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ABSTRACT 30 

Mental operations like computing the value of an option are computationally expensive. 31 

Even before we evaluate options, we must decide how much attentional effort to invest in the 32 

evaluation process. More precise evaluation will improve choice accuracy, and thus reward 33 

yield, but the gain may not justify the cost. Rational Inattention theories provide an accounting 34 

of the internal economics of attentionally effortful economic decisions. To understand this 35 

process, we examined choices and neural activity in several brain regions in six macaques 36 

making risky choices. We extended the rational inattention framework to incorporate the 37 

foraging theoretic understanding of local environmental richness or reward rate, which we 38 

predict will promote attentional effort. Consistent with this idea, we found local reward rate 39 

positively predicted choice accuracy. Supporting the hypothesis that this effect reflects variations 40 

in attentional effort, richer contexts were associated with increased baseline and evoked pupil 41 

size. Neural populations likewise showed systematic baseline coding of reward rate context. 42 

During increased reward rate contexts, ventral striatum and orbitofrontal cortex showed both an 43 

increase in value decodability and a rotation in the population geometries for value. This 44 

confluence of these results suggests a mechanism of attentional effort that operates by 45 

controlling gain through using partially distinct population codes for value. Additionally, 46 

increased reward rate accelerated value code dynamics, which have been linked to improved 47 

signal-to-noise. These results extend the theory of rational inattention to static and stationary 48 

contexts and align theories of rational inattention with specific costly, neural processes.   49 
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INTRODUCTION 50 

Why do we “pay” attention? Acquiring information through attention requires effort, 51 

which is costly (Botvinick and Braver, 2015; Shenhav et al., 2017; Stigler, 1961). The decision 52 

to pay attention should be made just like any other cost-benefit decision: by estimating its cost 53 

and comparing it with the net benefit expected from its expenditure. This cost-benefit logic 54 

applies to any process that requires attention, including evaluating options in choice. Evaluation 55 

is an attentionally demanding computational sampling process (Bakkour et al., 2019; Krajbich et 56 

al., 2010; Rangel et al., 2008; Rich and Wallis, 2016), and is, therefore, cognitively costly 57 

(Lieder and Griffiths, 2019). Rational choosers, then, should exert more attentional effort in 58 

evaluation when it is valuable to do so (Enke, 2024; Glimcher, 2022; Polania et al., 2024). 59 

Conversely, when the benefits of evaluation are reduced, rational choosers should withdraw 60 

attention and rely on approximation, even at the risk of choice errors. This is the core logic of the 61 

rational inattention theory, which formalizes the economic principles by which we allocate our 62 

attentional effort (Dean and Neligh, 2023; Gabaix et al. 2019; Gershman and Burke, 2022; 63 

Matêjka et al., 2015; Sims, 2003; Woodford, 2009). Behavioral studies have provided evidence 64 

in favor of the predictions of rational inattention by showing how changes to available rewards 65 

can modulate intertemporal choice precision (Gershman and Bhui, 2020), risky choice (Dean and 66 

Neligh, 2023), and alter perceptual discrimination learning (Grujic et al., 2022).  67 

From the rational inattention perspective, willingness to expend attentional effort should 68 

be motivated by available reward. In some cases, the value of attending might be determined by 69 

the learned average reward of an environment (Mikhael et al., 2021). However, in other cases, 70 

the determiners of attentional effort can be more complex. Most environments exhibit fluctuating 71 

richness levels around an average reward. And decision-makers need to predict in advance 72 

whether the future attentional effort will pay off.  Foraging theory tells us that decision-makers 73 

can predict the value of this future attentional effort by monitoring the local richness or local 74 

reward rate in comparison to the global average reward, and tune their strategy to its variation 75 

(Charnov, 1976; Hayden, 2018; Stephens and Krebs, 1986). Specifically, in richer contexts, 76 

foragers should invest more effort because the effort leads to greater and sooner expected payoff, 77 

and vice versa (Shadmehr and Ahmed, 2020). Indeed, there is evidence that even in static 78 

environments with a stable average reward, decision-makers' efforts (e.g., vigor) in choice can be 79 

motivated by the recent reward rate in accordance with foraging principles (Yoon et al., 2018). 80 
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Thus, an increase in local reward rate is likely then interpreted as increased environmental 81 

richness, and would therefore promote attentional effort in offer value evaluation. Thus, a 82 

foraging perspective offers a principled expansion of what motivates rationally inattentive 83 

behavior from a dynamic environment – which has known changes in rewards – to the broader 84 

case where reward rates have to be calculated and environmental reward statistics are not fully 85 

known.  86 

While rational inattention offers a powerful explanation for behavioral data, the neural 87 

processes that support its implementation remain unknown. Here, we examined a large dataset of 88 

behavior and neural activity in six rhesus macaques performing a risky choice task (Strait et al., 89 

2014). We found, confirming predictions made by our extension of rational inattention theory, 90 

choice accuracy is positively correlated with recent reward rate. Furthermore, baseline and 91 

evoked pupil are both higher in richer reward contexts, supporting the idea that these 92 

improvements are due (at least in part) to attentional effort. We examined responses of single 93 

neurons in the ventral striatum, orbitofrontal cortex, pregenual cingulate cortex, and posterior 94 

cingulate cortex. In all regions, we observed a systematic decodability of reward rate before the 95 

start of the trial. In VS and OFC, increases in reward rate resulted in improved value decodability 96 

during offer evaluation; this increase could be directly attributed to an increase in neural gain. 97 

Reward rate also partitioned the neural geometries for value coding into semi-orthogonal 98 

subspaces, while value was still decodable in both subspaces. This result deviates from a pure 99 

neural gain model (McAdams and Maunsell, 1999; Salinas and Thier, 2000) in which tuning to 100 

value would be fixed across reward rate contexts, and subsequently would predict aligned value 101 

subspaces. Instead, the semi-orthogonalization of subspaces supports an abstract value code that 102 

is bound to different reward rate contexts (subspaces) with different gains (Johnston and Fine; 103 

2024; Bernardi et al., 2020); this points to gain control operating as a distributed population code 104 

rather than amplitude modulation of neurons with a fixed tuning to value (Xie et al., 2022). In 105 

other words, partially distinct population codes were used for different gains. Finally, we found 106 

the value coding subspaces during evaluation were dynamic rather than persistently stable (Enel 107 

et al., 2020; Goldman, 2009; Stokes et al., 2013), and, specifically, that richer contexts led to 108 

faster changing (more dynamic) codes. These neural results therefore link rationally inattentive 109 

behavior with specific, likely costly, neural processes, and show how attentional effort operates 110 

by changing population ensemble codes.  111 
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RESULTS 112 

            We analyzed choices made by six rhesus macaques performing a two-option 113 

asynchronous gambling task (Strait et al., 2014; Fine et al., 2023; Figure 1A). On each trial, 114 

two offers appear in sequence (one-second asynchrony) on opposite sides of a computer screen 115 

(left or right). Then the two offers reappear, simultaneously, and the subject makes a choice by 116 

shifting gaze and fixating their preferred offer. Each offer is defined by a probability (0-100%, 117 

1% increments) and stakes (large or medium reward, 0.240 and 0.165 mL juice, respectively). 118 

The probabilities and stakes associated with both offers are randomized for each option. The 119 

order of presentation (left first vs. right first) is randomized by trial. 120 

Because a subject’s perception of the offer value is uncertain, it must infer the actual 121 

offer value (Figure 1B). Bayesian observer models describe how an optimal observer can 122 

combine their noisy perception of a stimulus (likelihood) with a prior belief over its values (Ma 123 

et al., 2023). Typical Bayesian models assume the likelihood noise is extrinsic and not under the 124 

observer’s control. Rational inattention generalizes this idea by acknowledging that observers 125 

can expend attentional effort to improve perception (Sims, 2003; Woodford, 2009). However, 126 

optimizing observers should only invest this effort when the expected benefits outweigh the 127 

costs. In our task, a reward rate proxy is assumed to motivate or set attentional effort or coding 128 

precision (Figure 1B; Mikhael et al., 2021). Therefore, increases in reward rate should yield 129 

more precise value estimates and, therefore, more optimal choices when choosing between the 130 

values because the options are more discriminable (Figure 1C).  131 
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 132 

Figure 1. Task outline, description of rational inattention theory, and predictions. 133 
A. asynchronous gambling task. On each trial, subjects first sees an offer (risky option) 134 
on either the left or right. Following a 600 ms blank delay, a second offer appears for 135 
400 ms; after another 600 ms delay, both options reappear, subjection chooses, and 136 
reward is given. B. Rational inattention is a Bayesian observer theory that describes 137 
how the actual values (AV) on offer are encoded as a noisy percept (likelihood) and 138 
combined with a prior belief about the distribution of values (p(AV*)). Rational 139 
inattention theory proposed the likelihood precision is enhance by a larger reward 140 
expectation. A foraging perspective on Rational inattention theory posits that the 141 
precision of the likelihood is modulated by the local reward rate. C. As a consequence, 142 
in the risky choice task, when reward rate is high (green distributions), the internally 143 
estimated offer value deviates more from the mean of the prior distributions of values 144 
(p(AV*)) and tend towards the correct value. While in low reward rate contexts, 145 
estimated values exhibit a regression to the prior mean.  Neurally, this means value 146 
decodability between low and high offer values should be more accurate in high versus 147 
low reward rate conditions. In addition, the choices should become more accurate as 148 

6 
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reward rate increases and should be reflected as a steepening of a choice logistic 149 
curve. 150 
 151 

Subjects make better choices when reward context is richer 152 

We predicted subjects would devote more attention, and thus show more accurate 153 

choices, when the local reward rate was higher. Based on our earlier work relating choice 154 

strategy to recent outcomes, we defined reward rate as an exponentially decaying function over 155 

recent rewards (in this case, 3 trials) compared to the subject’s global reward rate (across 156 

sessions, cf. Hayden et al., 2008 and 2011). To quantify changes in choice accuracy, we 157 

performed a logistic model of subject choices using regressors (1) for difference in expected 158 

value between the two offers (ΔEV), (2) reward rate, and (3) the interaction of reward rate with 159 

ΔEV variables. All six subjects exhibited a higher model conditional probability (AIC weights all 160 

> 0.62 for each subject; Figure 2A) in favor of a model with ΔEV and a reward rate interaction 161 

of ΔEV. In general, ΔEV scaled positively with reward rate (Figure 2B), meaning subjects were 162 

more accurate at discriminating close stimuli when recent reward rate was greater (Figure 2C; 163 

all subjects: t(320)=14.36, p < 0.00001).  164 

The extra effort applied had tangible results. We computed the reward gain using trials 165 

that were non-overlapping from those used to compute the reward-rates (ie., the next trial). 166 

Specifically, we calculated the normalized ratio of subsequent reward gained on high versus low 167 

reward rate.  On average, higher reward rate resulted in a gain of approximately 10% of the 168 

global average reward size (Figure 2D; specifically, an additional 0.24 mL of juice; t(320) = 169 

12.61, p < 0.00001) per trial. This result places a specific value of attentional effort in units of 170 

juice volume - the relevant unit for these monkeys in this context. This result implies that, ceteris 171 

paribus, the subjective, internal, cost of applying attentional effect in the amount allocated in the 172 

higher reward rate context was equivalent to 0.24 mL of juice. These results accord with the 173 

prediction that higher reward rates may incentivize more attention to option values, leading to 174 

more optimal choices (Figure 2D). 175 

 176 
 177 
 178 
 179 
 180 
 181 
 182 
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 183 
 184 
 185 
 186 

 187 
Figure 2. Logistic choice model, pupillometry, brain areas and reward rate 188 
decoding. A. AIC model weights, showing probability in favor of the logistic choice 189 
model with a reward rate x ΔEV interaction term. Weights are the mean and standard 190 
error across for each subject, taken over each subject’s sessions. The weights were all 191 
greater than 0.5, indicating this model was favored for all subjects. B. The cumulative 192 
density choice function of the reward rate x value interaction regression coefficients for 193 
all session logistic models. C. Logistic choice curve from average model coefficients 194 
fitted across six subjects. Curves are shown for the low reward rate context (purple), 195 
high reward rate context (green) and the median reward rate (black line). Subjects show 196 
more optimal choices (steeper slope) in the high reward rate condition. D. Average 197 
reward gain defined as the normalized ratio of high reward rate to low reward rate 198 
contexts. Reward gain increases for the n+1 trial defined after the 3 trial reward rate 199 
window. Subjects gained more reward on these trials following high reward rates. E.  200 
Baseline corrected mean pupil across subjects, for both the low (purple) and high 201 
(green) reward rate conditions. Note that values are greater even before an offer 202 
appears. Shading: standard error. Black dots: time points with significant differences. F. 203 
MRI coronal slices showing the 4 different core reward regions that were analyzed. G. 204 
The decoding of reward rate across all brain areas (lines) and their significant points 205 
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(dots) for each brain area. Each brain area is colored according to E. OFC: red; VS: 206 
blue; PCC: brown; pgACC: pink. 207 
 208 
Pupil responses reflect increased reward rate context 209 

We hypothesized that these changes in behavior reflect changes in the allocation of 210 

attentional effort. To obtain complementary evidence in favor of the attention hypothesis, we 211 

examined pupil size. Pupil size has long been considered a measure of attentional effort and 212 

overall arousal state more generally (Strauch et al., 2022; Urai et al., 2017; van der Wel and van 213 

Steenbergen , 2018), and is also linked to neural gain (Aston-Jones and Cohen, 2005; Eldar et al., 214 

2013). For this reason, tonic pupil differences have been used to index rationally inattentive 215 

behavior in mice (Grujic et al., 2022).  216 

To determine whether these patterns of pupil activity apply in our macaques, we acquired 217 

pupil size measures in three of our subjects (V, S, and P). In all three, pupil size increased 218 

steadily between fixation onset and the first offer window (Figure 2E). Overall pupil size was 219 

locked to key events across the offer epochs and their delay periods. Using a permutation t-test 220 

(false discovery rate corrected p < 0.05) that split pupil responses on high vs. low reward rate, we 221 

found several contiguous points where pupil response was larger for a high reward rate context 222 

(Figure 2E). Specifically, we found higher pupil responses for high reward rate in the baseline 223 

period (~ -400:0 ms, where 0 indicates offer 1 onset). We also found larger pupil sizes in both 224 

offer evaluation periods (~ 0:200 ms and 1000 - 1200 ms) and during both memory periods for 225 

both offers (~600:1000 ms and 1600:2000 ms). These results support the hypothesis that 226 

increases in reward rate are likely paired with increased attentional effort, both before and during 227 

evaluation. 228 

 229 

Pre-trial neural activity encodes local reward rate context 230 

We next examined the dependence of neural activity on local reward rate in four brain 231 

regions, orbitofrontal cortex (OFC), pregenual anterior cingulate cortex (pgACC), posterior 232 

cingulate cortex (PCC), and ventral striatum (VS). To increase statistical power, we combined 233 

neurons from central OFC (cOFC, Areas 13 and 11) with those in medial OFC (mOFC, Area 234 

14o, Ongur and Price, 2000). We refer to this larger area as OFC in results. Together, these four 235 

regions (Figure 2F) constitute the majority of the core reward network, a set of regions whose 236 

neural activity robustly encodes values of offers and outcomes (Barta et al., 2013; Clithero et al., 237 
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2014).  238 

We first asked whether we could decode reward rate (low vs. high, median-split) in each 239 

region. To do this, we used a linear support vector machine (SVM, Methods). Reward rate was 240 

decodable during the baseline period (-500 to 0 ms) in all four brain regions (Figure 2G, 241 

permutation test, p <0.05, false discovery rate corrected). Reward rate information only became 242 

decodable again in PCC at the onset of the second offer and was maintained throughout the 243 

second offer window. Thus, all four core value regions contain a neural signal for reward rate 244 

context that presumably covaried with an attentional allocation process. Because the reward rate 245 

decoding was predominantly found during the baseline, attentional allocation was likely set 246 

before offers were evaluated.  247 

 248 

249 

10 
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 250 
Figure 3. Value subspace projection, Value decoding, Neural geometries, Value 251 
Subspace Correlations. A-D (OFC, VS, PCC, pgACC). Projection of each brain area’s 252 
firing rate activity onto the value decoding subspaces– showing the population firing rate 253 
in the value space. Purple and green lines are the low and high reward rate projections, 254 
respectively. Dashed and solid lines are low and high value conditions, respectively. 255 
This shows how gain changes appear in the population coding of value; for example, in 256 
A. and B. the difference in solid and dashed green lines (high reward rate) is evidenced 257 
by greater than that for solid and dashed purple (low reward rate) conditions. E-H Value 258 
decoding across both reward rate conditions and their difference. Lines are the mean 259 
decoding accuracy. Accuracy for low and high reward rate conditions are purple and 260 
green, respectively. Significant decoding is shown as a matching color dot. Blue dots 261 
show significant differences in decoding accuracy between reward rate conditions. E. 262 
OFC. F. VS. G. PCC. H. pgACC. I-K. Different three-dimensional neural population 263 
geometries corresponding to different hypothetical population coding scenarios for 264 
increased reward rate driving coding. I. Pure gain coding models would yield aligned 265 
differences in decoding accuracy between conditions, with greater distance between 266 
points as decoding accuracy increases (purple: low reward rate; green: high reward 267 
rate). Values subspaces defined by decoder hyperplanes (lines connecting points) 268 
would also be parallel (non-orthogonal). J. The subspaces can also be rotated and 269 
imperfectly aligned (orthogonality). More orthogonal subspaces are unaligned with pure 270 
gain models, as this implies neuron value tuning is not invariant to auxiliary conditions 271 
(here, reward rate). K. An example of a neural geometry that exhibits both gain coding 272 
and subspace rotation. L. Neural value geometry (subspaces) for OFC estimated with 273 
multidimensional scaling. M. same as L. for VS neural geometry. N. swarmplots 274 
showing bootstrap distributions of subspace correlations between low and high reward 275 
rate contexts. Gray box around zero correlation shows noise level for each area 276 
(*p<0.05, **p<0.01), and upper gray box shows ceiling for orthogonality criterion.  277 
 278 
Value information is gain modulated by reward rate context 279 

  If subjects operated commensurate with predictions from rational inattention theory, 280 

then attentional effort should increase coding fidelity during offer evaluation. Attention alters 281 

gain in single neurons (David et al., 2008; Hermann et al., 2010; McAdams and Maunsell, 1999; 282 

Treue and Maunsell, 1996). We therefore predicted that larger reward rate contexts would show 283 

gain-enhanced value coding relative to low-reward trials. Notably, gain changes have a direct 284 

translation to population coding: it is established that increases in overall tuning gain to a 285 

variable – value here – directly translate to increased distance between stimulus representations 286 

in their neural geometry (Kriegeskorte and Wei, 2021; Johnston and Fine, 2024). Larger 287 

distances between neural population codes predict higher decoding accuracy. Therefore, we can 288 

assess the prediction of population gain change by looking directly at change in neural value 289 

decoding for different levels of reward rate. We used linear SVMs to classify value (low vs high, 290 
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median split), separately for each reward rate context. We can visualize the population activity in 291 

value space by projecting the mean firing activity onto the decoding hyperplanes. Examining 292 

these projections indeed suggests OFC and VS have a higher gain for value coding during high 293 

reward rate contexts (Figure 3A-D). Next, we provide quantitative evidence for this observation. 294 

Our analysis focused on the first offer window (0-1000 ms) as it is separated from any 295 

processes involved in option comparisons that happen in the second offer window (Yoo and 296 

Hayden, 2020). In both OFC and VS, value was decodable during the high reward rate and low-297 

reward rate conditions (Figure 3E-F). Value was not decodable in any of the other regions 298 

during this time-window (Figure 3G-H). 299 

Next, we tested the hypothesis that population gain is greater in high reward rate 300 

contexts. We compared decoding accuracies between reward rate levels using Wilcoxon-rank 301 

tests (permutation and false discovery rate corrected p < 0.05). During the offer evaluation period 302 

(0-400 ms), we observed this gain coding difference in both OFC and VS (Figure 3E-F). These 303 

results indicate OFC and VS carry a change in evaluation that aligns with the rational inattention 304 

predictions. Surprisingly, during the memory window (the subsequent 600 ms during which the 305 

monitor was blank) we observed the opposite direction of differential decoding in both OFC and 306 

VS –  low reward rate trials exhibited a higher accuracy; nonetheless, it is notable this latter 307 

window likely involves distinct working memory processes rather than the evaluation process 308 

that requires effortful attention and gain control. Thus, we provide evidence for population gain 309 

effects for online evaluation in OFC and VS; for this reason, we do not further evaluate pgACC 310 

and PCC  regions in this study. 311 

 312 
Value coding subspaces are semi-orthogonal between reward rate contexts 313 

We next asked how reward rate context changes the geometry of value coding. Geometry 314 

changes could occur instead of or in conjunction with a gain change (Figure 3I-K).  In the 315 

language of vector spaces, attentional effort could alter the vector length (gain; Figure 3I) or the 316 

angle (geometry; Figure 3J), or both at the same time (Figure 3K). A pure gain model would 317 

predict highly similar value subspaces between reward rate contexts; this is because pure gain 318 

control would result from neurons that are invariantly tuned to value. In contrast, a population 319 

code could still exhibit attentionally based gain control even if the single neuron tuning to value 320 

shifts across reward rate contexts, predicting semi-orthogonal subspaces. To distinguish these 321 
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two hypotheses, we quantified the alignment between value coding subspaces – defined by the 322 

decoder hyperplanes –  in high- and low- reward rate conditions (Libby and Buschman, 2021). 323 

Specifically, we took the decoder weights to instantiate the linear subspace for value separately 324 

for each reward rate context. We estimated alignment (that is, orthogonality) by correlating the 325 

SVM decoder weights, effectively performing targeted dimensionality reduction (Kimmel et al., 326 

2020). To avoid neural confounds of value comparison and choice, we focused on an offer 327 

evaluation window in which decoding of value was highest (100-400 ms; Figure 3E-F).  328 

We found in both OFC (Figure 3L) and VS (Figure 3M) that subspace correlations 329 

between low and high reward rate were semi-orthogonal (Figure 3N). Specifically, responses in 330 

both regions were lower than the noise ceiling (p <0.0001, see Methods) and greater than a 331 

shuffle-based noise floor (OFC: p = 0.002; VS: p = 0.038; Figure 3N). This result indicates that 332 

the gain differences (reward rate context) in value decoding (in this window) are not a simple 333 

modulation of neurons with fixed tuning to value. This is because maintaining a decodable value 334 

signal while employing semi-orthogonal subspaces requires that some neurons change their 335 

tuning to value across reward rate contexts. Thus, these results suggest gain control over value 336 

operates by partitioning population codes based on whether they were evaluated with either low 337 

or high attentional effort (reward rate).  338 

 339 

Temporal dynamics of value coding subspaces are modulated by reward rate context 340 

 Neural codes are often dynamic; the type of dynamics they exhibit can be indicative of 341 

different underlying network schemata (Murray et al., 2016; Stroud and Lengyel, 2024; Wang et 342 

al., 2023). Previous modeling work has shown dynamic codes are largely driven by networks 343 

with effectively feedforward connectivity (Goldman, 2009; Stroud and Lengyel, 2024). The 344 

same modeling has shown these dynamic, feedforward codes can exert an information 345 

processing advantage compared to classic linear integrators/attractors: the increased dynamicism 346 

of effective feedforward networks may amplify the signal to noise ratio of processed inputs 347 

(Ganguli et al., 2008; Goldman, 2009; Hennequin et al., 2012; Murphy and Miller, 2009). We 348 

hypothesized such network-based signal amplification could support attentional effort control 349 

through code dynamics. Thus, to quantify the dynamics of value coding in OFC and VS, we 350 

asked whether the neural decoding value subspaces are stable or dynamic, and in the dynamic 351 

case, how its dynamics are affected by reward rate context. We used cross-temporal decoding 352 
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(CTD) of value with a linear SVM decoder (Stokes et al., 2013; Meyers et al., 2008). In CTD, a 353 

decoder is trained on one time window and tested for generalization on another (Methods). 354 

Thus, CTD tests how well a value code at one time-point generalizes to another time-point. High 355 

CTD throughout the offer window implies a stable code.   356 

 In both OFC and VS, and in both high and low reward rate contexts, we found significant 357 

temporal generalization (Figure 4A-B, OFC, and Figure 4D-E, VS). For example, both regions 358 

exhibited generalization across the offer evaluation window (0-400 ms; Figure 4A-B, OFC, and 359 

Figure 4D-E, VS). Both regions also exhibited some generalization with the delay window (400-360 

1000 ms; Figure 4A-B, OFC, and Figure 4D-E, VS). However, this generalization was 361 

relatively short-lived in both windows: the coding subspaces for evaluation and memory periods 362 

were distinct and did not generalize to one another. These results accord with previous studies 363 

indicating the subspaces for evaluation or online perception are rotated into a distinct subspace 364 

during memory (Libby and Buschman, 2021; Johnston and Fine 2024; Yoo and Hayden, 2020; 365 

Tang et al., 2020). 366 

Next, we quantified the differences in value subspace dynamics between each reward rate 367 

context by comparing the proportion of significant off-diagonal terms (Figure 4C, OFC and 368 

Figure 4F, VS). Across windows and both OFC and VS, we found a more dynamic code for 369 

high-reward rate contexts (false discovery rate, all significant points p < 0.05). Put differently, 370 

low-reward contexts exhibited more temporal generalization (stability) in value codes across 371 

time. These results are consistent with the hypothesis that the resulting reward rate differences in 372 

value code dynamicism reflect an amplification of value coding precision. 373 
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374 
 375 
Figure 4. Cross-temporal decoding (CTD). A - B CTD across the first offer window for 376 
OFC in the high reward rate (A; green) and low reward rate (B; purple) contexts. 377 
Training-time points for the SVM are on the x-axis and test-time points are on the y-axis.378 
Significant points of CTD are colored in. Both plots show substantially more CTD in low 379 
reward rate contexts (B), as verified in C. showing the counted  number of significant 380 
time points of CTD for OFC, for each training time point. Black dots indicate significantly 381 
different counts between reward rate contexts; all significant points indicated low reward 382 
rate contexts (purple) had a higher CTD (more stable) compared to high reward rates 383 
(green; more dynamic).  D-E. shows the CTD for VS region, with D. showing high 384 
reward rate CTD and E. showing low reward rate contexts. F. shows a pattern of CTD 385 
counts (dynamics) where low reward rate contexts where more stable than high reward 386 
rate contexts. 387 
 388 
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DISCUSSION      391 

We used the theory of rational inattention (RI) to understand choice behavior and reward-392 

related neural responses in macaques performing a risky choice task. We find, consistently 393 

across six subjects, that behavioral performance, as estimated by choice variability, waxes and 394 

wanes across trials. Our central behavioral result is that this variability is not random but is 395 

enhanced in temporally local rich contexts (e.g., a pattern of recent wins). This pattern is 396 

predicted by an extension of rational inattention theory that incorporates foraging theory, in 397 

which evaluation requires costly allocation of attention and the allocation of attention is 398 

determined by temporally local reward rate. Specifically, it predicts that decision-makers 399 

increase the precision of evaluation in richer reward rate contexts. The hypothesized link 400 

between evaluation and attention is further supported by our complementary pupil size results. 401 

Together, these results provide strong behavioral and neural evidence in favor of the principles 402 

of rational inattention as a basis for controlling attentional effort in option evaluation. 403 

One important feature of our study is extending rational inattention principles from 404 

shifting reward contexts to include static (including stationary) contexts. Previous studies have 405 

generally focused on contexts in which the optimal allocation of attention covaries with the 406 

dynamic variability in payoff structure within that context (Gershman and Burke, 2022; Grujic et 407 

al., 2022). In contrast, we propose that attentional allocation decisions are based on internal 408 

estimates of cost-benefit, which can be driven by stochastic variability in a stationary 409 

environment. This idea can then be rationalized with the foraging theoretic idea that local 410 

environmental richness (reward rate) should motivate investment (Charnov, 1976; Hayden et al., 411 

2011; Yoon et al., 2018). Our approach, then, extends the ideas elaborated in previous studies of 412 

rational inattention and models (Grujic et al., 2022; Gershman and Burke, 2022). Specifically, an 413 

insightful theory was recently developed that connected the motivating signal of rationally 414 

inattentive perceptual control to average-rewards and tonic dopamine (Mikhael and Gershman, 415 

2021).  416 

Our neural results provide a potential neural basis for the costs and benefits of attentional 417 

effort. During trials with greater attentional allocation, value responses in OFC and VS are 418 

enhanced with a gain modulation, and as a result, value decodability increases. This effect 419 

supports the assertion that attentional effort is costly because it requires more metabolically 420 

costly spikes (Laughlin et al., 1998). This cost was presumably counterbalanced by harvesting of 421 
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additional juice reward; indeed, we show that subjects gained more reward on those trials in 422 

which gain was higher. However, this was not the only effect of attentional effort; attention also 423 

systematically alters population coding geometries in a way that deviates from a pure gain model 424 

of attention. Specifically, we found semi-orthogonal subspaces for value coding in both OFC and 425 

VS between the different reward rate contexts. One possible explanation for the subspace 426 

distinction is that it reflects the extent to which a value code in a reward rate context is projected 427 

from an encoding-oriented subspace to a comparison-oriented or choice-oriented subspace 428 

(Elsayed et al., 2016; McGinty and Lupkin, 2023; Panichello and Buschman, 2021;Yoo and 429 

Hayden, 2020).  430 

Why would attentional effect have this effect? We speculate that these distinct subspaces 431 

may bind the value code to different reward rate contexts that convey an evaluation confidence-432 

like signal (Pouget et al., 2016). Consider, for example, that in low reward rate (and thus low-433 

attention) contexts, subjects may only weakly sample the stimulus. By using partially distinct 434 

subspaces that are tagged with a confidence signal, this weak sampling of value can be translated 435 

to downstream neurons involved in choice comparisons, allowing them to discriminate whether 436 

the encoded value was done under low- or high-attention. Coding of confidence signals would be 437 

consistent with previous work showing OFC subregions can code for subjective value (Padoa-438 

Schioppa, 2011) and confidence signals (De Martino et al., 2013; Gherman and Phillistades, 439 

2018;  Lebreton et al., 2015). More generally, finding semi-orthogonal value subspaces indicates 440 

the value code strikes a balance between being able to bind the encoded value with the reward 441 

rate context, while also being able to generalize the value code between contexts (Barak et al., 442 

2013; Bernardi et al., 2020; Nogueira et al., 2023; Johnston and Fine, 2024).  443 

Our finding that richer reward rate contexts produce more dynamic value codes is 444 

important for understanding how attentional effort controls value coding accuracy. We speculate 445 

on the computational benefits of using dynamic codes rather than stable attractors and drift-446 

diffusion models found in common models of evaluation and choice (Hunt et al., 2012; Krabich 447 

et al., 2010; Rustichini and Padoa-Schioppa, 2015). We hypothesize that dynamic codes allow an 448 

amplification of the inputs used to evaluate the offer value, improving coding fidelity. This idea 449 

is supported by several modeling studies showing that dynamic codes are both driven by 450 

networks with an effectively feedforward connectivity structure (non-normal network) and have 451 

the benefit of amplifying the signal to noise ratio of processed inputs (Baggio et al., 2020;  452 
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Stroud and Lengyel, 2024). The reason for this amplification is because when an input is 453 

processed in a feedforward chain, and it's projected earlier into that chain compared to later, it 454 

has more chances to transiently amplify that signal by processing through more connections and 455 

mitigating the impact of noise (Goldman, 2009).  Importantly, if such a feedforward process 456 

supports offer evaluation, then making a code more dynamic by processing it through more 457 

steps, then the evaluated offer signal fidelity will be amplified. This fact in turn points to another 458 

link between our physiological findings and the benefits of attentional control: more attentional 459 

effort may convey more accurate value information via dynamic coding.   460 
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Methods  721 

Surgical procedures  722 

All procedures were approved by either the University Committee on Animal Resources 723 
at the University of Rochester or the IACUC at the University of Minnesota. Animal procedures 724 
were also designed and conducted in compliance with the Public Health Service’s Guide for the 725 
Care and Use of Animals. All surgery was performed under anesthesia. Male rhesus macaques 726 
(Macaca mulatta) served as subjects. A small prosthesis was used to maintain stability. Animals 727 
were habituated to laboratory conditions and then trained to perform oculomotor tasks for liquid 728 
rewards. We placed a Cilux recording chamber (Crist Instruments) over the area of interest. We 729 
verified positioning by magnetic resonance imaging with the aid of a Brainsight system (Rogue 730 
Research). Animals received appropriate analgesics and antibiotics after all procedures. 731 
Throughout both behavioral and physiological recording sessions, we kept the chamber clean 732 
with regular antibiotic washes and sealed them with sterile caps. 733 

 734 
Recording sites  735 

We approached our brain regions through standard recording grids (Crist Instruments) 736 
guided by a micromanipulator (NAN Instruments). All recording sites were selected based on the 737 
boundaries given in the Paxinos atlas (Paxinos et al., 2008). In all cases we sampled evenly 738 
across the regions. Neuronal recordings in OFC were collected from subjects P and S; recordings 739 
in rOFC were collected from subjects V and P; recordings in vmPFC were collected from 740 
subjects B and H; recordings in pgACC were collected from subject B and V; recordings from 741 
PCC were collected from subject P and S; and recording in VS were collected from subject B 742 
and C. 743 

We defined cOFC as lying within the coronal planes situated between 28.65 and 42.15 744 
mm rostral to the interaural plane, the horizontal planes situated between 3 and 9.5 mm from the 745 
brain’s ventral surface, and the sagittal planes between 3 and 14 mm from the medial wall. The 746 
coordinates correspond to both areas 11 and 13 in Paxinos et al. (2008). We used the same 747 
criteria in a different dataset (Blanchard et al., 2015). 748 

We defined mOFC 14o as lying within the coronal planes situated between 29 and 44 749 
mm rostral to the interaural plane, the horizontal planes situated between 0 and 9 mm from the 750 
brain’s ventral surface, and the sagittal planes between 0 and 8 mm from the medial wall. These 751 
coordinates correspond to area 14m in Paxinos et al. (2008). This dataset was used in Strait et al., 752 
2014 and 2016, and corresponds to the same region used in Jurewicz et al., (2024) and Maisson 753 
et al. (2021). 754 

We defined pgACC 32 as lying within the coronal planes situated between 30.90 and 755 
40.10 mm rostral to the interaural plane, the horizontal planes situated between 7.30 and 15.50 756 
mm from the brain’s dorsal surface, and the sagittal planes between 0 and 4.5 mm from the 757 
medial wall. Our recordings were made from central regions within these zones, which 758 
correspond to area 32 in Paxinos et al. (2008). Note that the term 32 is sometimes used more 759 
broadly than we use it, and in those studies encompasses the dorsal anterior cingulate cortex; we 760 
believe that that region, which is not studied here, should be called area 24 (Heilbronner and 761 
Hayden, 2016).  762 

We defined PCC 29/31 as lying within the coronal planes situated between 2.88 mm 763 
caudal and 15.6 mm rostral to the interaural plane, the horizontal planes situated between 16.5 764 
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and 22.5 mm from the brain’s dorsal surface, and the sagittal planes between 0 and 6 mm from 765 
the medial wall. The coordinates correspond to area 29/31 in Paxinos et al. (2008, Wang et al., 766 
2020; Foster et al., 2023). 767 

We defined VS as lying within the coronal planes situated between 20.66 and 28.02 mm 768 
rostral to the interaural plane, the horizontal planes situated between 0 and 8.01 mm from the 769 
ventral surface of the striatum, and the sagittal planes between 0 and 8.69 mm from the medial 770 
wall. Note that our recording sites were targeted towards the nucleus accumbens core region of 771 
the VS. This dataset was used in Strait et al. (2015 and 2016). 772 

We confirmed the recording location before each recording session using our Brainsight 773 
system with structural magnetic resonance images taken before the experiment. Neuroimaging 774 
was performed at the Rochester Center for Brain Imaging on a Siemens 3T MAGNETOM Trio 775 
Tim using 0.5 mm voxels or in the Center for Magnetic Resonance Research at UMN. We 776 
confirmed recording locations by listening for characteristic sounds of white and gray matter 777 
during recording, which in all cases matched the loci indicated by the Brainsight system. 778 

 779 

Electrophysiological techniques and processing  780 

Either single (FHC) or multi-contact electrodes (V-Probe, Plexon) were lowered using a 781 
microdrive (NAN Instruments) until waveforms between one and three neuron(s) were isolated. 782 
Individual action potentials were isolated on a Plexon system (Plexon, Dallas, TX) or Ripple 783 
Neuro (Salt Lake City, UT). Neurons were selected for study solely on the basis of the quality of 784 
isolation; we never preselected based on task-related response properties. All collected neurons 785 
for which we managed to obtain at least 300 trials were analyzed; no neurons that surpassed our 786 
isolation criteria were excluded from analysis.  787 

 788 

Eye-tracking and reward delivery 789 

 Eye position was sampled at 1,000 Hz by an infrared eye-monitoring camera system (SR 790 
Research). Stimuli were controlled by a computer running Matlab (Mathworks) with 791 
Psychtoolbox and Eyelink Toolbox. Visual stimuli were colored rectangles on a computer 792 
monitor placed 57 cm from the animal and centered on its eyes. A standard solenoid valve 793 
controlled the duration of juice delivery. Solenoid calibration was performed daily. 794 

 795 

Risky choice task  796 

The task made use of vertical rectangles indicating reward amount and probability. We 797 
have shown in a variety of contexts that this method provides reliable communication of abstract 798 
concepts such as reward, probability, delay, and rule to monkeys (e.g. Azab et al., 2017 and 799 
2018; Sleezer et al., 2016; Blanchard et al., 2014). The task presented two offers on each trial. A 800 
rectangle 300 pixels tall and 80 pixels wide represented each offer (11.35° of visual angle tall 801 
and 4.08° of visual angle wide). Two parameters defined gamble offers, stakes and probability. 802 
Each gamble rectangle was divided into two portions, one red and the other either gray, blue, or 803 
green. The size of the color portions signified the probability of winning a small (125 μl, gray), 804 
medium (165 μl, blue), or large reward (240 μl, green), respectively. We used a uniform 805 
distribution between 0 and 100% for probabilities. The size of the red portion indicated the 806 
probability of no reward. Offer types were selected at random with a 43.75% probability of blue 807 
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(medium magnitude) gamble, a 43.75% probability of green (high magnitude) gambles, and a 808 
12.5% probability of gray options (safe offers). All safe offers were excluded from the analyses 809 
described here, although we confirmed that the results are the same if these trials are included. 810 
Previous training history for these subjects included several saccade-based laboratory tasks, 811 
including a cognitive control task (Hayden et al., 2010), two stochastic choice tasks (Blanchard 812 
et al., 2014), a foraging task (Blanchard and Hayden, 2015), and a discounting task (Pearson et 813 
al., 2010). 814 

On each trial, one offer appeared on the left side of the screen and the other appeared on 815 
the right. We randomized the sides of the first and second offer. Both offers appeared for 400 ms 816 
and were followed by a 600-ms blank period. After the offers were presented separately, a 817 
central fixation spot appeared, and the monkey fixated on it for 100 ms. Next, both offers 818 
appeared simultaneously and the animal indicated its choice by shifting gaze to its preferred offer 819 
and maintaining fixation on it for 200 ms. Failure to maintain gaze for 200 ms did not lead to the 820 
end of the trial but instead returned the monkey to a choice state; thus, monkeys were free to 821 
change their mind if they did so within 200 ms (although in our observations, they seldom did 822 
so). Following a successful 200-ms fixation, the gamble was resolved and the reward was 823 
delivered. We defined trials that took > 7 sec as inattentive trials and we did not include them in 824 
the analyses (this removed ~1% of trials). Outcomes that yielded rewards were accompanied by a 825 
visual cue: a white circle in the center of the chosen offer. All trials were followed by an 800-ms 826 
intertrial interval with a blank screen. 827 

 828 

Choice behavior model 829 

 Previous analysis and modeling of this behavioral data indicate monkeys make choices 830 
with a subjective value estimate of a risk-seeking attitude towards offer size (stakes) and a 831 
probability estimate well approximated by a prelec function. Subjects are assumed to choose 832 
according to the difference in offer one and offer two subjective values (∆��). Here, we also 833 
consider the role of reward rate on modulating this logistic choice function as predicted by 834 
rational-inattention theories.   835 

All choice model maximum-likelihood optimization was performed using Scipy.optimize 836 
in Python with a binary-cross entropy loss. Each model was fit on a per-session basis. Choices 837 
were fit with a logistic choice model simultaneously with the power-function for utility (stakes) 838 
weighting and the prelec function for probability. The subjective value term for each offer was 839 
created by multiplying the utility and probability terms. Model-selection was performed by 840 
fitting all variants of the models, and compared using Akaike Weights (Wagenmarker and 841 
Farrell, 2004). The full logistic choice model in log-linear form was designed as follows, with 842 
linear and interaction regressors: 843 

 844 
 ����������	
 1	�� � �� � �� ��� � �� �
������
 � ������ � �
������
�  845 

Pupillometry 846 

Blinks and missing data were cleaned from the pupil data by linearly interpolating the 847 
missing points. Pupil time-series were low-pass filtered at 15 Hz (butterworth, 2nd order), 848 
smoothed with a savitkgy-golay filter (window size 5 and poly order 3). The filtered time-series 849 
were then epoched to each offer window, starting at the fixation cross, up till the offer 2 memory 850 
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window offset (2000 ms after the onset of 1st offer).  The time-series were reference level 851 
corrected by subtracting the grand mean. 852 

Pupil differences between low and high-reward average conditions were predicted to be 853 
different. This was assessed by computing the separate mean pupil trace for 33% and 66% 854 
percentiles of reward rate for each session. We computed the mean condition difference across 855 
subjects, and used a condition label permutation t-test (1000 permutes) at each time point. The 856 
true mean difference was compared against the permutations to establish a p-value. 857 

Neural Decoding  858 

 Decoding of either subjective value or reward rate was done using a linear support vector 859 
machine (SVM; LinearSVC in sklearn), with stratified 5-fold cross-validation, with a re-860 
sampling of 90% of the maximum possible trials, repeated forty times. Decoding was performed 861 
using a 180 ms window with 40 ms moving window. All decoding analysis was performed using 862 
all subjects for a given brain area.  863 
 Reward rate decoding involved using the 33% and 66% percentiles to split the trials into 864 
a low and high reward rate, respectively. Because decoding analysis of subjective value also 865 
aimed to compare to value decoding at low- and high-reward rates, we conditioned the 33% and 866 
66% percentiles of subjective value on the 33% and 66% percentiles of reward rate. Value 867 
decoders were then fit separately for each reward rate level. To compute decoder significance, 868 
for each condition, we also permuted the target labels and refit the decoder. This was performed 869 
500 times. We considered decoding significant when p<0.05 for at least two adjacent time-870 
windows. For comparing decoding accuracy of value between reward rate conditions, we used 871 
the fitted decoders to correct labels. We permuted the accuracy scores between conditions, 1000 872 
times to build a null distribution and compute a p-value at each time-point. Multiple comparisons 873 
across time-points were corrected using a false discovery rate.  874 
  875 

Cross-temporal decoding (CTD) 876 

 Dynamics of value coding was computed by using the time-point specific linear SVM 877 
computed above for value, in each of the 5 k-folds, and testing on all of the trials for the other 878 
time-point. The training time-point i  was tested on time-point j, where the significance for CTD 879 
was determined using the permutation threshold determined using the permuted decoder for 880 
training on time-point j; this is the same threshold used for value decoding as described in Neural 881 
Decoding.  882 

Subspace orthogonality 883 

 The alignment or orthogonality of value coding reward rate specific subspaces was 884 
determined by computing a bootstrap correlation between value decoding (SVM) weights. The 885 
SVM weights define a one-dimensional axis in the neuron firing space that vary specifically with 886 
offer value. To compute the subspace orthogonality, we first averaged the weights across the 5 887 
folds for each of the forty value decoding runs (subsampled trials). Averaging was done 888 
separately for both low and high reward rate decoder weights, yielding 80 total sets of weights. 889 
We then computed the full set of correlations between these weights, correlating each low 890 
reward rate to each high reward rate set of weights. A noise threshold was computed to 891 
determine difference from zero by repeating the same procedure using the permuted sets of 892 
decoder weights. To determine whether subspaces were significantly semi-orthogonal (less than 893 
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1) we followed a previous procedure (Kimmel et al., 2020) and computed a ceiling threshold in 894 
two-steps. First, we compute all of the correlations between weights for each reward rate 895 
condition. This yields a separate vector of subspace correlations for the low and high reward rate 896 
conditions. Each of these correlations are then multiplied elementwise, and square root 897 
correcting, yielding a threshold distribution for testing of correlations significantly less than 1. 898 
Significance testing for either greater than noise or less than 1 (test of semi-orthogonality) was 899 
computed using a z-test that compared the mean actual subspace correlation to the distributions 900 
of noise and ceiling correlations.  901 
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