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Introduction

Hollow organs may be affected by a variety of disease pro-
cesses – congenital malformation, autoimmune disease, 
inflammation, infection and cancer to name but a few 
potential problems. Current treatment generally relies on 
resection and/or replacement of this tissue. Resection of 
tissue is often only successful when relatively small seg-
ments of the organ are affected. Ultimately, having less 
surface area by large-scale removal of tissue leads to the 
organ having reduced functionality as seen in problems 
such as short bowel syndrome arising from loss of a com-
ponent of the digestive system.1–5 Attempts to replace tis-
sue have been made using mucosal grafts from other parts 
of the body; however, this can cause subsequent problems 
at the donor site: reconstruction of hollow organ tissue is 
susceptible to leakage, rejection, stricture formation, ste-
nosis and may require continuous stenting to maintain 
patency.6–8 Epithelialisation is crucial to maintain patency 
of organs, and a lack of epithelial cell layer can lead to 
over-proliferation of underlying fibroblast layer leading to 
stricture formation, stenosis and potential graft failure9 in 
addition to organ-specific functions. (Table 1)

This increasing burden of unmet clinical need is driving 
the search for effective procedures to develop functional 
epithelialised organs. Tissue engineering has already 
advanced sufficiently to create various organs syntheti-
cally for transplantation or reconstruction: examples 
include the world’s first tissue-engineered bladder.17 
However, epithelialisation of these synthetic organs is a 
process that is proving difficult to replicate in vitro.

Understanding the nature of epithelial cells is an impor-
tant consideration when designing epithelialised tissue-
engineered structures. Epithelial cells are finely tuned to 
their specific organ (Table 1). Epithelial cells can be lining 
hollow organs as surface epithelium13 (Figure 1). At this 
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interface, epithelial cells carry out functions such as creat-
ing a protective barrier for underlying organ; absorption of 
luminal contents; secreting substances into the lumen such 

as mucus by the goblet epithelial cells in the trachea or 
digestive enzymes secreted by the stomach and small 
intestine; controlling passage of materials across body 

Table 1. Types of epithelial cells present in specific hollow organs.

Organ Epithelium type Function References

Trachea Many cell types within epithelium:
Ciliated pseudostratified columnar
Secretory goblet
Serous cells
Basal neuroendocrine cells
Basal stem cells

Moisten and protect airways
Barrier to pathogens
Mucociliary elevator

Delaere 
and Van 
Raemdonck10

Oesophagus Stratified squamous Rapid turnover
Protective barrier function against the 
abrasive effects of food

Ozeki et al.11, 
Kalabis et al.12

Stomach Stratified squamous above cardia
Simple columnar with gastric pit 
invagination below cardia

Mucus cells produce protective alkaline 
mucus to prevent digestion of stomach 
wall from HCl producing cells

Young et al.13

Small 
Intestine

Simple columnar (enterocytes, 
goblet cells, enteroendocrine cells, 
M cells and Paneth immune cells)

Selectively absorb digested material 
from intestinal lumen
Release mucus
Barrier to pathogens

Day14

Urinary 
Bladder

Referred to as urothelium
Transitional
Basal layer: compact and cuboidal
Intermediate: columnar
Surface cells: dome cells which are 
imperbeable to urine

Epithelium can contract and expand in 
response to volume of bladder: allows 
bladder to change shape according 
to volume of urine without damaging 
epithelium
Protects underlying tissue from caustic 
effects of urine
Protect blood–urine barrier

Liao et al.15

Urethra
Prostatic
Membranous
Penile

Referred to as urothelium
Transitional
Pseudostratified columnar/
stratified squamous
Pseudostratified columnar

Mucus-secreting cells to protect 
underlying tissue from urine
Protect blood–urine barrier

Liao et al.16

Figure 1. Types of epithelium corresponding to distinct physiological systems.
Diagram template adapted from Wiki Commons20 and SEM pictures from Science Photo Library.21
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surface by selective diffusion; and containment of luminal 
contents.18 Cells are usually found as a continuous sheet of 
cells that, in some organs, can be stacked to form layers. 
The cells reside upon a basement membrane, which demar-
cates the border between epithelial cells and underlying 
cells. This basement membrane is not penetrated by blood 
vessels, and therefore, epithelial cells rely on simple diffu-
sion for supply of oxygen and nutrients.19

This article focuses specifically on the epithelialisation 
of hollow organs such as trachea, oesophagus, stomach, 
small intestine, colon, urinary bladder and urethra, where 
their tubular forms distinguish them from other more solid, 
visceral organs such as the heart and liver and give a prom-
inent role to the luminal epithelial layer, which is in con-
tact with the external environment. This review aims to 
evaluate the materials and fabrication methods, which 
have been successful in producing scaffolds and their limi-
tations, with a view to present these as lessons in designing 
more optimal scaffolds for a functional epithelium associ-
ated with tubular structures.

A host of factors determine epithelial–material interac-
tions which include mimicking extracellular matrix 
(ECM). For example, scaffold pores should be large 
enough to allow vascular infiltration and angiogenesis, but 
not too large to prevent formation of cell layering and epi-
thelial cells slipping through; hydrophilic surface to pro-
mote cell adhesion; appropriate tensile strength appropriate 
to the replaced organ; biodegradable and appropriate rate 
of degradation to allow successive replacement with native 
tissue; surface morphology to support cell adhesion; abil-
ity to mould into appropriate tubular structures; non-
immunogenic; non-toxic; responsive to growth; and easy 
to produce and transplant into patient.22,23

Numerous types of scaffolds have been developed for 
hollow organ development. The wide range of materials 
available and their interaction with epithelial cells are 
illustrated in Table 2.

Types of scaffolds

Biological scaffolds

Decellularised scaffolds. Biological, decellularised scaf-
folds can be created from donor human or animal tissue. 
Decellularisation involves removing cells expressing 
major histocompatibility complex (MHC) class I and II 
antigens to stop an immunogenic response using deter-
gent.26 Decellularisation of tissue can be done using chem-
ical treatment of NaClO4;37 however, this method has not 
been widely used. Detergent-enzymatic method has been 
very popular and generally yields good results.11,38–42

This method removes immunogenic components of tis-
sue while maintaining structural integrity to cope with the 
biological flow stresses in vivo. The scaffold is biologi-
cally active due to native ECM proteins and with pro-
angiogenic, chemotactic growth factors remain intact 

even after the decellularisation process.42 They facilitate 
cells forming crucial cell–ECM interactions, culminating 
in organ remodelling required for transplantation.17 
However, there are several limitations to this method.

Decellularised scaffold relies on donor organs; thus, it 
does not overcome the global issue of transplant donor 
organ shortage. Furthermore, decellularisation does not 
lead to absence of inflammatory response but it is a com-
paratively reduced inflammatory response in comparison 
with allogeneic or xenogeneic grafts. While this may be 
some form of progress, inflammation can still arise. Both 
inflammation stenosis and stricture formation have been 
observed in various decellularised tubular scaffolds, in the 
absence of cells.16,35,43 Therefore, decellularised scaffolds 
may require stenting to prevent graft collapse and the long-
term biodegradability of decellularised scaffolds being 
unknown. There is also a lack of uniformity between scaf-
folds and unable to tailor the graft to the requirements of 
the recipient.44

Fibrin gel. Fibrin gel is created from fibrinogen and 
thrombin found in the blood to create a gel-like sub-
stance, and this can be easily extracted from autologous 
blood.45 Bronchial epithelial cells were shown to produce 
confluent layer and ciliary production when seeded on 
fibrin gels.24 However, in another study, the cells that 
grow show less structured layering, rounder cells and 
more immature cilia formation than original tissue, as 
cytokeratin patterns in experimental models do not cor-
respond to cytokeratin patterns in native trachea.46 And 
the significance of epithelial tissue is reiterated by Heikal 
et al.,47 where fibrin constructs with cells were not 
implanted and it led to fibrosis and stenosis.

Advantages of fibrin gel are that it is easy to seed cells 
and mould the gel into appropriate structures. However, 
due to its relatively fragile nature, it needs to be supported 
by a mesh if used to replace tubular organs.48

Collagen. Abundant in the ECM, collagen is a good 
source to use when culturing epithelial cells. A collagen-
coated polypropylene mesh has been used for airway 
reconstruction,49 while collagen scaffold–incorporated 
fibroblasts have been shown to regenerate tissue and 
enhance wound healing. After 14 days, epithelialisation 
and cartilage formation was observed throughout the 
scaffold, more rapidly than the control.50 This use of col-
lagen-modified scaffolds with stem cell–epithelial cell 
co-culture encourages mesenchymal cell migration into 
the scaffold, which may produce basement membrane 
proteins and growth factors.51

Basic fibroblast growth factor (bFGF) was incorpo-
rated into a collagen vitrigel membrane, which then cov-
ered an artificial trachea made of Marlex polypropene 
mesh and collagen sponge. There was stratified epithe-
lium, columnar cells and ciliated cells at day 5, 7, and 
14, respectively.52
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OptiMaix-3D collagen-coated scaffolds are prone to 
epithelial cells passing through or clustering rather than 
seeding uniformly on the surface. Two-dimensional (2D) 
scaffolds showed monolayer formation and no cell migra-
tion through the scaffold but have limited applicability.53–55 
As collagen coating may lead to slow or partially epitheli-
alised surfaces, coating the collagen surface with L-C co-
polymer keeps this collagen layer intact and yields more 
positive results.56

The useful effects of collagen may not be specifically 
restricted to its physical properties as a scaffold, but also 
after its degradation, it can improve vascular growth and 
lead to desmin-positive tissue formation.57

Chitosan. Chitosan is a natural polymer derived from chi-
tin. It can be easily modified and complexed with other 
proteins. Unmodified chitosan leads to no cell adhesion. 
Modified chitosan scaffold coated with fibronectin or 
elastin transiently leads to the formation of strong cell 
adhesion contacts, but cells eventually undergo de-adhe-
sion. There has been some link to collagen–chitosan com-
plexes supporting oesophageal epithelial cell adhesion 
and proliferation.31

Gelatin. Gelatin is often complexed with other materials. It 
is shown to be a biodegradable and bioabsorbable natural 
polymer, with neovascularisation and epithelial growth 
seen and degeneration after 2 months. Epithelial markers 
such as pan-cytokeratin staining, while initially positive, 
become negative after 4 months. It is a good material for 
initial adhesion and growth of cells, but poor at maintain-
ing differentiation of buccal mucosa.36

Gelatin has also been combined with other proteins 
such as decorin–gelatin electrospun complexes. There was 
greater adhesion of cells and increased cell layer formation 
in comparison with simple gelatin scaffold. To improve 
differentiation, there is a need for greater exposure to bio-
physical flow stress exposure. Also, the pore sizes created 
by electrospinning technique are too large for successful 
epithelialisation.25

Gelatin was also combined with dextran sulphate to 
form dextran sulphate–gelatin membrane. Full tracheal 
regeneration was observed, but it took 2–3 months and 
there is a high risk of stenosis in the organ. Furthermore, 
immunogenic reaction was seen towards this membrane. It 
is worth noting that hyaluronate-rich extracellular compo-
nents allow it to have strong cell–scaffold interactions.9

Synthetic scaffolds

Synthetic polymers being increasingly investigated as nat-
ural materials prove to be mechanically weak. However, 
while the physical strength, biocompatibility and bioab-
sorbability of these polymers are promising, poor cell 
adhesion hinders their use. Synthetic scaffold success with 

regard to epithelialisation relies on four main stages epi-
thelial cells have to progress: migration to correct site; 
adhesion of cells to surface; proliferation of cells to 
increase in number and repopulate area; and finally, dif-
ferentiation to mature cell type or cell type seen in vivo 
models. Different factors target different stages, and thus, 
the challenge is to create a scaffold material that can suc-
cessfully progress through all four of these stages.

Silicone stents were used as a scaffold for urothelial 
growth with an attempt to grow bladder epithelial cells in 
porcine models. Better results were in fact seen on latex 
scaffolds, but this may not be universally clinically appli-
cable.4 Polyglycolic acid (PGA) mesh using poly(lactic 
acid) (PLLA) glue was used to seed stomach epithelial 
cells such as gastric patches. The results show neomucosa 
formation with smooth muscle proliferation and no clear 
discontinuity between donor and recipient mucosa.1 
Previous work on polycaprolactone (PCL) has been devel-
oped in the fields of bone58,59 and oesophageal27 tissue 
engineering. Electrospun PCL was seeded with primary 
oesophageal epithelial cells. While PCL nanofibres show 
high tensile strength and slower degradation, there was 
greater cell proliferation on PCL–gelatin hybrid. A PCL–
silk fibroin hybrid also promoted the epithelial cell attach-
ment and proliferation. Mitochondrial activity increased 
when the material was coated with extracted basement 
membrane proteins.27 These findings demonstrate the 
importance of a combination of molecular profiles to 
enhance cell attachment. Poly(lactic-co-glycolic) acid 
(PLGA) is a biodegradable polymer, and the material 
shows rapid degradation and useful biocompatibility prop-
erties. It also has reduced irritation of sensitive tissues and 
so may be applicable to urethral stents.60 Precoating with 
collagen type IV has shown to increase adhesion and pro-
liferation but differentiation is limited.29 A mesh knitted 
with PLGA and polypropylene for tracheal reconstruction 
showed good mechanical properties, which were enhanced 
after coating with polyurethane. However, there was 
patchy ciliated columnar epithelium intermittently along 
the graft, rather than the desired confluent layer, even after 
6 weeks.61

Scaffold fabrication with  
three-dimensional printing

A range of biofabrication methods can be used to develop 
tubular scaffolds (Figure 2). Conventional methods to cre-
ate scaffolds for tissue engineering such as gas foaming62 
and phase separation63 are useful, and there is a need to 
regenerate the scaffold’s submicron internal architecture 
and initiate a degree of bioactivity for scaffolds to support 
epithelialisation. Additive manufacturing methods or 
three-dimensional (3D) printing can offer methods that 
can enable precise reproduction of the tissue’s size and 
shape.64 There are a variety of bioprinting methodologies 
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that include stereolithography apparatus, thermal inkjet 
printing, fused deposition modelling and powder binding. 
Stereolithography (SLA)65 uses an excess layer of liquid 
photopolymer or epoxy resin. A low-power ultraviolet 
(UV) laser is then used to cure the excess liquid into a solid 
object. The excess raw materials and supporting structures 
must be removed and then cured in a UV chamber. A plat-
form is positioned such that a thin layer of photopolymer/
epoxy resin (0.05–0.15 mm) exists above the platform, 
exposing it to the UV laser.66 As the UV beam comes into 
contact with the liquid plastic, it instantly hardens forming 
a thin, solid layer at the surface of the platform.67 Each 
layer produced represents a cross section of the desired 3D 
object. The platform then moves to allow the superposition 
of subsequent layers until the desired thickness is reached. 
This system can be used with living cells and biomateri-
als.68 Thermal inkjet printing shows promise in regenera-
tive medicine and has generated the foundation for future 
organ-printing technologies.69,70 With this method, living 
cells are printed in the form of droplets from a printhead 
onto a substrate (as opposed to printing them on scaffolds) 
in accordance with instructions sent digitally from a com-
puter to the printer. The droplets are ejected using com-
pression generated either mechanically or using thermal 
energy. The droplet size can be as small as 10–150 pL. This 
can be modified by altering the pulse frequency, tempera-
ture gradient or the viscosity of the bio-ink. Fused deposi-
tion modelling has a printhead similar to that used in a 
thermal inkjet printer.71 Layers of material are created by 
the deposition of material such as plastic as the printhead 
moves.70,72 The process is repeated allowing very precise 

control of the amount and location of each droplet of mate-
rial at each layer.73 As the material is heated, it fuses as it 
cools to the layers below.73

There is also powder binding, by which a layer of pow-
dered material placed on a surface and a solvent (or liquid 
binder) is selectively deposited onto the powdered surface 
by a printhead. The solvent (or liquid binder) causes the 
powdered material to bind together to form a fragile but 
solid material of a predetermined geometry. In addition to 
hollow, tubular scaffolds, stents are widely used to address 
disease and damaged tubular structures. Strut structure, 
high radial strength (needed to maintain tubular diame-
ter), low recoil, high radiopacity (to ensure precise posi-
tioning)79 and conformability (lack of conformability or 
increased stent rigidity) leading to failure are significant 
features.80 Table 3 contains a summary of the advantages 
and disadvantages of various 3D printers.

Stainless steel can be used to make stents which has the 
main advantage of being highly biocompatible and suffi-
cient mechanical strength. However, there were a number 
of limitations such as high strut thickness, limited flexibil-
ity and low corrosion resistance.79 Cobalt–chromium stent 
alloys are also used which allow for thinner struts without 
compromising radial strength or resistance to corrosion. 
The introduction of a platinum–chromium alloy stent 
appears to incorporate many properties such as radiopac-
ity, thin struts, high radial strength and biocompatibility. 
These stents can be designed as drug-eluting stents81 and 
can potentially modify to ensure epithelialisation or to 
eliminate patency-limiting factors through the introduc-
tion of functional epithelium mimicking bio-factors.

Figure 2. Possible biofabrication methods to develop hollow, tubular scaffolds to replace/repair tubular organs.
(1) Solvent evaporation of polycaprolactone; (2) magnified cross section of (1);74 (3) magnified cross section of solvent exchanged polycaprolactone-
based scaffold;74 (4) decellularised tracheal segment;75 (5) 3D-printed tubular tissue;76 (6) hybrid scaffold (polyurethane outer coat on a decellularised 
oesophagus); (7) electrospun tubular tissue.77 Figure of structures of natural tubular organs is adapted from Basu and Ludlow.78
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Properties considered when 
fabricating scaffolds for hollow organ 
development

Pore size and porosity

Pore size and porosity play an important role in mimicking 
natural ECM and for cells to attach. Electrospinning, salt 
sintering and 3D printing82 are some methods by which 
pores are introduced. Porosity determines the mechanical 
strength of the polymer and the rate of biodegradability in 
non-biostable materials. Epithelial adhesion is shown to be 
optimal in scaffolds with pore sizes <10 µm.18 Nanosized 
porous or fibrous surfaces have also been shown to be 
advantageous to cell and protein adhesion within scaffold 
surface but larger pores created by methods such as elec-
trospinning produce larger diameter pores do not optimally 
suit epithelial cell seeding.83

Hence, a laminated model seems to present a better 
solution with large pore sizes on the basal layer but smaller 
pore sizes on the luminal surface to allow for epithelial 
adhesion and prevent cell penetration. In the small intes-
tine, cell sheets of varying porosity and cell size were com-
pounded to make multi-layered scaffold.84 The bilayered 
concept was also explored using electrospun scaffold 
where smaller pores are used in luminal surface and bigger 
pores for basal surface which is conducive for fibroblasts.39 
There is a need for scaffolds with a smaller pore size at the 
luminal surface for optimal epithelium attachment and 
proliferation. However, larger pores have shown to encour-
age bronchial epithelial cell aggregation, integration and 
vascular growth.85

Stretchability/stiffness

The role of scaffold stiffness was long recognised to 
influence cell–material interactions, where soft poly-
acrylamide gels (E = 0.1−1 kPa) would direct mesenchy-
mal stem cell differentiation towards neuronal phenotype 
such as brain. Relatively harder gels (E = 8 to 17 kPa) 
directed mesenchymal stem cells (MSCs) to become 

muscle cells, while the stiffest scaffolds (E = 25 to 40 kPa) 
produced osteogenic cells.86 Recently, peristalsis has 
been shown to stimulate micromechanical processes such 
as rearranging lateral cell–cell adhesions and aligning 
cytoskeletal components.87

Surface modification

Surface modifications to scaffolds such as introducing bio-
active molecules88–90 can alter the surface chemistry, 
thereby modulating cell attachment and proliferation. 
Plasma treatment can introduce hydroxyl and carbonyl 
groups that increase hydrophilicity of the scaffold and 
increase cell adhesion.91 The argon plasma ablation of pol-
yethylene led to oxidation and increased surface roughness 
which had positive effect on fibroblasts cells.92

An optimal scaffold mimics the basic structure of the 
ECM. The ECM co-ordinates the binding of cells. Cells 
also respond to the ECM via integrin receptors which rec-
ognise and interact with ECM components. Subsequently, 
leading to signal transduction intracellularly modifies cell 
behaviour.

Therefore, an ideal scaffold must be more than a pas-
sive support for cells. It is a much more dynamic and influ-
ential structure: binding various signals (such as growth 
factors and hormones) that are tailored to the surrounding 
cell type is responsive to the action of cells and adjusts 
nutrient supply to the cell accordingly.

The concentration of calcium to which epithelial cells 
are exposed enhances different stages of epithelial cell 
growth. Cells cultured under low calcium conditions show 
greater proliferative capacity. When calcium concentration 
increases, there is raised differentiation of epithelial cells 
and reduced proliferation. In synthetic scaffolds, it is the 
crucial step of adhesion, that is, one of the great challenges 
of tissue engineering. The calcium concentration was ini-
tially low, and after reaching confluence, it increased.30

Such chemical and biological modifications on a scaf-
fold can influence the surface wettability of a scaffold sur-
face. Surface wettability refers to the hydrophilic or 

Table 3. Advantages and disadvantages of 3D printers.

Type of printer Advantages Disadvantages

Stereolithography High resolution can reach 
submicron scale

Expensive laser systems
Laser could damage living cells
Limited to UV-curable substances

Thermal inkjet printer Use of small droplet volume 
permits high-resolution printing

Requires the use of material that has a high gelation rate 
which limits the materials that can be used

Fused deposition binding Objects can be produced using 
cheap systems

During the processing stages, rough surfaces are produced.
Low resolution

Powder binding Low cost
Fast printing speed
Wide variety of powder material

Low resolution
Difficult to remove the solvent/liquid binder

3D: three-dimensional; UV: ultraviolet.
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hydrophobic nature of the scaffold surface. Hydrophilic 
scaffolds tend to resist proteins, while hydrophobic scaf-
folds absorb proteins. Absorption of proteins might lead to 
distortion of the 3D conformation of the protein, making 
changes to the degree of cell adhesion and migration.23 
Moderately, hydrophilic materials are optimum for adsorp-
tion of proteins. Neither super hydrophilic nor super 
hydrophobic materials have shown to be ideal.93

Cell sources for epithelialisation

Current scaffolds seem unable to rely on native cells for 
repopulation, as independently forming functional epithe-
lium can be time-consuming and may impact the regenera-
tion of underlying tissues due to reciprocal differentiation 
factors released from neighbouring tissue layers.30,94 The 
current studies on cell sources used for epithelisation are 
listed in Table 4.

Autologous source

It is also important to consider the immunogenic poten-
tial of grafted cells, a common concern in allogeneic or 
xenogeneic transplants. One way to solve this problem is 
relying on autologous cell transplantation. Studies have 
been carried out to establish culture systems for tracheal 
epithelial cells using tissue explant technique.104,105 
While it would be intuitive to directly seed epithelial 
cells to allow epithelialisation, there is difficulty in epi-
thelial cell extraction, optimal cell adhesion and sus-
tained differentiation.41,106

There have been attempts to locate endogenous stem 
cells found within the site of the organ by looking at mod-
els in response to organ injury and determining where the 
new generation of cells to repair the organ and replace lost 
cells arise from, hoping to use this pool of undifferentiated 
cells for seeding. However, there are some cases where 
this proves difficult, such as in patients with reduced intes-
tinal length due to ulcerative colitis or Crohn’s disease and 
may not have the capacity to provide the number of stem 
cells for adequate population of the graft. One solution for 
this may be in-vitro expansion of cells; however, intestinal 
epithelial cells have poor in-vitro growth, and this may 
reduce the clinical translatability of this method.14

Stem cells

Pluripotent stem cell is a viable option. Bone marrow–
mesenchymal stem cells (BM-MSCs) hold much potential, 
as BM-MSCs show cytokeratin expression and migration 
to replace damaged epithelial cells. Several papers reiter-
ate the idea that epithelial progenitor cells are derived from 
bone marrow, which circulate and then recruit to the site of 
injury to reconstitute the repaired epithelium to some 
extent.97,98 Adipocyte MSCs showed a pseudostratified 

columnar epithelium along with goblet cells, cilia and 
angiogenesis in rat models for tracheal epithelial growth.51 
Human embryonic stem cells hold great potential but are 
wrapped in controversy. However, amniotic fluid stem 
cells or amniotic fluid progenitor cells display similar 
characteristics of bone marrow stem cells, but in rodent 
models have been shown to have ‘higher healing proper-
ties’, perhaps by influencing local oxygen levels. The stem 
cells have similar properties to the embryonic stem cells, 
but there are less ethical dilemmas surrounding these cells 
as well as less risk of being teratogenic.95 Another cell 
source is human-induced pluripotent stem cells, and these 
can show embryonic stem cell–like activity using similar 
signalling pathways by modification of around four key 
genes.107

Transdifferentiation of skin epithelial cells to tracheal 
epithelial cells presents a different method of obtaining 
epithelial cells. Results show cilia formation, and cells 
remain viable for several months. Despite inflammation 
after 1 month post-surgery and some stenosis 4 months 
post-surgery, this presents an interesting avenue of alterna-
tive cell sources for epithelialisation.100

Co-culture

The use of cells seeded on scaffolds is actually one of 
some debates. Some papers argue that research should 
move to focus on ensuring the scaffold has sufficient fac-
tors to stimulate cell migration, proliferation and differen-
tiation in vivo rather than using valuable resources 
procuring cells and fine-tuning technique to graft onto 
scaffold.

The bipotential scaffold fabricated by Tada et al.108 
aimed to show that native tissue infiltration is able to pro-
duce mucosal repair using native cells without the need for 
seeding.

Epithelialisation has shown to be optimal when co-cul-
tured with fibroblasts or media conditioned with fibro-
blasts. The interaction between neighbouring mesenchymal 
cells and epithelial cells is crucial in differentiation of epi-
thelium and graft development. Fibroblasts produce essen-
tial ECM, which also supports epithelial cells, secrete 
growth factor molecules such as bFGF, epidermal growth 
factor (EGF) and keratinocyte growth factor among others, 
each helping to develop the epithelium and surrounding 
mesenchyme.109

Nasal respiratory epithelial cells and fibroblasts were 
grown together for 1 week using a fibrin and titanium mesh 
in ovine models, which reconstituted the basement mem-
brane.47 Fibroblasts continue to have this positive effect 
even in larger tracheal defects with ciliated, pseudostrati-
fied epithelium still seen.106 Kobayashi et al.110 also co-
cultured epithelial cells with fibroblasts, leading to 
pseudostratified cilia goblet and basal cells formation and 
reciprocally, fibroblasts increasing mucin secretion 
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by epithelial cells. However, their novel work was co-cul-
turing fibroblasts and adipose-derived stem cells with tra-
cheal epithelial cells. It transpires that each cell plays its 
own unique role in epithelial cell regeneration. The fibro-
blasts drive differentiation and pseudostratification of the 
epithelial cell layer, and adipose-derived stem cells drive 
proliferation, multilayering of epithelial cell sheets and 
accelerate neovascularisation. There are detailed synergis-
tic effects of epithelialisation on both types of cells, as well 
as ion channel and basement membrane construction.53

The inclusion of adipose-derived stem cells has indi-
cated that other cells may also be implicated in improving 
epithelialisation shown by promising results with 
BM-MSCs and chondrocytes co-culture.95 Pfenninger 
et al. co-cultured many human epithelial cells with various 
combinations of other cells including chondrocyte pellets, 
articular cartilage chips and collagen membrane plus chon-
drocytes. Epithelial cells were seeded internally and chon-
drocyte externally on the luminal surface of a decellularised 
tracheal grafts and placed in a bioreactor. Both cell types 
covered the matrix within 72 h and improved epithelialisa-
tion and graft survival.109

Endothelial and epithelial cells have crucial and differ-
ing roles in response to injury. The epithelial cells contain 
the extent of the injury and stimulate mesenchymal hyper-
plasia to allow proliferation of cells to replace injured 
cells, while endothelial cells maintain and preserve epithe-
lial cells and perfuse the injured tissue. This in turn pro-
duces factors for fibroblast migration and remodelling and 
further enhances epithelium growth.111 This supports 
Beckstead in the oesophageal model, who has suggested 

that the regeneration of epithelium is crucial as it is linked 
to the regrowth of the underlying muscular layers in the 
oesophagus.30

Other techniques of improving 
epithelialisation

The way in which cells are seeded onto the scaffold is 
important in epithelialisation of the tubular structures. 
Conventionally, cells are usually seeded onto scaffold 
while in a solution with the appropriate media, with indi-
vidual or clusters of cells forming attachments. This 
method works fairly well; however, alternative methods of 
cell seeding onto scaffolds have been investigated. Figure 
3 summaries the various factors involved to create the 
ideal tubular scaffold.

Air–liquid interface

Air–liquid interface cultures are useful in airway epithe-
lium formation.39 In submerged conditions, murine 
embryonic stem cells differentiated to non-ciliated secre-
tory Clara cells, but when using air–liquid interface cul-
turing techniques, the stem cells differentiated to all three 
cell types of airway epithelium ciliated, basal, and 
secretory.115

Epithelial cell sheets

The use of epithelial cell sheets has been shown to have 
regenerative potential even without scaffold support, 

Figure 3. Factors influencing an ideal tubular scaffold.
(1) SEM of a synthetic scaffold;30 (2) various SEM of materials and porous scaffolds;82 (3) porogen to induce homogenous honeycomb-structured 
pores (Everett et al.90); (4) 3D rendering of epidermal growth factor;112 (5) modulating surface wettability; measurements of water contact angle; (6) 
fluorescence image of adipose-derived stem cells;51 (7) SEM of bronchial epithelial cells; (8) skin epithelial cells transdifferentiation;100 (9) epithelial 
cell sheets;113 (10) bioreactor;114 (11) organoid (Maemura et al.1); and (12) air–liquid interface.47
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commonly used therapeutically in oesophageal endoscopic 
submucosal dissection.102,113,116 The cell sheet is formed by 
lowering the temperature of the flask containing cells to 
around 20°C rather than trypsinising cells to seed them on 
scaffold in solution; however, mild fibrosis and substantial 
degree of constriction are still seen.94,117,118

In the context of synthetic scaffolds, cell sheet seeding 
may overcome the practical problem of epithelial cell 
adhesion as epithelial cells often infiltrate into the scaf-
fold pores rather than forming a surface layer.55 A skin 
graft of epithelial cells seeded upon cartilage sheets 
wrapped with external abdominal oblique muscle flaps 
and a silicone stent was performed and are well-vascular-
ised and remodelled except for thin layers that led to poor 
epithelialisation.119

Organoid units

An organoid is a bud of an organ which preserves the vari-
ous cell layers on a smaller scale than the native organ, 
thereby allowing for interactions between different cell 
layers such as small intestines.120 In intestinal models, epi-
thelial differentiation through goblet and/or Paneth cell 
formation, as well as a progenitor cell layer forming below, 
is consistent with gastric epithelium and expression of gas-
tric stem cell markers.121 However, most of the cells die 
after implanting the construct as the complex organoid 
structure no longer receives adequate nutrition to the inner, 
more densely packed layers. In the gastric model, hetero-
geneity of cell types in different regions of the stomach 
meant that organoids may not have the full variety of cells 
seen in the native stomach.121

Bioreactor

Exposure of the cell–scaffold construct within in-vivo 
environment may enhance tissue formation. All hollow 
organs mediate an interface between internal and external 
environments, and exposure of the graft to this interface 
allows important additional tissue development, such as 
immune cell lymphoid tissue.14

A bioreactor can simulate this in-vivo environment as 
the graft matures. There was greater chondrocytes seeding 
on collagen scaffold when the scaffold rotated 5 to 20 r/
min in a bioreactor.122 This mimics in-vivo physiological 
signals such as shear stress, compression and pressure, 
thereby allowing cells to respond to them in vitro.

Using in-vivo bioreactor such as implanting urethral 
scaffolds in peritoneal cavities of rabbits and scaffolds was 
well covered in fibroblasts and mesothelium. There was no 
stricture formation when scaffolds were transplanted into 
rabbits.123 Similarly, omentum was used as a bioreactor 
where oesophageal scaffolds were implanted. Results 
showed vascularisation, and its anatomical position can be 
used as a pedicle for subsequent transposition.124 In-vivo 

bioreactors should be explored further to understand its 
interaction with host tissue.

Angiogenesis

The delivery of nutrients and oxygen to epithelium plays 
a key role in epithelisation. The diffusion limit of nutri-
ents and oxygen is approximately 200 µm, and the lack of 
vessels severely restrict the size of tissue-engineered 
scaffolds. Hence, angiogenesis is important.125 Therefore, 
vascular endothelial growth factor (VEGF) can be intro-
duced to improve vessel infiltration. The administration 
of VEGF is, however, difficult but continuous delivery of 
VEGF may be possible through a bioreactor. Improved 
oxygen delivery may decrease lactate concentration in 
the graft and improve epithelial metabolism.126 This has 
been investigated using perfluorocarbon-based artificial 
oxygen carrier (Oxygent). This has benefits in maintain-
ing a functional basal lamina and decreased lethal airway 
obstruction, but also may lead to decreased chondrocyte 
function.127

Concluding remarks and future 
direction

Biological scaffolds so far have presented relatively more 
successful results for tubular scaffold epithelialisation, 
originating from their ability to provide tissue-specific 
cues for cell–matrix interaction. Biomimicry of the natural 
tubular structures with synthetic scaffolds with the state-
of-the-art materials and fabrication methodologies might 
be the way forward for effective epithelisation. Current 
non-biological approaches involve seeding cells on suita-
ble scaffolds, but still lack the full range of crucial struc-
tures that mimic the ECM which are required to replicate 
these organ-specific cellular cues.

The best bioactive scaffolds would be those that use 
cell-signalling pathways to mimic the in-vivo repair and 
regeneration process. This is the strength of decellularised 
scaffolds, despite them lacking suitable mechanical 
strength, which could lead to graft failure. Furthermore, 
topography and physicochemical characteristics such as 
porosity, material strechability and surface wettability play 
a major role in epithelialisation. Embedding relevant 
growth factors within the scaffold may further enhance 
epithelial cell binding. Ultimately, to produce functional 
organs, it will be unlikely to rely solely on optimising cell 
seeding. It would be practical to improve scaffold intrinsic 
properties to allow autologous cells to migrate towards the 
scaffold of interest and transform into a functional tissue 
that can restore physiological homeostasis.
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