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Abstract

Molecules of the extracellular matrix (ECM) can modulate the efficacy of synaptic transmission and neuronal excitability.
These mechanisms are crucial for the homeostatic regulation of neuronal firing over extended timescales. In this study, we
introduce a simple mathematical model of neuronal spiking balanced by the influence of the ECM. We consider a neuron
receiving random synaptic input in the form of Poisson spike trains and the ECM, which is modeled by a phenomenological
variable involved in two feedback mechanisms. One feedback mechanism scales the values of the input synaptic
conductance to compensate for changes in firing rate. The second feedback accounts for slow fluctuations of the excitation
threshold and depends on the ECM concentration. We show that the ECM-mediated feedback acts as a robust mechanism
to provide a homeostatic adjustment of the average firing rate. Interestingly, the activation of feedback mechanisms may
lead to a bistability in which two different stable levels of average firing rates can coexist in a spiking network. We discuss
the mechanisms of the bistability and how they may be related to memory function.
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Introduction

Recent studies have uncovered multiple mechanisms by which

extracellular matrix (ECM) molecules regulate various aspects of

synaptic activity and highlighted a link between the ECM and

learning and memory [1]. In addition to synaptic plasticity, which

can be rapidly induced in response to sensory stimuli and helps

adaptation to the environment, homeostatic forms of plasticity

operate on a longer timescale and help preserve neural cells by

preventing the pathological hypo- or hyper-excitation of neurons,

which can lead to neural dysfunction and cell death. For instance,

homeostatic regulation of synaptic strength, termed synaptic

scaling, allows neurons to maintain their firing rates within a

certain range despite perturbations (such as changes in sensory

inputs) imposed on the network [2,3]. In response to a prolonged

blockade of action potentials by tetrodotoxin, all excitatory

synapses on pyramidal cells are equally ‘scaled up’, due to an

increase of postsynaptic AMPA receptor density that has been

detected by analysis of the amplitude distribution of miniature

excitatory postsynaptic currents (mEPSCs) [2,3]. The mechanism

underlying synaptic scaling involves glia-derived tumor necrosis

factor (TNF) [4,5], which upregulates the expression of b3

integrins at the postsynaptic cell surface. Signaling via these

integrins inhibits the small GTPase Rap1 and decreases endocy-

tosis of synaptic GluA2 glutamate receptors, thereby increasing

synaptic strength.

Another mechanism of homeostatic regulation involves chon-

droitin sulfate proteoglycans (CSPGs), which are proteins cova-

lently linked to chondroitin sulfate glycosaminoglycans with a

complex pattern of sulfate groups [6]. CSPGs are enriched in the

ECM associated with the perineuronal nets covering, for instance,

fast-spiking interneurons. Formation of this ECM form requires

neuronal firing and the activity of L-type voltage-dependent Ca2+
channels and Ca2+ permeable GluA2-lacking glutamate receptors

[7]. Acute removal of chondroitin sulfates with chondroitinase

ABC treatment elevates the intrinsic excitability of perisomatic

hippocampal interneurons [7]. Thus, it appears that during

development, neuronal activity drives the formation of the ECM

that, in turn, inhibits neuronal excitability.

Apart from the activity-dependent expression and secretion of

ECM molecules into the extracellular space, another important

factor controlling the ECM is the activity of extracellular

proteases. Because this study is the first modeling study of the

homeostatic function of the ECM, we introduced a minimal set of

phenomenological variables to describe the influence of activity-

dependent accumulation of ECM, protease and ECM receptor

activity in the context of synaptic scaling and ECM-dependent

changes in excitability.

In modeling, any regulation mechanism implies the existence of

a feedback loop tuning the neuron toward a stable state. For

synaptic regulation, many phenomenological and biophysical
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models of synaptic plasticity have been proposed [8–10].

Generally, feedback that can be mediated by different molecular

cascades leads to changes in the synaptic weights that tune the

neuron to increase (facilitation) or decrease (depression) its firing

rate. These models represent dynamical systems in which the

synaptic weight is considered to be a function of firing rate (rate

coding) or the relative time instances of pre- and postsynaptic spike

occurrence (spike timing-dependent plasticity). Synaptic changes

in these models occur at timescales of milliseconds and seconds

and reflect the characteristic times of information processing in

neuronal networks. Another feedback may be organized in the

frame of the tripartite synapse concept, which involves astrocyte

activity in regulating synaptic transmission efficacy [11]. Many

studies have shown that astrocyte-mediated feedback can influence

synaptic function at the timescale of dozens of seconds, which

reflects the timescale of calcium signals in astrocytes [12,13].

In the tetrapartite synapse that involves the ECM [14], the

timescale of ECM changes is expected to last for hours and days

and reflect the cumulative integration of neuronal firing that drives

activity-dependent synthesis and the secretion of ECM molecules.

The consequences of such changes have not been incorporated

into existing synaptic regulation models and are not yet fully

understood. In the proposed model, we use the concept of activity-

dependent activation functions typically used for phenomenological

descriptions of neural excitability (e.g., gating functions for voltage-

dependent channels in the Hodgkin-Huxley formalism [15]).

Based on experimental observations, we choose certain shapes of

the activation functions and analyzed the computational conse-

quences of ECM-mediated feedback. The feedback is organized as

two circuits changing neuronal excitability and the weights of

synaptic inputs. We analyze the existence and stability of steady

state solutions and predict that the ECM-mediated feedback may

provide a robust mechanism of homeostatic regulation over long

timescales. We also show the appearance of bistability as an

intrinsic feature of the regulation scheme involving the ECM.

Figure 1. Neuron response to excitatory stimulation. A. Probability densities for EPSCs amplitudes according to Eq. (5) for b = 6 and b = 10. B.
Oscillations of membrane potential in Eqs. (1)–(5) for different strengths of synaptic input.
doi:10.1371/journal.pone.0041646.g001

Figure 2. Characteristics of average activity. A. Average activity values versus average spiking rate (AWSR) calculated in the model Eqs. (1)–(6)
for different input frequencies over the time window T = 2 min. B. Average activity Q versus input frequency. The solid curve shows the logistic curve
(Eq. (8)) fitting the data. Parameter values: Ith = 4.5 mA/cm2, b = 6, kq = 0.01, aq = 0.0001 mses21, and bq = 0.01 msec21.
doi:10.1371/journal.pone.0041646.g002

ECM-Based Model of Neuronal Firing

PLoS ONE | www.plosone.org 2 July 2012 | Volume 7 | Issue 7 | e41646



Methods

1.1. Membrane Excitability
We take the widely used Hodgkin-Huxley equations to model

spike generation in a neuronal cell (for example, see [15]). The

membrane potential evolves according to the following current

balance equation:

C
dV

dt
~{(ImemzIthzIsyn), ð1Þ

where Imem = INa+IK+Ileak is the sum of the transmembrane currents

responsible for spike generation:

INa~gNam3h(V{VNa),

IK~gK n4(V{VK ),

Ileak~gl(V{Vl)

ð2Þ

Ith is an applied current regulating effective spike excitation

threshold. Higher values of Ith results in hyperpolarization of the

neuron, hence, larger input is needed to reach the threshold of

spike generation, e.g. the effective excitation threshold is increased.

Isyn is the total synaptic input to the neuron. The gating variables in

Eqs. (2) evolve according to the following equations:

dx

dt
~ax(1{x){bxx, x~m,n,h ð3Þ

Parameters and nonlinear functions for gating variables in (2)–

(3) are taken as in the classical Hodgkin-Huxley equations

provided elsewhere [15].

1.2. Synaptic Input
As a member of neuronal network, a neuron receives a number

of synaptic inputs. The input currents are associated with spiking

events in presynaptic terminals. Considering spontaneous network

activity, we assume that these events are generally uncorrelated

and can therefore be expressed in the form of a Poisson spike train:

Isyn~
IEPSC(k), iftkvtvtkzt,

0,otherwise:

�
ð4Þ

In this equation, tk accounts for the presynaptic spike occurrence

times satisfying the Poisson distribution with a characteristic

frequency finput. t < 1 msec is the spike duration, and IEPSC(k) is the

amplitude of the excitatory postsynaptic current evoked by

transmitter release in response to presynaptic spikes. Following

experimental observations [16], we assume that the amplitude of

spontaneous EPSCs satisfy the probability distribution P(IEPSC),

shown in Fig. 1 A. We use the analytical expression for P(IEPSC) in

the following form:

P(x)~
2x

b2
exp {x2�

b2

� �
;

ðz?

0

P(x)dx~C(1)~1,

ð5Þ

where C is the gamma function, and b is the scaling factor

accounting for the effective strength of the synaptic input defined

by Eqs. (4) and (5). Figure 1B illustrates the evolution of the

membrane potential of the postsynaptic neuron driven by the

synaptic input defined by Eqs. (4) and (5).

1.3. Average Activity Level
For the purpose of this study, we must characterize neuronal

activity at notably long timescales compared with the duration of

an action potential. Using Eqs. (1)–(5), which describe spike

generation at the millisecond timescale t, we introduce an average

activity variable Q in the following form:

dQ

dt
~{aqQzbqHq(V ), Hq(V )~

1

1z exp ({V=kq)
, ð6Þ

where tq is a rate constant, bq is a scaling coefficient with

0,aq,bq, and kq is the inverse slope of the activation function

Hq(V), kq,1. The process defined by Eq. (6) represents a spike

detector increasing variable Q by DQ < bqt for each successfully

generated spike. Within the interval between spikes, Q decays

exponentially until the next spike comes. Next, for n-spikes

generated with average frequency f = n/T, Q(n) will converge to

the limit as follows:

Q?~ lim
n??

Q(n)~
bqt exp ({aq=f )

(1{ exp ({aq=f ))
&

bqt

aq

f ð7Þ

Eqs. (6) and (7) represent a technical analogue of a sliding window

continuously accounting for the number of spikes during time

interval T in the past. The contribution of spikes generated before

time moment t-T is negligible because it decays exponentially with

rate constant aq. Thus, the average activity Q is proportional to the

average window spiking rate (AWSR) of the neuron, as illustrated

in Fig. 2 A for a numerical simulation of Eqs. (1)–(6).

Note that in contrast to typically used sliding window

techniques, the average activity Q(t) defined by Eq. (7) is a

continuous function of time. Figure 2B illustrates the dependence

of the average activity on the frequency of the input Poisson spike

train, which can be fitted by a logistic curve of the following form:

Figure 3. Schematic illustration of ECM-induced homeostatic
regulation of average activity (see details in the main text).
doi:10.1371/journal.pone.0041646.g003
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Q~A2z
A1{A2

1z(finput=f0)2
; A1~0:02861; A2~2:80585;

f0~0:83012:

ð8Þ

Results

2.1. Neural Extracellular Matrix Feedback Model
To account for ECM-mediated homeostatic regulation, we

adopted the following feedback circuit (Fig. 3), which describes the

basic effects of the ECM influence on neuronal excitability and

efficacy of synaptic transmission [1,7,16].

The EPSCs caused by spontaneous network firing are

integrated in the dendritic tree and may lead to action potential

(AP) generation if the effective excitation threshold controlled by

Ith is exceeded. Sequences of spontaneously generated APs over a

long timescale are converted into the average firing rate Q, which

is explicitly shown in the circuit in Fig. 3. Based on experimental

observations [7,17], we assume that neuronal firing stimulates

ECM production and denote ECM concentration by Z. In turn,

increasing concentrations of ECM molecules (e.g., chondroitin

sulfate proteoglycans) increase the excitation threshold for action

potential generation [7]. We account for this increase by the

dependence of the AP effective excitation threshold on variable Z,

Ith(Z). The ECM may slowly dissolve spontaneously and degrade

due to the activation of extracellular proteases. Production,

secretion and activity of numerous proteases are subsequently

increased with higher activity levels [18].

Other important factors are ECM receptors, such as integrins.

We assume that their concentration R is also dependent on the

average activity level. R is higher if the neuronal activity level

decreases below some critical level [16]. Assuming that ECM

production and ECM receptor expression are statistically uncor-

related processes, we describe the impact of ECM receptor

activation by ECM molecules on the synaptic strength as a

variable proportional to the product ZR. Therefore, the synaptic

strength increases, i.e., there is a homeostatic synaptic up-scaling if

the firing rate decreases below a critical level, and R concentration

is upregulated.

Thus, the ECM regulation circuit comprises two basic feedback

mechanisms.

(i) Activity dependent modulation of excitation threshold

leading to fluctuations of the output firing rate. This feedback

is bidirectional comprising two loops, including ECM

production (decrease in excitability) and its inhibition by

proteases (hence, increase in excitability).

(ii) Change of the effective strength of synaptic inputs and thus

the firing rate due to signaling via the ECM receptors. This

change is also bidirectional; it may be potentiating or

depressive, depending on the activity level.

Figure 4. Activation kinetics for the concentrations of ECM molecules, proteases and ECM receptors, respectively. A. Activation
functions for model (9). Parameter values: z0 = p0 = 0, z1 = p1 = 1, r0 = 2, r1 = 1,hz = 1 kz = 0.15, hp = 1.5, kp = 0.05, hr = 1.8, and kr = 0.1. B. Steady state
distribution profiles for Z‘, P‘, and R‘ are shown by solid curves. The dashed curve illustrates the steady state values of Z‘R‘ regulating the synaptic
weights (see Eqs. (10)). Parameter values: z0 = p0 = 0, z1 = p1 = 1, r0 = 2, r1 = 1,hz = 1,kz = 0.15, hp = 1.5, kp = 0.05, hr = 1.8, kr = 0.1, az = 0.001 msec21,
bz = 0.01 msec21, ap = 0.001 msec21, bp = 0.01 msec21, ar = 0.01 msec21, br = 0.01 msec21, and cP = 0.1.
doi:10.1371/journal.pone.0041646.g004

Figure 5. The dependence of average activity on threshold
regulating parameter Ith calculated from Eqs. (1)–(6) for
different input frequencies. Parameter values: b = 10, kq = 0.01,
aq = 0.0001 msec21, and bq = 0.01 msec21.
doi:10.1371/journal.pone.0041646.g005

ECM-Based Model of Neuronal Firing
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2.2. Mathematical Model
Following the ECM feedback circuit, we propose the following

mathematical model for ECM-induced homeostatic regulation of

firing rates that comprises a set of three differential equations:

dZ

dt
~{(azzcpP)ZzbzHz(Q,z0,z1,hz,kz),

dP

dt
~{apPzbpHp(Q,p0,p1,hp,kp),

dR

dt
~{aRRzbrHr(Q,r0,r1,hr,kr)

ð9Þ

and two feedback functions that modulate neuronal dynamics (see

Methods, Eqs. (1)–(6)):

Figure 6. Schematic figures of equilibrium curves illustrated in the phase plane (Z, Q). A. Single fixed point balance leading to a decrease
of the ECM concentration. B. An increase of the ECM concentration due to deactivation of proteases for higher initial activity. C. Three fixed point
(bistable) balance.
doi:10.1371/journal.pone.0041646.g006

Figure 7. Dynamics of the ECM-protease regulation cascade
depending on the feedback gain obtained in the simulation of
Eqs. (9) and (14) for different initial conditions. The gray area
illustrates bistability. Parameter values: z0 = p0 = 0, z1 = p1 = 1,
hz = 1,kz = 0.15, hp = 1.5,kp = 0.05, az = 0.001 msec21, bz = 0.01 msec21,
ap = 0.001 msec21, bp = 0.01 msec21, cP = 0.1, a1 = 0.0001 msec21,
a2 = 0.001 msec21, I0 = 4.5, b0 = 6, Q0 = 2.23, and kI = 0.6625.
doi:10.1371/journal.pone.0041646.g007

Figure 8. Simulation of ECM-proteases feedback regulating
excitability in terms of the original model (1)–(6), (9), (10). Due
to the integration of the Poisson input train, Q fluctuates near the Q‘

value (see Eq. (7) in Methods). In the bistable mode, this fluctuation
leads to spontaneous switches between high and low ECM concentra-
tions and thus high and low activity values (time interval shown in
gray). Parameter values: z0 = p0 = 0, z1 = p1 = 1, hz = 1,kz = 0.15,
hp = 1.5,kp = 0.05, kq = 0.01, cp = 0.1, I0 = 4.5, b0 = 6, cZ = 0.0345, cZR = 0.0,
a q = 0 . 0 0 0 1 m s e c 2 1 , b q = 0 . 0 1 m s e c 2 1 , a z = 0 . 0 0 1 m s e c 2 1 ,
bz = 0.01 msec21, ap = 0.001 msec21, bp = 0.01 msec21 and fin-

put = 0.2 kHz.
doi:10.1371/journal.pone.0041646.g008

ECM-Based Model of Neuronal Firing
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Ith~Ith(Z)~I0(1zcZZ),

b~b(ZR)~b0(1zcZRZR):
ð10Þ

The activation functions Hz,p,r describe the activation kinetics for

the concentrations of ECM molecules, proteases and ECM

receptors, respectively. We approximate these functions with a

two-level sigmoid function of the following form:

Hx(Q,x0,x1,hx,kx)~x0{
x0{x1

1z exp { (Q{hx)
kx

� � ;

x~z,p,r;

ð11Þ

In this equation, x0 and x1 are the asymptotic levels with

QR6‘, respectively, hx is the activation midpoint, and kx is the

inverse slope of the activation curve. Following phenomenological

observations [1,7,16], we choose the parameters such that the

curves have the shapes illustrated in Fig. 4 A.

Parameters ax (x = z,p,r) define the rate of spontaneous

degradation of ECM concentration, proteases and ECM recep-

tors, respectively. Parameters bx (x = z,p,r) describe the activation

rate of the corresponding variables. Note that the values of rate

constants also adjust the time scales between fast spiking defined

by Eqs. (1)–(3) and slow ECM feedback in Eq. (9). The latter is

assumed to be at the time scale of hours or days, hence the rates

should be in the range of 1027–1028 sec21. Here, to speed up

numerical illustrations, we used much higher values (1023 msec21)

assuming that the time scale can be arbitrary adjusted by tuning

the parameters. However, this is not critical because the longer

time scale, the better predictions are for the mathematical model.

Eqs. (10) implement two distinct methods for modifying

neuronal dynamics through feedback influences of the ECM.

The first changes excitability levels by changing the effective

excitation threshold [7]. We model this effect in the simplest form

by changing the depolarization level necessary to elicit an action

potential. The feedback gain is described by parameter cZ. The

second loop modifies synaptic weights, depending on product ZR

with gain cZR and results in the re-scaling of the EPSC distribution

(see Methods, Fig. 1A) and therefore the potentiation or depression

Figure 9. Characteristics of ECM receptor regulation cascade. A. Average dependence of activity on the strength of synaptic input for
different Poisson frequencies. B. Equilibrium curves illustrating the solutions of Eqs. (17) for different ECM receptor feedback gains. Parameter values:
kq = 0.01, aq = 0.0001 msec21, bq = 0.01 msec21, I0 = 4.5, b0 = 6, cP = 0.01, cZ = 0.0, and cZR = 0.01,0.04,0.035.
doi:10.1371/journal.pone.0041646.g009

Figure 10. Bistability induced by the ECM receptors regulation
cascade. Black and blue curves show stable steady state activity levels
and ECM concentrations, depending on the feedback gain. The gray
area illustrates bistability. Parameter values: z0 = p0 = 0, z1 = p1 = 1,
hz = 1,kz = 0.15, hp = 1.5,kp = 0.05, az = 0.001 msec21, bz = 0.01 msec21,
ap = 0.001 msec21, a3 = 0.0001 msec21, a4 = 0.001 msec21, I0 = 4.5 mA/
cm2,b0 = 6, Q0 = 0.18, and kb = 0.4762.
doi:10.1371/journal.pone.0041646.g010
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of synaptic inputs. Generally, as we have already mentioned, the

impact of this feedback can be bidirectional.

The feedback mediated by proteases is implemented in Eqs. (9)

as a nonlinear relaxation of the ECM concentration controlled by

gain parameter cP.

2.3. Steady State Activation; Leveling Average Activity
First, let us consider the steady state values (Z‘, P‘, R‘) of the

species involved in model (9) for different levels of average activity

Q, which are determined by the activation functions as follows:

Z?~
bzHz(Q,z0,z1,hz,kz)

azzcpbpHp(Q,p0,p1,hp,kp)=ap

,

P?~bpHp(Q,p0,p1,hp,kp)=ap,

R?~brHr(Q,r0,r1,hr,kr)=aR

ð12Þ

Figure 4 B illustrates the dependence of the steady state values

on Q.

Curves for P‘ (Q) and R‘(Q) show that there are two stationary

levels of proteases and ECM receptor concentrations. The

proteases become activated if the activity exceeds a certain critical

level. This activation acts through feedback on the ECM

concentration, which leads to higher degradation rates. The

ECM concentration therefore has a peak. The ECM receptor

expression rate is higher for lower activity ranges [16]. Thus,

function Z‘R‘ (Q) also has a maximum for a certain activity level.

Such behavior of the steady state curves will induce the activity

regulation cascades described below in sections 2.3.1 and 2.3.2.

2.3.1. ECM – protease regulation cascade. An increase in

the average firing rate results in ECM production. Next, the

feedback lowering the excitation threshold tends to decrease the

activity level providing depressive feedback. Due to the presence of

Figure 11. Dynamics of the ECM receptor regulation cascade in
the spiking model (1)–(6), (9), and (10). Due to the integration of
the Poisson input train, the Q variable begins fluctuating near the Q‘

value (see Eq. (7) in Methods). This figure illustrates a spontaneous
transition from the lower to higher level state. Parameter values:
z0 = p0 = 0, z1 = p1 = 1, hz = 1,kz = 0.15, hp = 1.5,kp = 0.05, kq = 0.01, cp = 0.1,
Io = 4.5 mA/cm2, b0 = 6.5, cZ = 0.0, cZR = 0.065, aq = 0.0001 msec21,
bq = 0.01 msec21, az = 0.001 msec21, bz = 0.01 msec21, ap = 0.001 m-
sec21, bp = 0.01 msec21 and finput = 0.2 kHz.
doi:10.1371/journal.pone.0041646.g011

Figure 12. Interplay of the two regulation mechanisms balancing average activity. Steady state activity levels are defined by zeros of
function F(Q). Parameter values: z0 = p0 = 0, z1 = p1 = 1, hz = 1, kz = 0.15, hp = 1.5, kp = 0.05, kq = 0.01, aq = 0.0001 msec21, bq = 0.01 msec21,
az = 0.001 msec21, bz = 0.01 msec21, ap = 0.001 msec21, bp = 0.01 msec21, cp = 0.1, I0 = 4.5 mA/cm2, b0 = 6, kI = 0.6625, and kb = 0.4762. A. Monotonic
regulation for rather low feedback gains, cZ = 0.03, cZR = 0.01, Q0 = 1.5. B. Bistability for high input frequency, cZ = 0.04, cZR = 0.01, and Q0 = 1.95. C.
Bistability for low input frequency, cZ = 0.1, cZR = 0.1, and Q0 = 0.2.
doi:10.1371/journal.pone.0041646.g012

ECM-Based Model of Neuronal Firing
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the peak in the Z‘(Q) function, the cooperative action of ECM and

proteases results in an increase of activity if the proteases are

activated.

Let us estimate the conditions in which a balance is achieved. It

follows from the membrane excitability model (1)–(6) that the

average activity level corresponds with certain values of the

depolarization level controlled by current Ith, as illustrated in Fig. 5.

Increasing Ith leads to hyperpolarization, hence larger excitatory

input is needed to generate a spike, and at some level, the activity

tends to die out. Note that for relatively large values of Q, the

curves can be well fit by linear dependence in the following form:

Q~Q0zkI I0{kI Ith, ð13Þ

where Q0 is the average activity value for threshold parameter

Ith = I0. When the feedback is activated, Ith is changed with gain cZ

depending on the ECM concentration (see Eq. (10)). Therefore, in

the steady state conditions, one can define equilibrium curve

Qa(Z), i.e., the dependence of the average activity on fixed values

of Z in the spiking model (1)–(6), as follows:

Qa(Z)~Q0{kI I0cZZ: ð14Þ

In this equation, I0 and Q0 define the activity level in the model

without feedback. Using (12) and (14), one can find that the steady

state activity balance is defined by the intersection points of line

Qa(Z) and curve Z = Z‘(Q). Surprisingly, this balance condition

may lead to interesting outcomes in the ECM – protease regulation

cascade. Figure 6 shows three principle arrangements of equilib-

rium curves Qa(Z) and Z‘(Q). Different cases may be realized for

different input frequencies finput and different values of feedback

gain cZ.

The equilibrium curves may have from one to three intersection

points, depending on the initial activity level. As one may expect,

the activation of feedback leads to the suppression of the average

activity and decrease of ECM concentration (Fig. 6 A). However, if

the activity is sufficiently high, e.g., when the proteases are

activated, the feedback would promote a growth of the ECM

concentration (Fig. 6 B). Higher gains may lead to a bistability

effect; i.e., they may lead to the evolution of steady states with low

and high ECM concentrations and thus different activity levels

(Fig. 6 C), depending on initial conditions.

Note that conditions (12) and (14) define the existence of the

steady state solutions only. These conditions’ stability must be

analyzed in terms of the original Eqs. (1)–(6), (9), and (10). Because

spikes in Eqs. (1)–(5) are generated on a much faster timescale

relative to variables Q, P, Z, and R and feedback (10) is

instantaneous, we may approximate the dynamics in a quasista-

Figure 13. Steady state average activity depending on the frequency of synaptic input (solid curve). Dashed curve shows the activity
curve without feedback. Parameter values: z0 = p0 = 0, z1 = p1 = 1, hz = 1,kz = 0.15, hp = 1.5,kp = 0.05, kq = 0.01, aq = 0.0001 msec21, bq = 0.01 msec21,
az = 0.001 msec21, bz = 0.01 msec21, ap = 0.001 msec21, bp = 0.01 msec21, I0 = 4.5 mA/cm2, b0 = 6, kI = 0.6625, and kb = 0.4762. A. Monotonic regulation
for low enough feedback gains, cZ = 0.03 and cZR = 0.01. B. Bistability for high input frequency, cZ = 0.04 and cZR = 0.01. C. Bistability for low input
frequency, cZ = 0.1 and cZR = 0.1.
doi:10.1371/journal.pone.0041646.g013
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tionary limit. In numerical simulations, we found that the average

activity Q that emerged from the spiking dynamics of Eqs. (1)–(6)

converged to Qa(Z) under any initial conditions. Accordingly, the

average dynamics of the Q variable can be approximated as the

relaxation of Q to its equilibrium curve Qa(Z). Similarly, according

to Eqs. (9) and (10), the dynamics of the Z variable can be

described as its relaxation to equilibrium curve Z‘(Q). Thus, the

average dynamics can be described by the following equations:

dQ
dt

~{a1(Q{Qa(Z)),

dZ
dt

~{a2(Z{Z?(Q)):

(
ð15Þ

Here, we assumed that variables Q and Z converge to their

equilibrium curves with relaxation rates a1 and a2. For simplicity,

we assume that the rates are constant and do not depend on

variables Q, Z, P or R. It is easy to find that the stability of a fixed

point of Eqs. (15), (Q*,Z*), is defined by the eigenvalues:

l1,2~
{(a1za2)

2
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(a1za2)2

4
{a1a2(1{Z’?(Q � )Q’a(Z � ))

s
:

Using Eq. (14), the stability condition can be written as follows:

{Z’?(Q)v
1

kI I0cZ

: ð16Þ

Figure 14. Potential contribution of ECM-mediated bistability to memory consolidation. A. Schematic network model illustrating how
the bistability may contribute to consolidation of activity routes (from left to right). Spontaneous dynamics results in the lower level of ECM
concentration. Afferent stimulation generates some activity propagation routes and, hence, increases firing rate in some cells (green circles). The ECM
associated with these cells is upregulated (red squares) and may sustain their activity even after the afferent stimulus terminates. Consequently, due
to higher output spiking rate these neurons may facilitate replays of the activity routes and facilitate memory consolidation. B. Response of a
network neuron associated with ECM to a bipolar stimulus (dashed curve) with fin0 = 0.2 kHz and fsignal = 0.1, 0.4 kHz. Color areas show time intervals
of stimulation and spontaneous evolution at the higher (red color) and at the lower (blue color) level states. Note that there are fluctuations in Z after
excitatory stimulation period, which are due to the feedback mediated by extracellular proteases. The amplitude of the spontaneous fluctuations is
proportional to Z’?(Q). Parameter values: z0 = p0 = 0, z1 = p1 = 1, hz = 1, kz = 0.15, hp = 1.5,kp = 0.05, kq = 0.01, aq = 0.0001 msec21, bq = 0.01 msec21,
az = 0.001 msec21, bz = 0.01 msec21, ap = 0.001 msec21, bp = 0.01 msec21, I0 = 4.5 mA/cm2, b0 = 6, cP = 0.1, cZR = 0.03 and cZ = 0.0.
doi:10.1371/journal.pone.0041646.g014
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Thus, according to the curves shown in Fig. 6, the fixed point

defining the equilibrium ECM concentration is always stable, with

the only exception being when it lies in the middle branch of the

Z‘(Q) curve, as shown in Fig. 6 C.

Figure 7 illustrates the ECM-protease regulation cascade for

different feedback gains obtained in numerical simulations using

Eqs. (9) and (14). The average activity is given by the two curves

breaking apart in the region of bistability. As expected for

depressive feedback, the curves are decreasing functions of the

gain. However, the ECM concentration shows a bidirectional

regulation behavior; it may increase due to the feedback splitting

on two stable curves in the bistable region, and it may decrease for

higher gain values. The presence of two branches in the activity

curves indicates the hysteresis effect typical for bistable dynamical

systems when the dynamics are different for increasing and

decreasing gains.

In a simulation of the original model (1)–(6), (9), and (10), the

average activity Q induced by the Poisson synaptic input always

has small fluctuations near the limit value Q‘ (see Eq. (7) and Fig. 2

in Methods). In the single fixed-point modes, these fluctuations are

projected to the ECM concentration that oscillates proportionally

to dZ‘(Q)/dQ. However, in the bistable mode, the ECM – protease

feedback cascade leads to spontaneous transitions from one state

(high activity – low ECM) to the other (low activity – high ECM),

as illustrated in Fig. 8.

2.3.2. ECM receptor regulation cascade. Next, we con-

sider the feedback loop mediated by ECM receptors. The

dynamics of the receptors are described by the third equation in

the system (9), leading to equilibrium concentration R‘(Q) (Fig. 4

B). The impact of the ECM on modulating the synaptic weight

distribution (the second equation in (10)) is determined by

equilibrium curve Z‘R‘, as shown in Fig. 4 B. The curve has a

peak for the activity interval corresponding with the maximum

rate of ECM receptor expression. The presence of this peak

determines the key outcome of the ECM receptor regulation

cascade. If the activity is sufficiently high, the ECM impact is

defined by saturated values of ECM and ECM receptor

concentration and almost independent of changes in activity (the

flat interval of Z‘R‘ curve to the right of its maximum in Fig. 4 B).

However, if the activity is decreasing (for instance, due to a

decrease in either input activity or ECM-proteases feedback), the

ECM impact increases to its maximum value at the peak of the

Z‘R‘ curve, which tends to stabilize the activity level. Interest-

ingly, for the lower activities (left of the peak), the ECM regulation

may act in the opposite direction by decreasing activity because

the Z‘R‘ values become lower than the initial level; therefore, the

activity decreases due to the depression of synaptic input.

Let us construct a mathematical model of the ECM receptor

regulation cascade. First, we assume that the gain of ECM

feedback cZ is negligible, and a neuron is regulated by changes in

its synaptic input controlled by gain cZR. In calculating the

dependence of average activity on the strength of synaptic input

(see Methods, Eqs. (1)–(6)), we find that the Q variable converges

to curve Q = Qb(b), as illustrated in Fig. 9A, for different values of

the input frequency. Taking into account Eqs. (10), we obtain

conditions defining the equilibrium activity as follows:

Q~Qb(b0(1zcZRZ?(Q)R?(Q))) ð17Þ

Figure 9B illustrates the solutions of Eq. (17) in phase plane

(Q,ZR). These solutions are given by the intersection points of

curves Q = Qb(ZR) and ZR = Z‘R‘(Q). Similar to the case of the

ECM-protease regulation cascade, the ECM receptor impact may

be different, depending on the values of input frequency that

determine Q0 = Qb(ZR = 0) and the feedback gain cZR that controls

the slope of the Qb curves. If there is one intersection point, the

level of equilibrium activity will be higher than in conditions

without the feedback. Note, however, that the feedback may

induce bistability when there are three intersection points between

the equilibrium curves (Fig. 9 B).

The steady state stability problem must be addressed in terms of

the original model (1)–(6), (9), and (10) and represents a notably

complicated task. In this study, we reduce this problem to a linear

approximation model in the following manner: let us approximate

function Qb(ZR) by a linear fit as follows:

Qb(ZR)~Q0zkbbcZRZR: ð18Þ

Accordingly, similar to Eq. (15), for local perturbations, we can

write the following equations:

dQ
dt

~{a3(Q{Qb(ZR)),

d(ZR)
dt

~{a4(ZR{Z?R?(Q)),

(
ð19Þ

with relaxation rates a3 and a4, which do not depend on variables

Q, Z, P or R in the approximation of linear relaxation. Thus, the

stability of the steady state (Q*,(ZR)*) is defined by a pair of

eigenvalues:

l1,2~
{(a3za4)

2
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(a3za4)2

4
{a3a4(1{(ZR)0(Q � )Q’b((ZR) � ))

s
:

Thus, the steady state is stable if the following inequality is

satisfied as follows:

(ZR)
0
?(Q)v

1

kbbcZR

: ð20Þ

It follows from Fig. 9B that when there are three intersection

points, i.e., three steady state activity levels, the middle point is of

saddle type, ‘‘repelling’’ the system to one of the two stable states.

To confirm this prediction, we simulate Eqs. (9,18) numerically.

Figure 10 illustrates the bistability induced by the ECM receptor

regulation for sufficiently low initial activity (small input frequency

and/or low synaptic input). As predicted, the response curves have

two branches corresponding with low and high values of the

outcome level of the average activity and ECM concentration.

Next, we determined bistability effects in terms of the original

spiking model (1)–(6), (9), and (10). Figure 11 illustrates sponta-

neous transitions from one stable state to another induced by the

fluctuations of average activity under Poisson train stimulation. In

this example, the higher-level steady state is located to the right of

the peak of the ZR equilibrium curve (Fig. 9B). This peak is clearly

observed in Fig. 11 in the transition of the ECM concentration to

its higher-level state, which corresponds with the activation of

proteases that tends to decrease the ECM level.

2.3.3. Balancing the average activity with the two

feedbacks. Let us consider the dynamics of the complete circuit

(Fig. 3), i.e., when the two feedback mechanisms are activated.

According to feedback Eqs. (10), the average activity level is

defined by the value of two key parameters Ith and b, which
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become slowly variable (relative to the millisecond timescale of the

spiking response), due to changes in Z and ZR. Then, for variable

Q, one can write that.

Q~Q(Ith,b)~Q(I0(1zcZZ),b(1zcZRZR))&Q0zI0kI cZZ

zb0kbcZRZR:
ð21Þ

In this equation, for illustration, we assumed that Q depends

linearly on both Z and ZR (i.e., a linear approximation of the

nonlinear dependences, as shown Figs. 5,9A). Constants I0,b0 are

defined by the excitability of the neuron, and Q0 depends on the

input frequency. To find the steady state level of the average

activity, we assume that Z and R tend to their equilibrium

functions Z‘(Q) and R‘(Q), respectively. Thus, the steady state

values correspond to the zeros of the following function:

F (Q)~Q{Q0zI0kI cZZ?(Q){b0kbcZRZ?(Q)R?(Q)~0: ð22Þ

Figure 12 illustrates three possible solution types of Eq. (22)

depending on feedback gains cZ and cZR. When function F(Q) is

monotonic, there is only one level of the average activity changing

with Q0 for different input frequencies (Fig. 12 A). This case is

realized when both feedbacks have sufficiently low values.

Changing Q0 corresponds with the shift of the F(Q) curve, as

indicated by arrows, and thus changes in the average activity level.

Increasing the value of the feedbacks may lead to bistability in the

response activity, as illustrated in Fig. 12 (B and C). When the

‘‘ECM - proteases’’ regulation cascade prevails, bistability appears

for high inputs (Fig. 12 B). The interval of bistability is defined by

the activation of proteases (activation function Hp). For sufficiently

low input frequencies (Fig. 12 C) bistability corresponds with the

contribution of the ECM receptor feedback, as predicted by

Eqs. (19).

Finally, we derive a general characteristic of the ECM

regulation model by analyzing its input-output frequency depen-

dence. Note that the average activity, as described in the Methods,

is proportional to the output frequency of the neuron (Fig. 2A) and

depends on the input frequency according to a logistic law (Eq. (8),

Fig. 2B). For sufficiently low feedback gains (Fig. 12A), the

response is monotonic, as illustrated in Fig. 13A. The response

curve goes below the dashed curve, corresponding with the model

without feedback. Therefore, as one may expect, the ECM

regulation tends to decrease the response activity to increasing

intensities of synaptic input and provides homeostatic regulation.

Surprisingly, this regulation may have a bistable character.

Figure 13B illustrates bistability realized for high activity. This

bistability has a narrow interval but may eventually result in an

increase in the response curve associated with the activation of

proteases, as mentioned earlier. Figure 13C illustrates bistability

for higher gains of ECM receptor feedback which occurs in a

relatively broad range of input frequencies. The upper branch has

a flat shape, which indicates the spiking rate balance for both high

and low activity. However, for low input frequencies, the activity

may decrease to the lower branch of the response curve.

Discussion

In summary, we have developed a mathematical model of

ECM-mediated regulation of neuronal activity. The model reflects

key experimental observations regarding the influence of the ECM

on neuronal signaling. The model comprises the following

features: (i) expression of ECM and ECM degrading enzymes is

controlled by the neuronal activity, (ii) fluctuation of the firing

threshold depends on the ECM concentration; (iii) there is

modulation of synaptic weights due to ECM receptor signaling

in dendritic spines. Mathematically, the model is expressed by a set

of eight ordinary differential equations. Because the ECM

dynamics are much slower than spiking dynamics, we have

investigated the model analytically in a quasistationary approxi-

mation. This analysis revealed conditions under which the ECM

may act as an effective regulation factor for sustaining homeostatic

balance in neuronal firing. The ECM prevents neuron over-

excitation if the average activity becomes too high, and in contrast,

the ECM may help the neuron sustain its firing rate in cases of a

dramatic decrease in synaptic input. These two mechanisms are

expected by the model construction because the increase of the

excitation threshold immediately reduces the firing rate, and the

expression of ECM receptors due to lowering activity facilitates

synaptic transmission. Unexpectedly, we found that the interplay

between the feedbacks may induce bistability and coexistence of

two stable firing rates in homeostatic conditions; this finding

suggests that under the certain perturbations (for example,

transient increases or decreases in input firing rates), the neuron

may jump between the lower and higher spiking rate levels.

Note that the bistability is a purely nonlinear effect. It has been

reported in several papers on neurodynamics that bistability may

naturally emerge from cell membrane dynamics [18–19]. In

particular, bistability is associated with complex membrane

potential dynamics [19], resonant interactions and signal process-

ing in dendritic trees [20], generation of episodic discharges in

inhibitory interneurons [21] and other mechanisms. However, the

most interesting point for computational considerations is that

bistability is associated with memory (for example, see the

Hopfield network paradigm [22]). This finding is in line with the

hypothesis that the ECM ‘‘may contain memory traces of local

neural network activity’’, as recently proposed by Dityatev and

Rusakov [14]. The key point is that due to ECM influence, the

neuron is capable of sustaining two different levels of output

spiking rate, depending on its previous activity. In terms of our

model, perhaps the simplest treatment of how the ECM could be

utilized to generate memory traces is the following.

Let us consider, for example, a network of neurons in a state of

spontaneous activity when the average input frequency is in the

interval of bistability (for example, see Fig. 13C). Starting from

rather low initial concentrations, the model converges to the low

steady state of activity (hence, a low ECM concentration), which

corresponds with the lower branch of the bifurcation diagram

(Fig. 13C). Let us assume that the network receives afferent

stimulation, and the signal circulates along synaptic pathways for a

long duration. This results in a non-uniform distribution of

synaptic inputs from different neurons, which reflects the spatial

organization of the corresponding signaling pathways. Thus,

different network neurons will receive different input frequencies

finput = fin0+fsignal. The neurons receiving more intensive stimulation

may change their steady states to the higher state, as illustrated in

Fig. 14 A. Finally, when the afferent stimulus terminates, the

system may remain at the upper firing state for a long duration

because it represents a stable configuration for spontaneous

frequency fin0. In particular, such dynamics may be a substrate

for the generation of replays to consolidate memory after the

stimulus because the neurons at the higher firing state memorize

the network sites activated by the stimulus; i.e., they represent

memory traces. Figure 14B illustrates the model dynamics with

fsignal(t) taken in the form of a low frequency bipolar signal relative

to spontaneous level fin0. Excitatory and inhibitory signals induce

ECM-Based Model of Neuronal Firing

PLoS ONE | www.plosone.org 11 July 2012 | Volume 7 | Issue 7 | e41646



transitions to the higher and lower ECM concentrations,

respectively, ‘‘memorizing’’ the level of activity generated by the

neuron and determining its later steady state of activity. Note that

the memorizing effect is local and specific to particular neuron

involved in a network implementing memory function. Note also

that bistability enhances major model effect of homeostatic spiking

rate adaptation. The neuron associated with ECM is capable to

sustain two distinct activity levels depending on the context of

neuron operation within a network.

These qualitative considerations remain to be verified using

computer simulations of the activity in ‘‘realistic’’ neuronal

networks of ECM-associated neurons after further elaboration of

the principles governing: (i) secretion of diverse ECM molecules in

distinct subcellular compartments, such as (peri)synaptic region

and axon initial segment; (ii) activation of diverse extracellular

proteases, such as tissue plasminogen activator, plasmin, matrix

metalloproteinase-9, neuropsin and neurotrypsin; (iii) the activities

of these proteases on specific ECM substrates; and (iv) ECM-

mediated regulation of synaptic transmission and excitability in

inhibitory versus excitatory neurons. These elaborated models can

provide an insight into the ECM-mediated role in epileptogenesis

[23,24] and memory deficits associated with ECM remodeling in

neurodegenerative disorders [25].
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