took 40 minutes
on average. Side effects of stimulation during assessment
of the correct stimulation voltage included an uncom-
fortable feeling and/or difficulty in swallowing, throat
spasms, neck muscle contractions, and changes in vocal
sound. In case of side effects, the voltage was lowered.
Stimulation was well-tolerated. In all 10 subjects it was
possible to raise the voltage during the stimulation
period, indicating that the subjects accommodated to
the stimulation (Table 1).

Hemodynamic parameters, temperature, and symptoms
LPS administration resulted in a typical increase in body
temperature, flu-like symptoms, and heart rate, as well
as a decrease in mean arterial pressure (Fig. 2), with no
differences between the tVNS and sham groups.

Plasma cytokines and leukocyte numbers
Administration of LPS resulted in a sharp increase in
plasma levels of the pro-inflammatory cytokines TNF-α,
IL-6, and IL-8 as well as the anti-inflammatory cytokine
IL-10 (Fig. 3). No differences in plasma levels of these
cytokines were observed between the tVNS and sham
groups.
After LPS administration, leukocyte numbers showed

a typical initial decrease (tVNS, from 4.9 ± 1.1 × 109 L−1

at T = 0 hours to 3.7 ± 1.2 × 109 L−1 at T = 1 hours; sham,
from 5.5 ± 1.4 × 109 L−1 at T = 0 hours to 3.4 ± 1.9 ×
109 L−1 at T = 1 hours), followed by leukocytosis,
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peaking at T = 8 hours (tVNS, 10.2 ± 2.4 × 109 L−1; sham,
11.6 ± 2.2 × 109 L−1). At day 2, leukocyte numbers were
normalized (tVNS, 4.9 ± 1.0 × 109 L−1; sham, 6.0 ± 0.8 ×
109 L−1). There were no differences between the tVNS
and sham groups (p = 0.51, two-way ANOVA interaction
term).

Ex vivo whole blood stimulation and neutrophil
phagocytosis capacity
We evaluated the effects of tVNS on cytokine produc-
tion of leukocytes stimulated with LPS ex vivo and neu-
trophil phagocytosis, because previous studies have
indicated that VNS results in altered leukocyte function
[31–34]. LPS administration resulted in a profound tran-
sient reduction in production of TNF-α and IL-6 by leu-
kocytes stimulated with LPS ex vivo in both groups,
which normalized after 8 hours (Fig. 4). There were no
differences in production of TNF-α or IL-6 between the
tVNS and sham groups over time (two-way ANOVA
interaction term indicated in Fig. 4) or at any of the sep-
arate time-points (unpaired Student t-tests).
LPS administration did not result in altered phagocyt-

osis capacity of neutrophils, reflected by the percentage
of phagocytosing neutrophils, fluorescence intensity of
phagocytosing neutrophils, and phagocytic index within
both groups (the latter parameter is depicted in Fig. 5).
Furthermore, there were no differences in phagocytosis
capacity between the tVNS and sham groups over time
(two-way ANOVA interaction term indicated in Fig. 5)
or at any of the separate time-points (unpaired Student
t-tests).

Discussion
VNS has been shown to exert potent anti-inflammatory
effects in animal studies and is implicated in represent-
ing a putative treatment modality for RA. Nevertheless,
until now human data are largely lacking. In the present
study we demonstrate that tVNS is a feasible and well-
tolerated procedure in young healthy male volunteers.
However, tVNS neither affected plasma cytokine levels
and flu-like symptoms, nor fever and hemodynamic pa-
rameters during experimental human endotoxemia. In
addition, no effects of tVNS on cytokine production by
leukocytes stimulated with LPS ex vivo or neutrophil
phagocytosis capacity were observed. To the best of our
knowledge, we are the first to investigate the effects of
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VNS in a standardized well-controlled model of systemic
inflammation in humans in vivo that is widely used to
investigate immunomodulatory therapies [35]. There-
fore, although negative, our results are relevant, espe-
cially because more than 60 clinical studies are currently
underway investigating VNS for the treatment of RA
and various other disorders, including Crohn’s disease,
stroke, and heart failure [36].
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approach did not result in adequate/appropriate stimula-
tion of the vagus nerve. This possibility appears highly
unlikely, since clear laryngeal vibration was observed in
all subjects of the tVNS group and laryngeal side effects
have shown to be a reliable indication of stimulation of
the vagus nerve using the cuff electrode VNS system
[27–29]. Heart rate variability (HRV) analysis, a widely
used method to determine vagus nerve activity, is not
suited for assessing VNS in our setting as it merely re-
flects cardiac vagal effects, which are predominantly me-
diated by the right vagus nerve. Analogous to virtually
all animal and human VNS studies, we stimulated the
left vagus nerve to minimize cardiac side effects and to
increase outflow to the spleen, which is implicated in
mediating the anti-inflammatory effects of VNS [38]. In
agreement, previous studies have demonstrated that
stimulation of the left vagus nerve using the cuff elec-
trode system does not result in increased vagal HRV pa-
rameters [39–42]. Also, previous animal work has shown
that the anti-inflammatory effects of stimulation of the
left vagus nerve are independent from cardiac vagal ef-
fects [6]. A third possible explanation could be that the
stimulation parameters employed in this study might
not be adequate to produce anti-inflammatory effects.
However, a murine endotoxemia study demonstrated
that anti-inflammatory effects of VNS are similar using
voltages as low as 1 V as well as various pulse widths
and frequencies ranging from 0.5 to 2 ms, and from 5 to
30 Hz, respectively [6]. We used the highest tolerable
voltage per subject to maximize stimulation of the nerve.
Furthermore, the 30-minute duration of stimulation used
in our study appears to be adequate, as many animal stud-
ies used 10–20 minutes [4, 5, 7–10, 38, 43] and anti-
inflammatory effects were shown to be similar using
stimulation durations ranging from 0.5 to 20 minutes [6].
As mentioned before, human studies into the anti-

inflammatory effects of VNS are very scarce, related to
the technical difficulties in stimulating the vagus nerve
and large variation in the inflammatory response in the
clinical setting. Furthermore, the interpretation of these
studies is hampered by the fact that in all but one VNS
study no inflammatory trigger was present. As such, cir-
culating cytokine levels in the study subjects (patients
suffering from epilepsy or depression) were in many
cases undetectable or otherwise very low [39, 44, 45].
Another major difference between these studies and
ours is that, previously, effects of chronic VNS were in-
vestigated (3–7 months, during which patients received
constant stimulation). The results of the studies in which
no inflammatory trigger was present are conflicting, with
two studies demonstrating no change in plasma cytokine
levels 3 months [39] or 7 months [45] after VNS, while
another found that plasma cytokine levels were actually
increased after 3 months of VNS [44]. One study investi-
gated the effects of VNS for 3 weeks and 6 months on
cytokine production by monocytes ex vivo stimulated
with LPS. Out of five measured cytokines at two differ-
ent time-points, only ex vivo production of IL-8 was sig-
nificantly lower 6 months after implantation of the
stimulator device [18]. Only one study assessed the
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effects of vagal stimulation in a clinical setting known to
be associated with an inflammatory response, namely
coronary artery bypass graft surgery [19]. In this study,
epicardial vagal ganglionated plexus stimulation was ap-
plied using a temporary wire electrode placed into the
vagal fat pad on the right ventricle, which resulted in
anti-inflammatory effects [19]. However, the VNS ap-
proach used in this particular study is very different
from all other studies. As such, other effects, such as dir-
ect effects on the right ventricle, may play a role in the
observed results. Of interest, very recently a pilot study
was carried out in which eight RA patients were im-
planted with the cuff electrode VNS system (only pub-
lished in abstract form [46]). In these patients, VNS was
well tolerated but no significant reduction in C-reactive
protein (CRP), Disease Activity Score (DAS)28-CRP, or
Health Assessment Questionnaire Disability Index (HAQ-
DI) was observed 42 days after implantation and start
of VNS.
Along with our main endpoint, i.e., plasma cytokine

levels, several other inflammatory parameters that have
been demonstrated or suggested to be affected by VNS
were evaluated. For instance, it has been proposed that
VNS “reprograms” passing leukocytes in the spleen,
resulting in decreased cytokine production capacity
and recruitment to sites of inflammation by these cells
[31, 33, 34]. This was the rationale for us and others
[18] to examine cytokine production of leukocytes
stimulated with LPS ex vivo. Typically, and similar to
previous studies [25, 47–49], we found a transient re-
duction in leukocyte cytokine production after LPS ad-
ministration in vivo, a phenomenon known as endotoxin
tolerance. However, no effects of tVNS were observed at
any of the time-points studied. This indicates that tVNS
neither exerts immediate effects on leukocyte cytokine pro-
duction capacity, nor does it affect the development of
endotoxin tolerance in these cells. We also evaluated neu-
trophil phagocytosis capacity, because VNS has been re-
ported to enhance phagocytosis in mice [32], possibly also
via reprogramming leukocytes in vagus-innervated organs.
To the best of our knowledge, this is the first time that neu-
trophil phagocytosis has been evaluated in the human
endotoxemia model. We did not find any effects of LPS ad-
ministration on the capacity of neutrophils to phagocytose
E. coli bioparticles. Therefore, it appears that the profound
endotoxin tolerance observed in leukocytes after LPS ad-
ministration in vivo in terms of cytokine production does
not apply to phagocytic function. This is in agreement with
an in vitro study showing that incubation of whole blood
with LPS does result in severely impaired monocytic cyto-
kine production capacity upon restimulation with LPS,
while phagocytosis remains unaffected [50]. Again, in line
with all our other results, no effects of tVNS on neutrophil
phagocytosis were observed.
Conclusions
tVNS is feasible and safe, but does not influence the sys-
temic inflammatory response in vivo in humans during
experimental endotoxemia. These results indicate that
short-term tVNS does not modulate the innate immune
response in humans, and that the therapeutic benefit in
RA patients may be limited.
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