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ABSTRACT 

Aim: In this study we attempt to indicate anti-carcinogenic influence of ether extracted metabolites of Streptomyces Levis sp. on gene 

expression in colon cancer. 

Background: Colon cancer is one of the most prevalent cancers worldwide. In recent decades, researchers have been seeking the 

treatment for cancer. Natural products are valuable compounds with fewer side effects in comparison to chemotherapy drugs.  

Methods: Secondary metabolites were extracted with the inoculation of bacterial sample in Mueller Hinton Broth. MTT assay was 

done to evaluate the cytotoxicity effect of metabolites on SW480 cells. qRT-PCR was performed to observe effects of metabolites on 

Bcl-2, P53, SOX2, KLF4, β-Catenin, SMAD4, K-ras, BRAF genes expression in colon cancer.  

Results: The metabolites exhibited cytotoxic effects on colon cancer in a dose/time dependent manner (P < 0.001). After 48 h 

treatment, fold expression of Bcl-2, SOX2, β-catenin, K-ras, BRAF genes fold of expression were decreased, whereas P53, KLF4, 

SMAD4 genes were increased in treated cells (P < 0.001).  

Conclusion: These findings indicate that ether extracted metabolites of Streptomyces Levis ABRIINW111 have anti-carcinogenic 

effects on colon cancer. 
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Introduction  

  1 Colon cancer is a global challenge worldwide (1-3). 

Genetic and epigenetic alterations in the normal colonic 

epithelium lead to colon adenocarcinoma (4). Benign 

adenomatous polyp is the first step, then polyps 

develop into a malignant adenoma with high-grade 

dysplasia which subsequently transform into invasive 

cancer (5). Changes in genes expression is a significant 

prognosis factor for initiation and progression of colon 
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cancer which could be a biomarker for targeting colon 

cancer. Colon cancer is most commonly initiated by 

changes in the Wingless/Wnt signaling pathway. 

Inactivation of tumor suppressor genes and activation 

of oncogenes such as Bcl-2, P53, SMAD4, BRAF, K-

ras, Beta-catenin, SOX2, and Klf4 lead to development 

of colon cancer. Some of the predominant alterations 

that have been demonstrated to play an important role 

in initiation of colon cancer include K-ras, P53; 

TGFBR2 and SMAD4 as elements of the TGF-p 

signaling pathway are involved too.  

Bcl-2 family control the integrity of mitochondrial 

membrane. The anti-apoptotic proteins including Bcl-2, 

BAG, Bcl-x, Bcl-XS, Bcl-XL, Bcl-w and the pro-

apoptotic proteins like Bax, Bid, Bak, Bad, NOXA, and 
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PUMA are members of this family (6-10). Bcl-2 acts as 

an anti-apoptotic member and controls the apoptosis by 

several mechanisms such as releasing  of  ions into the 

cytoplasm through altering  the permeability of  the 

intracellular membranes (11, 12). P53 as a transcription 

factor has a suppressor activity and it is mutated in 50% 

of primary colon cancers (13). Expression of several 

pro-apoptotic genes such as Bax, NOXA, and PUMA is 

controlled by P53 (14-16). 

Sox2 is a member of the Sox gene family, belongs to 

the SOX B1 subgroup. It acts to preserve  development 

potential and encode transcription factors with a single 

HMG DNA-binding domain (17). The Kruppel-like 

factor (KLF) family of genes regulates a wide range of 

cellular processes such as differentiation, migration, 

apoptosis, proliferation, tumor formation and 

inflammation. KLF4 is exceeding and has observed in 

the gastrointestinal epithelial cells, skin, and 

endothelial cells in vascular system (18-21). KLF4 as a 

regulator of cell proliferation, induces cell cycle arrest 

at G1 to S phase in a p53-dependent manner by 

activation of p21WAF/Cip1 gene as the negative cell-

cycle-regulatory cyclin-dependent kinase inhibitor (22, 

23). 

ß-catenin is one of the elements of the APC/ß-

catenin/TCF/Lef pathway and its expression is 

increased by activation of the Wnt signaling pathway. It 

plays a main role in cancers such as melanoma, and 

gastric cancer (24-26). 

SMAD4, mutated mostly in colon cancers, belongs to 

the SMAD family of genes and acts as a tumor 

suppressor gene. In the transforming growth factor-p 

(TGF-p) signaling pathway, SMAD4 codes 

cytoplasmic  mediators (27, 28). 

K-ras is one of the important elements in the 

Ras/MAPK signaling pathway. This signaling pathway, 

by inducing the synthesis of cyclin D1, plays a key role 

in apoptosis, differentiation and cell proliferation. 

Mutation of the K-ras as a proto-oncogene activates 

this pathway, which is found in 36% of colorectal 

cancers (29-33). Three RAF genes that are regulated by 

binding to RAS, mediate the RAS-induced cellular 

response to growth signals by encoding cytoplasmic 

serine–threonine kinases. BRAF is one of the three 

known RAF genes that have resulted from gene 

duplication (30). 

The SW480 cell line is obtained from the colon 

adenocarcinoma with moderate level of differentiation. 

Previous studies have  illustrated  that SW480 cell line 

displays most of the genetic changes which are seen in 

aggressive colon cancers, including a K-ras mutation 

(34), p53 mutation (35), loss of the DCC gene on 

chromosome 18 (36).  

Streptomyces sp as the largest genus among 

actinomycets, produces a wide range of important 

secondary metabolites, including antimicrobial and 

anticancer (37). For example, Rapamycin – isolated 

from the soil bacteria Streptomyces hygroscopicus - has 

revealed anticancer activity (38-40). Recent studies  are 

focused on microbial natural products as the most 

promising source for developing better antibiotics (41). 

In our screening program for producing bioactive 

compounds, the diethyl ether extracted from 

Streptomyces Levis ABRIINW111 has shown strong 

activity against colon cancer cells (unpublished data).  

One of best methods for cancer therapy is using natural 

products. They act as anti-cancer agents without serious 

side effects. They can induce apoptosis and change 

genes expression in cancer cells (42). Because of these 

advantages, metabolites as natural products can be a 

good choice for cancer therapy. In this study we 

evaluated the Streptomyces Levis ABRIINW111 

metabolites effect on the pro-apoptic, anti-apoptotic 

and several oncogenes to understand how these 

metabolites could be effective products in cancer 

therapy.   

 

Methods 

Streptomyces Levis ABRIINW111 was purchased 

from the Department of Microbial Biotechnology, 

AREEO, Tabriz, Iran. Metabolites were extracted as 

described, bacteria was cultured in Nutrient agar 

medium (Sigma /70148) at 29 °C for 7 days. loop full 

of bacteria was inoculated into 25 ml of Mueller Hinton 

Broth (Sigma /70192) and incubated while agitating on 

shaker incubator set at 70 rpm at 29 °C for 36 h (43). 

As previously described, we used spectrophotometrical 

reading and chose turbidity 620 nm, 0.08 O.D, as an 

appropriate concentration for inoculation(43). After 

fermentation time, 1 ml of pre-culture was used to 

inoculate 1,000-ml Erlenmeyer flasks; each contained 

150 ml of fresh Mueller Hinton Broth medium. The 
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fermentation was carried out at 29 °C for 7 days on 

shaker incubator set at 70 rpm, centrifuged at 4000 rpm 

for 20 minutes. The Cell free filtrate was mixed with 

equal volume of Diethyl ether (1:1 V/V) shaken for 1 h 

at 175 rpm, extracted by Diethyl ether (100921/ 

Merck), using separating funnel. Finally, the obtained 

organic extract was concentrated at room temperature 

until 0.01 gr reddish brown crude extract obtained; the 

resulting extract was kept at 44 °C until used (43). 

Also, Streptomyces Levis ABRIINW111 metabolites 

fractions were analyzed by HPLC method (44). 

Metabolites were dissolved in final concentrations of 

100, 500, 1000, 2000, 5000 ng/ml  in DMSO (43, 45). 

Cell culture and MTT assay 

SW480, a human colon cancer cell line, was 

obtained from Pasteur Institute (Tehran, Iran). Cells 

were cultured in RPMI 1640 medium supplemented 

with 10% FBS, 1% penicillin and streptomycin in 5% 

CO2 at 37 ˚C˙.   

For MTT assay, 1×104 SW40 cells were seeded per 

well in 96-well micro plates with 100μl of culture 

medium containing RPMI 1640 medium supplemented 

with 10% FBS, 1% penicillin and streptomycin in 5% 

CO2 at 37 ˚C and incubated for 24 h. Metabolites were 

diluted in culture medium with less than 0/1% DMSO 

(Dimethyl Solfoxide) and various concentrations of 

bacterial metabolites (100, 500, 1000, 2000 and 5000 

ng/ml) were incubated in 5% CO2 at 37 ˚C for 24, 48 

and 72 h. Untreated cells served as control. After 

incubation time, supernatant was carefully replaced 

with 20 µL of MTT reagent (M6494/ Sigma) {3-(4,5-

dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium 

bromide (5mg/ml), incubated in 5% CO2 at 37 °C for 4 

h and 100 µL of DMSO was subsequently added to 

dissolve the appeared colored formazan crystals. The 

optical density was measured at 570 nm with reference 

wavelength 630 nm by micro plate Elisa reader (Biotek 

ELx 808, USA).  

Real time PCR 

The 1×106 cells were cultured in RPMI 1640 

medium supplemented with 10% FBS, 1% penicillin 

and streptomycin in 5% CO2 at 37 ˚C. After 24 h, 

supernatant was removed and cells were treated in 1000 

ng/ml of metabolites and incubated in 5% CO2 at 37 °C 

for 48 h. Thereafter, the cells were harvested by using 

Trypsin-EDTA solution (Sigma, T4049) and collected 

via centrifugation in 1000 g for 5 minutes. RNA 

extraction from the harvested cells was performed 

using RNX plus kit (RN7713C, Sina clon, IRAN). 

Briefly, 1 ml ice cold RNXTM –PLUS solution was 

added to the harvested cells in 2ml microtubes. 

Samples were vortexed for 10 seconds and incubated 

10 minutes at room temperature (RN7713C, Sina clon, 

IRAN).  200μl chloroform was added to the samples 

and resuspended, the samples were then incubated on 

ice for 5 min. Samples were centrifuged at 12000 rpm 

at 4 ˚C for 15 min. The aqueous phase was transferred 

to new RNase-free 1.5 ml tube, and an equal volume of 

Isopropanol was added to the solution, gently mixed 

and incubated on ice for 15 min. The mixture was 

centrifuged at 12000 rpm at 4 ˚C for 15 min. 

Supernatant was discarded and 1 ml of 75% Ethanol 

was added to the mix, briefly vortexed to dislodge the 

pellet and then centrifuged at 4 ˚C for 8 min at 7500 

rpm. The supernatant was discarded and the pellet was 

allowed to dry at room temperature for a few minutes. 

Pellet was dissolved in 30 μl of DEPC treated water. To 

help dissolve the pellet, the tube was placed in a 55-60 

˚C water bath for 10 min. A NanoDrop 2000c 

spectrophotometer was employed for concentration and 

OD measurements. Samples with acceptable OD 

260/280 and 260/230 values (~1.8 - 2) were subjected 

to cDNA synthesis. 

The single stranded cDNA was synthesized by 

using cDNA synthesis kit (K-2261-6, Bioneer, Korea) 

according to manufacturer's instructions. Briefly, 5μg 

of RNA was added to cDNA synthesis tube in a final 

volume of 20 μl DEPC-treated water. The cDNA 

synthesis tube was placed in a 60 ˚C water bath for 1 h 

and finally, it was placed in a 95 ˚water bath for 5 min. 

qRT-PCR was performed by using the SYBR Green 

master mix real-time PCR kit (75675 500 RXN 

ebioscience, USA) according to the manufacturer's 

instructions. Briefly, 7 μl of SYBR Green Master Mix 

PCR, 0.35 μl forward and reverse primers from a 

4μmol stoke, 0.7 μl of diluted cDNA template and 5.95 

μl of DEPC treated water were added to tube. qRT-

PCR was done as follows: initial denaturation at 95 °C 

for 3 min, 40 cycles of denaturation at 95 °C for 15 sec, 

annealing at 60 °C for 60 sec and elongation at 72 °C 

for 5 min. The GAPDH (endogenous housekeeping 

gene) gene was used as an internal control. Quantitative 

real-time PCR was performed with Rotor-Gene 

6000(version: 1.7) to determine CT values and the 

http://www.revmedvet.com/artdes-us.php?id=65
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threshold was adjusted to 0.1 (inside the exponential 

phase). Delta CT values were calculated in relation to 

GAPDH CT values by the 2-  method, in which ΔCt 

represents the difference between the CT value of 

target genes and the CT value of GAPDH(46).  

Statistical analysis 

Each experiment was carried out in triplicate. All 

data are expressed as means ± SD. One-way analysis of 

variance (ANOVA) was performed with the Dennett’s 

test, using software Graph Pad Prism 6. Significant 

differences were shown by “*”, “**”, “***” and 

“****” respectively for 0.05, 0.01, 0.001 and 

0.0001significance levels. 

 

Results 

Streptomyces Levis ABRIINW111 killed SW480 

colon cancer cells. 

MTT assay was performed for evaluating the 

cytotoxicity and cell viability of SW480 colon cancer 

following incubation with   Streptomyces Levis 

ABRIINW111. Metabolites inhibited cell growth and 

reduced viability based on the dose and time 

dependency. Cells were treated for 24, 48 and 72 h use 

in final concentration of 100, 500, 1000, 2000, 5000 

ng/ml metabolites. Viability decreased significantly to 

63.27, 48.95 and 47.58 in 1000 ng/ml after 24, 48 and 

72 h respectfully. Concentration of 1000 ng/ml was 

chosen as IC50 value (Figure 1). 

Figure 1. Cell cytotoxicity was examined by MTT assay. 

SW480 cells were incubated with indicated concentrations of 

Streptomyces levis metabolites for 24, 48 and 72 h. Cell 

growth was proportional to absorbance at a wave length of 

570-630 nm. Values are expressed relative to the control and 

as mean ± SD of three independent experiments (P < 0.001). 

Streptomyces Levis ABRIINW111 altered genes 

expression in colon cancer cells. 

We treated SW480 cells with metabolites using 

1000 ng/ml in final concentration for 48 h.  qRT-PCR 

was performed for harvested cells to evaluate Bcl-2, 

P53, SOX2, KLF4, β-Catenin, SMAD4, K-ras, BRAF 

fold expression. P53 gene expression – pro-apoptotic 

gene involved in apoptosis and cell cycle- increased 3-

fold in treated cells (Figure 2A). Also, BCl-2 gene 

expression – anti-apoptotic gene- was significantly 

decreased to 0.1 fold of expression in treated cells 

(Figure 2B). 

KLF4 – tumor suppressor - gene expression was 

significantly increased to 4.5 fold of expression in 

treated cells (Figure 2C) and also, SOX2 gene 

expression- oncogenic gene - was significantly 

decreased to 0.4 fold of expression in treated 

cells(Figure 2D).  

SMAD4 gene expression - tumor suppressor- was 

significantly increased 5 fold of expression in treated 

cells (Figure2E) and β-catenin gene expression – proto 

oncogene gene - was significantly decreased to 0.6 fold 

of expression in treated cells (Figure 2F). 

BRAF gene expression – proto-oncogene -was 

significantly decreased to 0.7 fold of expression in 

treated cells (Figure2G) and K-ras gene expression – 

the most common mutated gene in ras family- was 

significantly decreased to 0.4 fold of expression in 

treated cells (Figure 2H). 

 

Discussion 

Actinomycets, especially Streptomyces sp., the most 

important source for bioactive compounds are gram 

positive bacteria found in fresh water, plants surface, 

marine and terrestrial environments. The exploration of 

new bioactive compounds has led to the discovery of a 

new strain which can produce novel useful bioactive 

compounds (38, 47, 48). In this study, we focused on 

anti-cancer activity of diethyl ether extracted 

compounds of Streptomyces Levis ABRIINW111 on 

colon cancer. We showed that diethyl ether extracted 

compounds have an effect on Bcl-2, P53, SOX2, KLF4, 

β-catenin, Smad4, K-ras and BRAF genes expression.  

P53 is a tumor suppressor and by controlling cell 

cycle progression, apoptosis and by inhibiting 

angiogenesis is able to maintain genomic stability. 
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Also, studies revealed that the Bcl-2 family control 

the apoptosis by activation of Bax or inhibition of 

Bcl-2. P53 expression can inhibit Bcl-2 and Bcl-XL 

expression (13, 49-51). Our result showed that over 

expression of P53 in treated colon cancer cells with 

extracted metabolites could downregulate Bcl-2 as an 

anti-apoptotic, so it could induce apoptosis in P53 

dependent pathways.  

SOX2 as a member of the SOX gene family is 

expressed in human colon cancer. High expression of 

SOX2 is correlated with a poor prognosis, relapse, 

and lower survival of patients with colon cancer (52, 

53). In the other hand, studies reported that Klf4 as a 

tumor suppressor plays key roles during the 

differentiation, proliferation and apoptosis (54-59). 

There is strong evidence that in colonic adenomas and 

carcinomas reduction of protein and mRNA level of 

Klf4 is observed in comparison with normal colonic 

tissues (60). Our result showed that after 48 h, 

extracted metabolites could decrease the expression of 

SOX2, whereas the fold expression of KLF4 was 

increased. 

All of the tumors exhibited increased β-catenin 

protein compared with normal tissues. It was 

demonstrated that with the stimulation of epithelial 

cells through epidermal growth factor (EGF), β- and 

γ-catenin become tyrosine-phosphorylated. 

Additionally, a direct association of β-catenin with the 

EGF-receptor (EGF-R) was shown in vitro (61). 

 
Figure 2. Effect of S. levis ABRIINW111 secondary metabolites on gene expression of p53 (***P<0.0001) (A), Bcl-

2(***P<0.0001) (B), KLF4(***P<0.0001) (C), SOX2 (***P<0.0001) (D) SMAD4(**P<0.001) (E), β-catenin (***P<0.0001) (F), 

BRAF (***P<0.001) (G), K-ras (***P<0.0001) (H) gene expression.  
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TGF-p signaling pathway transits growth inhibitory 

signals from the cell surface to the nucleus and 

Smad4/Dpc4 is a key element of TGF-p signaling 

pathway. Mutations in SMAD4 have been reported in 

human pancreatic and colorectal tumors (27, 28, 62). 

In this study, after 48 h treatment, fold expression of 

β-catenin was decreased and fold expression of 

SMAD4 was increased, significantly.  

K-ras, a member of the RAS family of genes, is one of 

the most noticeable proto-oncogenes in colon cancer. 

The activated K-ras activates BRAF as a primary 

downstream target protein. BRAF, serine- threonine 

protein kinase, acts as a mediator of the K-ras signal 

toward the downstream effectors such as Mitogen- 

activated protein (MAP) to increase cell proliferation. 

Thus, alteration of K-ras seems to promote colon-

cancer formation (63, 64). 

 Here we showed that K-ras and BRAF fold 

expression were decreased in colon cancer cells 

treated with extracted metabolites. These findings 

show that the crude extracted metabolites have anti-

proliferative activity and can inhibit cancer cells 

proliferation.  

In summary, we have demonstrated that diethyl ether 

extracted metabolites of Streptomyces Levis 

ABRIINW111 have anti-carcinogenic effects on colon 

cancer and can alter anti-apoptotic, pro-apoptotic and 

oncogenes genes expression in treated cells. Also, 

extracted metabolites as natural products can be a 

good choice for cancer therapy but more studies are 

required to characterize the exact structure of 

metabolites and validate the clinical significance of 

our findings. 
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