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A Computational Workflow for
Probabilistic Quantitative in Vitro to
in Vivo Extrapolation
Kevin McNally, Alex Hogg and George Loizou*

Health and Safety Executive, Buxton, United Kingdom

A computational workflow was developed to facilitate the process of quantitative

in vitro to in vivo extrapolation (QIVIVE), specifically the translation of in vitro

concentration-response to in vivo dose-response relationships and subsequent

derivation of a benchmark dose value (BMD). The workflow integrates physiologically

based pharmacokinetic (PBPK) modeling; global sensitivity analysis (GSA), Approximate

Bayesian Computation (ABC) and Markov Chain Monte Carlo (MCMC) simulation. For

a given set of in vitro concentration and response data the algorithm returns the

posterior distribution of the corresponding in vivo, population-based dose-response

values, for a given route of exposure. The novel aspect of the workflow is a rigorous

statistical framework for accommodating uncertainty in both the parameters of the PBPK

model (both parameter uncertainty and population variability) and in the structure of the

PBPK model itself recognizing that the model is an approximation to reality. Both these

sources of uncertainty propagate through the workflow and are quantified within the

posterior distribution of in vivo dose for a fixed representative in vitro concentration. To

demonstrate this process and for comparative purposes a similar exercise to previously

published work describing the kinetics of ethylene glycol monoethyl ether (EGME) and

its embryotoxic metabolite methoxyacetic acid (MAA) in rats was undertaken. The

computational algorithm can be used to extrapolate from in vitro data to any organism,

including human. Ultimately, this process will be incorporated into a user-friendly, freely

available modeling platform, currently under development, that will simplify the process

of QIVIVE.

Keywords: in vitro, in vivo, extrapolation, PBPK, benchmark dose, computational, workflow

INTRODUCTION

The prospect of an animal-free, in vitro bioassay based, human safety testing of chemicals strategy
was increased with the publication of the US National Research Council (NRC) report titled
“Toxicity Testing in the 21st Century: A Vision and a Strategy” (NRC, 2007). Considerable impetus
for this vision occurred following enforcement of the EU Cosmetics Regulation (EC 1223/2009) in
2013 which imposed a full marketing ban in Europe for cosmetic products and ingredients tested on
animals anywhere in the world (Coecke et al., 2013). However, to date the development of a reliable
non-animal, in vitro bioassay based testing strategy for human safety testing of chemicals is still
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regarded as the holy grail (Louisse et al., 2016). Aside from
the issue of better concordance between in vitro and in vivo
human toxicity endpoints a number of fundamental problems
with in vitro cell systems remain to be resolved, such as the
artificial conditions in which they are maintained (see Hartung
and Daston, 2009 for more details). Nevertheless, encouraging
developments in in vitro systems and efforts to exploit the
information generated using them continue to be reported
(Shintu et al., 2012; Alépée et al., 2014; Bahinski, 2015; Hartung,
2017; Ramirez et al., 2017; Schmidt et al., 2017).

The determination of a reference point, also known as a
point of departure (PoD), such as the benchmark dose (BMD)
and no-observed-adverse-effect-level (NOAEL) from in vitro
concentration-response data is a pre-requisite for regulatory
use. Indeed, a characteristic often ascribed to technologies that
are quickly adopted is that they are compatible with existing
practices (Jönsson, 2016). Therefore, in vitro concentration-
response data must be converted to in vivo dose-responses
from which a PoD may be derived in order to have any utility
in human safety testing of chemicals. The term quantitative
in vitro to in vivo extrapolation (QIVIVE) is used to describe
efforts addressing this problem (Bale et al., 2014; Hartung,
2017) and the use of PBPK1 modeling-based reverse dosimetry
for the translation of in vitro to in vivo responses represents
a significant part of the solution (Louisse et al., 2012, 2016;
Bessems and Geraets, 2013; Coecke et al., 2013; Strikwold
et al., 2013, 2017a,b; Bessems et al., 2014; McNally and Loizou,
2015; Boonpawa et al., 2017; Li et al., 2017; Punt et al.,
2017).

There have been a number of studies in which PBPK
modeling-based reverse dosimetry and statistical techniques
were used to reconstruct in vivo exposure or dose consistent
with, (1) human biological monitoring (BM) data, and (2)
in vitro concentration-response curves. In the case of BM
studies in vivo exposure or dose was reconstructed at both the
individual and population level (Georgopoulos et al., 1994;
Roy and Georgopoulos, 1998; Tan et al., 2006a,b; Liao et al.,
2007; Clewell et al., 2008; Lyons et al., 2008; Mosquin et al.,
2009; McNally et al., 2012). Population-based estimates of
exposure that account for human inter-individual variability,
both in the modeling of chemical disposition in the body
and in the description of plausible exposure conditions,
was achieved using Bayesian inference (Lyons et al., 2008).
Gelman et al. (1996) used a Bayesian approach as a general
method of parameter estimation in PBPK models. This
method was originally used for model calibration (Bernillon
and Bois, 2000; Jonsson and Johanson, 2001; Hack, 2006;
Covington et al., 2007). Lyons et al. (2008) extended PBPK
model calibration to include the unique exposure for each
individual as another parameter to be estimated, alongside two
additional “hyper-parameters,” the mean and standard deviation
of exposures at the population level, to model variability in
exposure. In this way the model could be applied to interpret

1The term PBPK is synonymous with physiologically based kinetic (PBK),

physiologically based biokinetic (PBBK), and physiologically based toxicokinetic

(PBTK) models.

population-based BM data. The linking of a PBPK model with
Bayesian inference has a number of advantages with regard to
exposure or dose reconstruction. Firstly, it is an appropriate
approach for systems where tissue dose is not necessarily
linearly related to external exposure. Secondly, defining
informative prior distributions around parameters converts a
deterministic model to a population model, thereby accounting
for inter-individual variability. Thirdly, this combination
can extract population variability and multiple routes of
exposure information integrated within pharmacokinetic data
(McNally et al., 2012).

On the other hand the majority of studies reporting the
translation of in vitro concentration-response to in vivo dose-
response curves used a different approach more accurately
described as “iterative forward dosimetry.” This approach
assumes the model is an accurate emulation of reality in which
all parameters, other than input dose or exposure, are fixed.
The latter only are altered within an optimization routine
to estimate a target in vivo concentration which has the
same magnitude as the measured in vitro concentration. The
dose concentration which corresponds to the target in vitro
concentration is considered to be a surrogate for the in vivo
concentration (Louisse et al., 2012, 2016; Strikwold et al., 2013,
2017a,b; Wambaugh et al., 2015; Boonpawa et al., 2017; Li et al.,
2017). The interpretation of reconstructed doses and exposures
derived in this way can be problematic. Firstly, the results of any
sensitivity analysis of the model were not used in the in vitro
to in vivo conversion process. In most models there will be
several sensitive parameters that have a significant impact on
model output. This means small changes in the magnitude of
any sensitive parameter may have a significant impact on output,
in this case, reconstructed dose or exposure concentration. It
is therefore possible that the reconstructed dose or exposure
estimated with and without incorporation of sensitive parameters
can be quite different. A second issue is with the presumed
accuracy of the PBPK model. An external dose that provides
a desired in-vitro concentration—typical dose metrics are peak
concentration or area under the curve (AUC) for parent chemical
or some metabolite in venous blood (as a surrogate for the
in-vitro concentration)—is computed. Only a very small error,
within the user-specified tolerance limits of the optimization
routine is associated with this QIVIVE translation. The use
of a specific value from the simulation for direct use in risk
assessment, in effect assumes a higher degree of accuracy of
the PBPK model than is required in the more traditional use
of such models. The model is (implicitly) interpreted as an
adequate surrogate for the human or animal rather than as
a useful modeling tool. Crucially, there is no framework for
addressing model inadequacy. This is important since the level
of detail (fidelity) captured in the model could have a bearing
on model output (Rowland et al., 2017). Thirdly, the iterative
forward dosimetry approach uses a deterministic model with one
set of model parameters only. This is equivalent to using a single
individual as a representative of all people in the safety testing of
chemicals.

The importance in understanding and quantifying the level
of uncertainty in each step of a chemical safety assessment with
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non-animal methods has recently been emphasized (Berggren
et al., 2017).

In this report we describe the adaptation of a workflow
developed previously for the reconstruction of exposure
from BM data (McNally et al., 2012). We used PBPK
modeling, Approximate Bayesian Computation (ABC) and
Markov Chain Monte Carlo (MCMC) simulation to convert
in vitro concentration-response data to in vivo dose-response
data. To demonstrate this process we undertook a similar exercise
to Louisse et al. (2010) although with the added objective of
accommodating model and parameter value uncertainty within
an efficient modeling framework.

The motivation for this work is twofold: (1) development of
a rigorous statistical framework for accommodating uncertainty
in both the parameters of the PBPK model and lack of fit of
the model to measured data, and a consideration of how this
affects an in-vivo dose response relationship, and (2) to develop
a workflow and code that will be incorporated into a user-
friendly, freely available modeling platform called RVis, currently
under development, that will simplify the process of translation
of in vitro concentration-response to in vivo dose-response
relationships2.

METHODS

PBPK Model
Software

The generic PBPK model code describing the kinetics of glycol
ethers (Louisse et al., 2010) was provided by Dr. Jochem Louisse3

in CSL, the equation-based language implemented in acslXTM

software. However, support for acslXTM was discontinued in
November 2015 (Lin et al., 2017). Therefore, the CSL code was
translated into the R language (R Development Core Team,
2008) using ACSL2R (http://acsl2r.hslmathsci.org/) and run
using RStudio (R Studio Team, 2016).

In order to performGSA the model code was further modified
to ensure that logical constraints on mass balance and blood
flow to the tissues were met by adopting the re-parameterizations
described in Gelman et al. (1996).

PBPK models were solved using the deSolve package of R.
GSA of model outputs [Morris screening test and extended
Fourier Amplitude Sensitivity Test (eFAST)] were conducted
using the Sensitivity package of R. Reshaping of data and
plotting using the reshape and ggplot2 packages respectively. The
md2c package was used to induce rank correlations in samples
(Wickham, 2007; Pouillot and Delignette-Muller, 2010; Soetaert
et al., 2010; Pujol and Iooss, 2015). The main effects and total
effects (McNally et al., 2011) were computed at each time point
and parameter sensitivities were studied over this period using
Lowry plots generated as described in McNally et al. (2011).

Benchmark dose values (BMDs) were calculated using
PROAST version 65.0 (proast@rivm.nl) and R version 3.4.1
(https://cran.r-project.org/bin/windows/base/old/3.4.1/).

2http://cefic-lri.org/projects/aimt7-rvis-open-access-pbpk-modelling-platform/
3Now at KWR (www.kwrwater.nl)

All plots were created using R and gglot2 (R Development
Core Team, 2008; Wickham, 2009).

Data

Measured plasma concentrations of methoxyacetic acid (MAA),
a metabolite of ethylene glycol monoethyl ether (EGME), in
exposed rats were obtained by digitizing Figure 4 in Hays et al.
(2000) and Figure 2 in Gargas et al. (2000). These data were used
by Louisse et al. (2010) and in this study to evaluate the PBPK
model. These data were digitized using DigitizeIt Version 2.0.6
(www.digitizeit.de).

The in vitro embryotoxic effect data determined in a study
by de Jong et al. (2009) as described in Louisse et al. (2010)
were also kindly supplied by Dr. Jochem Louisse. The in vitro
concentrations of MAA were, 0, 0.3, 0.6, 1.1, 2.8, 5.5, 11.1 (mM)
conducted in triplicate in two different laboratories, therefore, six
tests in total.

Following conversion to in vivo dose responses the data were
used to calculate BMDs.

Hardware

The computer used in this study was a Dell Optiplex 9020 with
an Intel(R) Core TM i5-4590 CPU@ 3.30 GHz with 8.00 GB RAM
running Windows 7 Enterprise Service Pack 1.

Description of Approach
The original work described herein focusses on one specific
model described in Louisse et al. (2010): the rat model following a
single dose oral exposure and a repeat (5 day) inhalation exposure
to EGME. As a motivation for the approach set out in detail in
Appendix 1 we re-evaluate the performance of the EGME PBPK
model following an oral dose of 3.3 mmol/kg bodyweight.
Figure 1A, adapted from Figure 2B of Louisse et al. (2010) shows
a comparison of the PBPK model estimates (populated with
baseline PBPK model parameters) against the experimental data
of Hays et al. (2000).

Whilst the PBPK model is a good fit to the experimental
data (Figure 1A) the model underestimates the maximum
concentration observed in experimental data., Alternative
parameter combinations, corresponding to modest changes
to the assumed physiology of the rat and chemical specific
properties, provide a similar quality of fit to the experimental
data (Figure 1B) although with a different Cmax values

4. Whilst
only modest perturbations to the baseline assumptions of the
physiology of a laboratory bred rodent might be considered
reasonable, uncertainty in the physico-chemical (substance
dependent) parameters of the PBPK model is more considerable.
Uncertainty in the parameters of the model, parameter value
uncertainty, should translate into uncertainty in the external
oral dose corresponding to a given Cmax (or an alternative end-
point). A second source of uncertainty which it is desirable to
consider is model uncertainty: the PBPK model is an imperfect
approximation to reality therefore a model that provides an exact
match to a target in-vitro dose is, perhaps counter-intuitively, not

4The alternative simulations shown here to motivate the approach correspond to

the first 10 retained samples from MCMC sampling using the approach described

in “refinement”; in Appendix 1.
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FIGURE 1 | (A) Comparison of PBPK model predictions of MAA in venous

blood against the experimental data of Hays et al. (2000) (upper panel); (B) a

comparison of 10 alternative parameter sets against the experimental data of

Hays et al. (2000) following an oral dose of 3.3 mmol/kg bodyweight EGME

(lower panel).

desirable as it leads to an underestimate of the range of external
doses that are consistent with a target in-vitro concentration
representative of an in vivo concentration.

The modeling framework comprises a four-step approach and
is described in greater detail in the Appendix 1:

1. GSA of MAA concentrations in venous blood with
conservative yet credible ranges for the model parameters to
identify the key parameters for further consideration;

2. Refinement of the parameter ranges through a reverse
dosimetry-type approach so that plausible limits on the
varying model parameters that are consistent with the data of
Hays et al. (2000) (single dose, oral exposure) and Gargas et al.
(2000) (repeat dose, inhalation exposure) can be estimated.

3. Estimation of a distribution of oral dose and inhalation
concentrations corresponding to each of the six experimental
in vitro concentrations and accounting for model and
parameter value uncertainty. Here we introduce a novel
approach based upon Approximate Bayesian Computation.

FIGURE 2 | Lowry plots of the eFAST quantitative measure of the most

sensitive parameters identified by Morris screening. The total effect of a

parameter STi comprised the main effect Si (purple bar) and any interactions

with other parameters (gray bar) given as a proportion of variance. The ribbon,

representing variance due to parameter interactions, is bounded by the

cumulative sum of main effects (lower bold line) and the minimum of the

cumulative sum of the total effects (upper bold line) (A) for venous blood MAA

concentrations following, (A) inhalation exposure (upper panel), and (B) oral

exposure (lower panel).

4. Estimation of a point of departure, taken to be the benchmark
dose (BMDL10) lower bound in the in vivo dose response
relationship.

Script Files to Implement Conversion of
in Vitro Concentration to in Vivo Dose
Response
See Appendix 2 for a description of the files used to implement
this workflow.

Calculation of in Vivo Benchmark Dose
Three embyrotoxicity (inhibition of embryionic stem cell
differentiation) tests were carried out in two different laboratories
giving a total of six quantal datasets (de Jong et al., 2009).
There were six in vitro concentrations of MAA in each dataset.
Therefore, six in vitro concentrations were converted to in vivo
doses for the inhalation and oral routes, respectively, and were
used as inputs for benchmark dose analysis. To account for
possible systematic differences in measured response between
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laboratories “laboratory” was modeled as a covariate. The
in vivo dose-response curves were predicted using identical
exposure regimes to those used to evaluate the model i.e.,
a single dose oral exposure to EGME and a repeat (5 day)
6 h inhalation exposure to EGME. For the uploaded data
PROAST fitted 10 candidate models that were suitable for
quantile response data. The benchmark dose lower bound
corresponding to the most conservative model that provided
an adequate fit (as assessed by the software) to the data was
taken from the output. A benchmark response of 0.1 was
specified.

RESULTS

GSA
In the first phase of sensitivity analysis a screening analysis using
the Morris test was undertaken with 25 parameters (Table 1)
varied following inhalation and oral exposures to EGME. Based
upon this analysis (example results are shown in Supplementary

Material Tables S1, S2 and Figures S1, S2) the majority of
parameters were observed to have a negligible effect on MAA
in venous blood, .with six and eleven parameters for inhalation
and oral dose respectively, taken forward into the second phase
of sensitivity analysis using the quantitative eFAST technique.

Four parameters, QPC (alveolar ventilation rate), Kex (urinary
excretion rate), PS2 (MAA blood:air partition coefficient) and
BW (body weight), accounted for almost 100% of variance
in venous blood MAA during inhalation exposure to EGME
during the entire simulation of 200 h (Supplementary Material,
Figure S3). The ranking of the parameters, on the basis of
proportional contribution to variance, changed throughout the
simulation. Initially, PS2 was dominant for the first 20 h to be
replaced by QPC. Figure 2A, shows the rankings at 105 h, that
is, 3 h post-exposure. Following single dose oral exposure the
eFAST results (Supplementary Material, Figure S4) indicated
variance was initially dominated by parameters governing the
rate of metabolism of parent chemical (EGME), particularly
Vmax. However, after the first hour of exposure parameter PS2

TABLE 1 | Physiological parameters used in the PBPK model for ethylene glycol monomethyl ether adapted from Gargas et al. (2000) and Louisse et al. (2010).

Physiological parameters Abbreviation Mean 15% Minimum Maximum

Body weight (kg) BW 0.237a 0.036 0.201 0.273

% BW

Liver VLC 4 0.600 3.400 4.600

Fat VFC 10.1 1.515 8.585 11.615

Slowly perfused tissue VSC 65 9.750 55.250 74.750

Rapidly perfused tissue VRC 6.1 0.915 5.185 7.015

Blood VBC 5.9 0.885 5.015 6.785

Cardiac output (L h−1 kg−1 BW) QCC 14 2.100 11.900 16.100

Alveolar ventilation (L h−1 kg−1 BW) QPC 14 2.100 11.900 16.100

% CARDIAC OUTPUT

Liver QLC 25 3.750 21.250 28.750

Fat QFC 14.2 2.130 12.070 16.330

Slowly perfused tissue QSC 15 2.250 12.750 17.250

Rapidly perfused tissue QRC 45.8 6.870 38.930 52.670

PARTITION COEFFICIENTS (EGME)

Blood:air PB 32800 4920 27880 37720

Liver:blood PL 0.76 0.114 0.646 0.874

Fat:blood PF 0.37 0.056 0.315 0.426

Slowly perfused tissue:blood PS 0.8 0.120 0.680 0.920

Rapidly perfused tissue:blood PR 0.76 0.114 0.646 0.874

PARTITION COEFFICIENTS (MAA)

Liver:blood PL2 0.76 0.114 0.646 0.874

Fat:blood PF2 0.13 0.020 0.111 0.150

Slowly perfused tissue:blood PS2 0.8 0.120 0.680 0.920

Rapidly perfused tissue:blood PR2 0.76 0.114 0.646 0.874

METABOLIC RATE CONSTANTS

Michaelis Menten constant (mM) KM 6.3 0.945 5.355 7.245

Limiting rate of metabolism (nmol h−1 106 hepatocytes) VMax 1511 226.65 1284.35 1737.65

Urinary excretion rate (L h−1) Kex 0.0045 0.001 0.004 0.005

Oral uptake rate (h−1) Kup 4 0.600 3.400 4.600

aEstimated as a function of time (hours) where T > 312 h as described in Gargas et al. (2000).
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was dominant. The influence of BW and Kex, increased over
time with three parameters PS2, BW and Kex accounting for
almost 100% of variance in venous blood MAA during oral
exposure to EGME during the period of 4 up to 50 h following
exposure (covering the period where peak concentration of MAA
was reached and the subsequent elimination phase. PS2 was
initially dominant for the first 19 h before switching in ranking
started to occur. Figure 2B, shows the rankings at 19 h post oral
administration.

Therefore, four parameters, QPC, Kex, PS2, and BW, for
inhalation and three, PS2, BW, and Kex, for oral exposure
were used in the ABC-MCMC simulations to convert in vitro
concentrations to in vivo doses.

Refinement
Modification of model parameters was achieved through a
Bayesian calibration approach as described in the section on
Refinement (Appendix 1). The posterior median and a 95%
credible interval for the four and three retained parameters
for the inhalation and oral exposures to EGME are given in
Table 2.

Inhalation Dose

The PBPK model was run (for a simulation period of 170 h)
for each of the retained parameter sets and for concentrations
of both 10 and 50 ppm. At each time point the predictions
of the plasma concentration of MAA were ordered and the
2.5, 50, and 97.5th of the ordered values were read off—the
dataset of 50th percentiles at each time point is a point estimate
(posterior median) of the plasma concentration of MAA over
the simulation period whereas the 2.5 and 97.5th percentiles
correspond to an approximate 95% prediction interval for the
plasma concentration of MAA over the simulation period.
Figure 3 shows a comparison of these summary statistics with the
experimental (calibration) data of Gargas et al. (2000). The fit to
data at 10 ppm was poor; the models did not capture the trend of
the observations (Figure 3A). The experimental data at 50 ppm
were not fully enveloped by the 95% credible interval calculated
from MCMC output which reflects the large variability across
the replicate animals at each time point in the experimental
data and the sensitivity to outliers.However, the overall fit of
the spread of models (indexed by the different parameter sets)
was consistent with the assumed log-normal error distribution
(Figure 3B).

TABLE 2 | Posterior medians and 95% confidence intervals for calibrated

parameters.

Parameter Oral dose refinement Inhalation dose refinement

Median 95% interval Median 95% interval

BW 0.250 0.245–0.255 0.249 0.245–0.254

QPC NA 12.46 11.92–15.27

PS2 0.746 0.662–0.835 0.724 0.527–0.900

kex 0.0041 0.0038–0.0047 0.0049 0.0042–0.0052

In order to test the ability of a different statistical to measure
model structure uncertainty a variant case with a Gaussian error
model was considered for the calibration to inhalation data at
10 and 50 ppm. A slightly improved fit to the experimental
data at 10 ppm was achieved with this model however the
inconsistency between the PBPK model and experimental data
was not resolved (Supplementary Material, Figure S5). This
result is consistent with the fit shown to these data in Louisse
et al. (2010); the data would indicate a more rapid clearance
of MAA at low dose for a repeat dose inhalation study
than can be achieved through variation of model parameters
alone, and suggests a structural problem in the model for
lower doses. The predictions at 50 ppm were thought more
relevant for the target concentrations in this work therefore
calibration was repeated using just model and data for the 50
ppm experiment. The results in Table 2 reflect a calibration to
the 50 ppm data using the log-normal error model (1) (see
Appendix 1).

Wide ranges (of ±15% the median, Table 1) were assumed
for PS2 and kex. Through the process of calibration and the

FIGURE 3 | Posterior mode and a 95% credible interval for the exposure-time

concentration of MAA following a 5 day inhalation exposure to 10 ppm (A) and

50 pmm (B) EGME.
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constraint imposed by the relatively tight range on BW, the
ranges for these two parameters were substantially reduced
(Table 2).

Oral Dose

The PBPK model was run (for a simulation period of 50 h)
for each of the retained parameter sets. The median and a
95% prediction interval were calculated as described above.
Figure 4 shows a comparison of these summary statistics with
the experimental (calibration) data of Hays et al. (2000). The
experimental data are enveloped by the 95% credible interval
calculated fromMCMC output.

The summary statistics for PS2 and kex (Table 2) indicated
that calibration substantially reduced uncertainty in these
parameters compared with the assumed (vague) prior
distributions.

ABC
In the first phase of the ABC approach 200 simulations were
run for each dose concentration. A comparison of the exposure
time-concentrations for the 200 simulations for the lowest target
dose concentration is made in Figures 5A,C for inhalation
and oral dose respectively, and demonstrates the wide range
of behaviors—this pattern is broadly representative of all dose
concentrations. In the figures the solid red lines represent the
relative error of 7.5% of Cmax. Figures 5B,D show just the
simulations that satisfied the acceptance criteria for inhalation
and oral dose respectively, and were retained for subsequent
inference. Figures 5B,D show the retained simulations converge
at the peak (noting the peak refers to the fifth day of exposure
for the inhalation simulations) however the subsequent rate of
elimination of MAA varied widely over the retained simulations.
A comparison of simulated and retained exposure time-
concentrations for the simulations at all six dose concentrations
is made in Supplementary Material Figures S6–S8 (repeat dose
inhalation) and Figures S9–S11 (single dose oral).

FIGURE 4 | Posterior mode and a 95% credible interval for the exposure-time

concentration of MAA following and oral dose of 3.3 mmol/kg bodyweight

EGME.

Approximately 20% of the simulations were within a relative
error of 7.5% for each target plasma concentration following
inhalation exposure, whereas approximately 25% of simulations
were retained following oral exposure; this difference likely
results from the lower number of sensitive parameters for
the oral exposure model. In all cases there was a reasonable
retained sample for estimating a covariance matrix for use in the
subsequent ABC MCMC.

Due to the approach for sampling initial values, the MCMC
algorithm was initialized within the posterior distribution
(for each route of exposure and target plasma concentration)
therefore a burn-in was unnecessary. Two chains, with different
initial values, were run in parallel on different cores (making
use of the parallel environment within R) for each dose
concentration. The acceptance rate was approximately 60%
for each chain with only modest autocorrelations between
subsequent iterations, demonstrating relatively weak dependence
on the current state of the chain. Every second sample was
retained for subsequent analysis. The 2,500 retained samples
resulting from each of the two chains were pooled for each target
dose.

Summary statistics were based on the retained 5,000
simulations and are given in Table 3. A comparison of the 95%
credible intervals for QPC, Kex and PS2 following inhalation
exposure and Kex, and PS2 following oral exposure were
considerably wider than those of calibrated parameters (Table 2),
demonstrating that a relative error of less than 5% of Cmax is
insufficient to restrict simulations such that they are consistent
with experimental data. Figure 6 shows the numerically derived
95% credible interval (derived using the method described in
section on refinement (see Appendix 1) for the concentration
response simulations for the first target plasma concentration
following inhalation (Figure 6A) and oral (Figure 6B) exposure.
Also shown for comparison are 95% credible intervals computed
from only the subset of simulations (approximately 10%) where
all parameters were within the parameter limits of Table 2. These
comparisons demonstrate a much narrower range of curves
resulted from the narrower ranges of calibrated parameters,
demonstrating the efficiency and value of calibration. However,
this comparison also indicates that a second piece of information,
perhaps relating to the half-life of MAA following exposure,
could be coded as a second criterion for accepting a proposed
parameter set and this would achieve a similar result to the formal
model calibration.

QIVIVE
The in vivo dose-responses estimated from the embryotoxicity,
in vitro concentration-response data of de Jong et al. (2009)
are listed in Table 4. For each target plasma concentration the
median and 95% credible interval of external (inhalation or
oral) dose were based on the subset of retained simulations
that satisfied the relative error criterion and where QPC (only
inhalation), Kex and PS2 were within the ranges given in Table 2.
As a consequence the intervals for external dose are substantially
narrower than the corresponding intervals given in Table 3. The
original in vitro concentration-response data are also presented
for comparison. The dose-response curves for the developmental
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FIGURE 5 | Comparisons of the 200 concentration response profiles simulated in the rejection phase for a target concentration of 0.28 mM: (A) 200 exposure-time

concentrations of MAA following a 5 day inhalation exposure (upper left panel); (B) retained samples within a relative error of 7.5% (upper right panel); (C) 200

exposure-time concentrations of MAA following an oral dose (lower left panel); (D) retained samples within a relative error of 7.5% (lower right panel).

TABLE 3 | Posterior medians and 95% credible ranges for inhalation (ppm) or oral (mmol/kg) exposure and varying model parameters for the six target cmax

concentrations in venous blood.

Target Cmax (mmol/L) Dose BW QPC PS2 kex

INHALATION DOSE (ppm)

0.28 21.59 (13.24, 31.78) 0.249 (0.245, 0.255) 15.53 (7.97, 22.45) 0.808 (0.368, 1.252) 0.0051 (0.0021, 0.0070)

0.55 43.71 (32.46, 60.39) 0.250 (0.246, 0.255) 15.35 (9.16, 21.47) 0.840 (0.345, 1.250) 0.00051 (0.0023, 0.0071)

1.11 81.15 (63.32, 100.95) 0.250 (0.245, 0.255) 16.13 (8.67, 21.89) 0.847 (0.358, 1.281) 0.0053 (0.0021, 0.0073)

2.77 210.13 (165.72, 259.69) 0.249 (0.245, 0.254) 15.47 (8.40, 21.49) 0.843 (0.35, 1.280) 0.0052 (0.0021, 0.0071)

5.55 412.60 (333.12, 521.36) 0.251 (0.246, 0.255) 15.61 (8.31, 22.18) 0.901 (0.347, 1.295) 0.0053 (0.0021, 0.0072)

11.1 793.62 (618.11, 994.52) 0.250 (0.245, 0.255) 15.95 (9.45, 21.31) 0.893 (0.360, 1.311) 0.0050 (0.0022, 0.0070)

ORAL DOSE (mmol kg−1 bw)

0.28 0.267 (0.143, 0.326) 0.249 (0.245, 0.254) 1.02 (0.446, 1.288) 0.0046 (0.0019, 0.0070)

0.55 0.510 (0.268, 0.639) 0.249 (0.245, 0.254) 0.961 (0.404, 1.305) 0.0045 (0.0019, 0.0072)

1.11 0.920 (0.483, 1.210) 0.249 (0.245, 0.255) 0.941 (0.398, 1.262) 0.0047 (0.0018, 0.0071)

2.77 2.454 (1.264, 3.108) 0.249 (0.245, 0.254) 0.991 (0.409, 1.290) 0.0047 (0.0022, 0.0069)

5.55 4.586 (2.297, 5.860) 0.250 (0.245, 0.255) 0.929 (0.381, 1.208) 0.0047 (0.0020, 0.007)

11.1 9.151 (5.100, 11.759) 0.250 (0.245, 0.254) 0.908 (0.421, 1.191) 0.0047 (0.0022, 0.0071)
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FIGURE 6 | Comparison of 95% credible intervals for concentration-responses

within a relative error of 5% (lighter interval) and based on only those samples

with parameters within the calibrated limits (darker interval): (A) exposure-time

concentrations of MAA following a 5 day inhalation exposure (upper panel);

(B) exposure-time concentrations of MAA following an oral dose (lower panel).

toxicity of EGME are presented in Figure 7A, inhalation and
Figure 7B, oral exposure—these curves correspond to the
median (based on the first target plasma concentration) of the
generated dose profiles.

Benchmark Dose Analysis
The in vivo dose-responses listed in Table 4 were used to derive
a BMDL10, (lower limit of the 95% confidence interval on the
benchmark response equivalent to a 10% effect size), as a point
of departure. BMDL10 values were derived for the mean, 2.5
and 97.5% percentiles. Comparisons of our predicted BMDL10
against BMDL10 values derived from in vivo studies, for various
critical end points, are made in Table 5.

Unlike the study by Louisse et al. (2010) the BMDL10 values
derived in this study included the laboratory effects as a covariate.
Therefore, direct comparisons were not possible. The mean,
2.5 and 97.5% values for both oral and inhalation exposure lie
between the lower laboratory 1 and upper laboratory 2 values
reported by Louisse et al. (2010) and are similar to the measured

BMDL10 values. However, the 2.5% value of 0.29 mm/kg bw for
oral exposure was still twice that of the lowest measured value of
0.14 mm/kg bw for decrease in fetal bodyweight. Likewise, the
2.5% value of 28 ppm for inhalation exposure was also over 2.5 <

the measured value for skeletal malformations.

DISCUSSION

Various groups have used PBPK modeling-based reverse
dosimetry for the translation of in vitro to in vivo responses
using what we termed an iterative forward dosimetry approach.
This involves fixing all model parameters at baseline values
except for some external dose measure (which varies according
to route of exposure) and tuning this dose measure such that
the predictions from the model are consistent with a target
in vitro value. Two implicit assumptions are made in such
approaches: (1) that the PBPK model is appropriate for the
study; (2) that the baseline model parameters assumed in the
study are known. Rowland et al. (2017) demonstrated that the
level of biological detail contained within a model may affect
predictions therefore a model that is broadly consistent with any
available experimental data may be insufficient to demonstrate
that results are insensitive to model structure. Furthermore,
there may be structural deficits in the model, for example the
EGME model following repeated low inhalation doses of 10 ppm
over-predicted measurements (Figure 3). Structural deficits in
the model are sources of model uncertainty. The simulations
in our own work (Figure 1B) demonstrate that for a given
PBPK model structure a range of model parameters might
provide a similar quality of fit to data. Even for animal models,
where the variability in physiology of the animal is relatively
small, the uncertainty in chemical specific parameters predicted
using computational tools/models is more substantial (Pearce
et al., 2017). Therefore, even for animal models, parameter
value uncertainty should also be considered when developing a
QIVIVE approach. Any methodological approach that fails to
account for model and parameter value uncertainty suffers from
an important conceptual weakness. Any subsequent inference
based upon in vitro to in vivo extrapolations fails to account for
sources of uncertainty and results in over-confident predictions.

The motivation for our approach was to address the
shortcomings of simpler approaches and develop a robust
methodology that accounted for structural uncertainty in the
model, including both model fidelity and structural error, and
parameter value uncertainty. In this work we demonstrate a
workflow for the calculation of an in vivo point of departure
comprising of four steps: (1) GSA to identify the most sensitive
model parameters that govern variance of the dose metric; (2)
refinement of parameter ranges through model calibration to
experimental data; (3) QIVIVE using ABC; (4) calculation of
a benchmark dose. The second step in this approach can be
eliminated if data for calibration are unavailable; this will result
in a greater spread of dose consistent with a target in vitro
concentration unless further constraints are imposed in the ABC
acceptance criteria (alternative constraints are discussed below).
The methodology is independent of the in-vitro experimental
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TABLE 4 | In vivo doses estimated by PBPK-based reverse dosimetry.

Estimated in vivo doses and exposures

Number of Non-differentiated embryoid bodies Oral dose EGME (mmol kg−1 bw) Inhalation exposure EGME (ppm)

In vitro concentation (mM) Mean SD Mean 2.5% 97.5% Mean 2.5% 97.5%

0.00 1.5 0.89 0.00 0.00 0.00 0.00 0.00 0.00

0.28 2.67 2.12 0.21 0.18 0.23 23.67 17.80 30.73

0.55 2.67 2.05 0.42 0.37 0.47 46.69 35.98 58.40

1.11 6.33 3.92 0.77 0.68 0.85 84.12 67.38 101.71

2.77 16.83 3.76 1.96 1.74 2.21 219.72 179.26 260.87

5.55 23.33 1.02 3.89 3.37 4.33 440.41 347.17 521.36

11.10 24.00 0.53 7.86 6.89 8.79 822.10 685.76 986.02

TABLE 5 | Comparison of predicted and measured benchmark doses for oral and inhalation exposure.

Exposure route Days of exposure Dose (mmol kg−1 bw) Critical end point Measured BMDL10 Predicted BMDL10

Mean 2.5% 97.5% Lab 1 Lab 2

Oral GD7-13 0.3, 0.6, 1.1 Cardiac malformationsa 0.46 0.32 0.29 0.36 0.12c 0.34c

Resorptionsa 0.52

Fetal bw decreasea 0.14

Dose (ppm)

Inhalation GD7-15 (7 h/day) 50, 100, 200 Skeletal malformationsb 11 34 28 42 21 64

Visceral malformationsb 41

Resorptionsb 49

Fetal bw decreaseb 37

aToraason et al. (1985).
bNelson et al. (1984).
cLouisse et al. (2010).

data and could be applied to more advanced experimental
approaches (for example utilizing organ-on-a-chip).

We regard accounting for structural error in the PBPK model
as an important step in our approach and this is an area where
little attention has been invested in work reported in the peer-
reviewed literature. The PBPK model is an approximation to
reality and the differential equations describing these models
inevitably do not encode sufficient detail to replicate the biology
of the animal. That is not to discount the utility of such models,
but even when predictions are consistent with experimental data,
such as in the predictions of plasma concentration of MAA over
time following an oral dose to EGME (Figure 4), the prediction is
not a perfect fit to data. The scatter of data about the best estimate
prediction from the model does not simply reflect measurement
error; it also reflects lack of fit which we term model uncertainty.
Model uncertainty takes on greater importance when specific
outputs from the model (such as peak concentration, area under
the curve (AUC), cumulative time above some threshold value
or “steady-state” concentration) are extracted from the model for
further analysis. When a PBPK model only has to fit a single data
point, such as the peak (Cmax) plasma concentration of parent
chemical or metabolite, corresponding to a value from in-vitro
experiments, for fixed values of all other PBPKmodel parameters
it is possible to estimate a unique external dose concentration that

results in the target plasma concentration (within the tolerance
limits of the optimization routine used). However, to account
for model and parameter value uncertainty in our work we
accepted external doses that resulted in a relative error for peak
plasma concentration of MAA of up to 5%—this was based
upon a comparison of model predictions and experimental data
(Figures 3, 4).

The range of external dose consistent with each target in vitro
concentration shows the effect of accounting for sources of
uncertainty in QIVIVE (Table 4) with the ranges increasing
as the target in vitro concentration increases. However, the
benchmark dose calculation yielded results similar to those of
Louisse et al. (2010) although our approach also produces a
credible interval for the benchmark dose lower bound. This
broad consistency with Louisse et al. (2010) and the narrow
confidence interval for the benchmark dose lower bound
probably results from the steep dose relationship found in the
experimental data of de Jong et al. (2009) with embryo toxicity,
increasing rapidly with dose. In general, for other chemicals and
dose metrics such close consistency may not be the case.

Moving onto technical aspects of our methodology we
note that in principle parameter value uncertainty could be
accounted for using a brute-force Monte Carlo approach, with
model parameters sampled and the external dose subsequently
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FIGURE 7 | Predicted in vivo dose response curves for developmental toxicity

of EGME after, (A) inhalation (upper panel), and (B) oral exposure (lower panel)

showing the median, 2.5 and 97.5% percentiles.

optimized such that predictions of plasma concentration were
consistent with the target concentration. A distribution of
external dose would be estimated for each target plasma dose
concentration. However, this approach fails to account for
model uncertainty. The ABC algorithm developed in our work
accounts for both model and parameter value uncertainty within
a computationally efficient approach. In the first phase of
our ABC approach we identified a region of parameter space,
quantified through a covariance matrix, where solutions were
within a specified threshold of the target plasma concentration.
A relative error of 7.5% was used in current work. It was a
deliberate choice to adopt a more relaxed acceptance criterion
in this rejection sampling phase to ensure that the covariance
matrix used for proposing moves in the ABC MCMC phase
was more diffuse than the covariance matrix of the posterior
distribution, thus ensuring the MCMC explored the entire
posterior distribution. As noted above, a relative error of 5% was
adopted as the acceptance criterion in the ABCMCMC sampling.
The acceptance rate for moves, at approximately 60%, was high
with a lower acceptance rate in the region 25–40% typically

preferred. The high acceptance rate probably resulted from a
combination of weakly constrained prior distributions for model
parameters and the relatively simple acceptance criterion based
solely on Cmax. The relative error of each retained sample was
stored asmodel output and thus allowed for a filtering of accepted
samples by differing threshold relative errors—in effect such
filtering would reduce the acceptance rate. Whilst the sensitivity
of inference to the degree of model error could in principle be
explored, this was not pursued in current work.

The acceptance criteria used in our work was based upon Cmax

however alternative dose metrics, such as AUC or steady-state
concentration could be readily substituted. Other criteria on the
time concentration relationship could also be included to refine
the range of acceptable model behaviors—for example a criterion
such as half-life within a specified time period following peak
exposure or of 95% of MAA cleared within some threshold of
a central time after dosing could have been easily included. There
is also no need to assume a symmetric error as used in our work;
asymmetry in the relative error say 5% above and 2% below the
target in vitro concentration could easily be coded. Furthermore,
the relative error could vary by concentration—this might have
beenmore appropriate for the lowest concentration for the repeat
dose inhalation model. Stricter and /or different acceptance
criteria would impact upon the range ofmodels behaviors that are
considered to be plausible. However, the coding is trivial once the
broad behavior of the time concentration relationship has been
defined. The sole change would be to the mean and covariance
matrix of the model parameters corresponding to the retained
samples. Our results (Figure 6) suggest that stricter acceptance
criteria could achieve a similar reduction in the range of
concentration-time relationships compared with the refinement
of sensitive parameters through calibration (step two of our
workflow). The mathematics is straight-forward once acceptance
criteria are coded, however the process of defining acceptable
model behavior is potentially more difficult and could utilize
experimental data and expert judgment. The ability to investigate
the sensitivity of results to the choice of acceptance criteria is
available in our proposed workflow since the samples obtained by
MCMC sampling can be filtered by differing acceptance criteria.

The two-phased approach used in our work could be
considered “over-engineered” in the sense that the MCMC ABC
approach was not strictly necessary for this work since sampling
could have been done with sufficient efficiency to make rejection
sampling alone feasible, perhaps with some refinement to the
drawing of samples (through an iterative approach). The ABC-
MCMC approach provides an efficient framework for drawing
samples in more challenging examples—where the output metric
under study was sensitive to a greater number of parameters—
when rejection sampling is too inefficient to be feasible. The
proposal distribution specified based on the retained samples
from the rejection sampling step could be refined through an
adaptive metropolis approach (Rosenthal, 2011). This refinement
would be necessary if the acceptance criteria were stringent and
the sampling efficiency of rejection sampling was poor.

Finally, we briefly comment on future applications of our
approach. An immediate objective is to demonstrate our QIVIVE
framework for a human model. This provides a more difficult
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challenge since there is the need to account for variability
in the human physiology and uncertainty (and variability) in
chemical specific parameters of the PBPK model. Whilst some
aspects of the modeling framework are directly transferable, the
ABC approach needs further refinement. Clearly there is a need
to limit the candidate parameters such that they correspond
to a physically realistic physiology which can be achieved
by drawing candidate physiologies from software applications
such as PopGen (McNally et al., 2014) or from probabilistic
models (McNally and Loizou, 2015), pairing these parameter
sets with uncertain chemical specific parameters and dose, and
investigating the parameter space of models consistent with the
ABC acceptance criteria. A second refinement that is desirable
for a human model is the simultaneous estimation of a series
of the external doses consistent with the series of in-vitro
concentrations, conditional on the same physiology all within the
same step, thus allowing for the estimation of a concentration
response relationship at the level of the individual. In the current
approach this matching of samples was achieved after all the
MCMC output for each dose concentration had been obtained—
a similar approach based upon conditional probability could
be implemented to generate dose profiles at each iteration of
the chain—the technical details would be developed alongside a
suitable example.

A second area of future application is in the estimation of
external dose based upon BM data from spot samples. Reverse
dosimetry in such applications is typically achieved using the
methodology of Tan et al. (2006a) which allows percentiles of
the (unknown) exposure distribution to be estimated, but is
unable to relate BM data to exposure at the individual level.
The methodology developed in this work is directly transferable
to this situation and could allow for a more precise analysis of
individual risk.

Finally, we briefly comment on implementation of the
workflow which requires expertise in global sensitivity analysis
and Bayesian statistics (in particular the requirement to hard
code a Metropolis-Hastings sampling algorithm). We believe
the overall approach can implemented by subject experts based

upon the information provided in Appendix 1, although not

without significant effort. Some aspects of the workflow (in
particular the two-phased GSA and MCMC sampling for
parameter calibration) are supported in an easy to use software
application, RVis that is based upon the R software platform.
The next release due in early 2019 will refine the features of
the existing application and add additional capabilities, including
optimization and rejection sampling routines. In the medium
term our ambition is to support the full workflow demonstrated
in this manuscript, at which point it will become more accessible
to experts in toxicology who lack a deep understanding of
Bayesian statistics.
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