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Abstract: Single-molecule magnet (SMM) properties of crystals of a terbium(III)-phthalocyaninato
double-decker complex with different molecular packings (1: TbPc2, 2: TbPc2·CH2Cl2) were studied
to elucidate the relationship between the molecular packing and SMM properties. From single crystal
X-ray analyses, the high symmetry of the coordination environment of 2 suggested that the SMM
properties were improved. Furthermore, the shorter intermolecular Tb–Tb distance and relative
collinear alignment of the magnetic dipole in 2 indicated that the magnetic dipole–dipole interactions
were stronger than those in 1. This was confirmed by using direct current magnetic measurements.
From alternating current magnetic measurements, the activation energy for spin reversal for 1 and 2
were similar. However, the relaxation time for 2 is three orders of magnitude slower than that for 1 in
the low-T region due to effective suppression of the quantum tunneling of the magnetization. These
results suggest that the SMM properties of TbPc2 highly depend on the molecular packing.

Keywords: single-molecule magnets; terbium(III)-phthalocyaninato double-decker complex;
quantum tunneling of magnetization; magnetic dipole-dipole interaction

1. Introduction

Single-molecule magnets (SMMs) have interesting quantum properties, such as slow magnetic
relaxation [1,2] and quantum tunneling of magnetization (QTM) [3–5]. Since the discovery of the Mn12

cluster, several compounds showing slow magnetic relaxation have been reported. Lanthanoid(III)
(LnIII) complexes have been extensively studied because LnIII ions have a ground state multiplet
with large angular momenta, J = L + S, and ligand field (LF) splitting of the ground state gives a
large activation energy for spin reversal (Ueff) compared to polynuclear complexes of transition metal
ions [6–9].

One of the most promising classes of Ln SMMs is a family of bisphthalocyaninato complexes
(LnPc2) [8–16], which were shown to be SMMs in 2003 [8]. The electronic structure of LnPc2 has been
reported by Ishikawa and co-workers [10]. The ground state of the TbIII ions, 7F6, which is caused by
Russell–Saunders coupling, is mainly split by the strong axial LF around the TbIII ion. As a result, there
is an energy gap between the ground states with Jz = ±6 and the first excited states with Jz = ±5 of
~400 cm−1, which is attributed to Ueff. Due to such a large Ueff, TbPc2 shows slow magnetic relaxation
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up to ~50 K, far surpassing transition metal SMMs, like the Mn12 cluster (~4 K). In addition to the
high Ueff value, the high chemical stability and flat shape of the Pc ligands of TbPc2 molecule enable
it to be exploited in spintronics devices, such as spin transistors [17], spin valves [18,19] and spin
quantum bits [20]. In those applications, quantum phenomena, such as QTM, are used to manipulate
the spin states. For example, in the research on spin transistors, TbPc2 molecules have been inserted
between gold electrodes, and addressing and detecting single nuclear spin states of the Tb ion have
been demonstrated by using QTM events, which cause an abrupt jump in the differential conductance,
dI/dV [17].

On the other hand, nobody has prepared a quantum memory device based on TbPc2 since TbPc2

shows magnetic hysteresis only below 2 K despite the large Ueff value [10,11,21]. This is mainly due to
QTM, which takes place at random between the energetically matched levels on the opposite sides
of the barrier. In 2013, Sessoli et al. reported that the magnetic hysteresis of TbPc2 depended on the
environment of the crystalline phase [21]. They report that a thermally treated amorphous sample does
not show magnetic hysteresis even at 2 K, whereas a pristine crystalline sample shows clear hysteresis
at the same temperature. The disappearance of the hysteresis is not due to the degradation of the
material but to a significant increase in the QTM rate, which they confirm by using alternating current
(ac) magnetic susceptibility measurements. They conclude that transverse terms of the magnetic
anisotropy, which accelerate the QTM rate, are induced by the different crystal packing environments
in the amorphous samples.

The relationship between coordination geometry and LF parameters in the Hamiltonian have
been extensively studied both experimentally and theoretically [8–16,22–28]. These studies show that
D4d symmetry of the coordination geometry of LnIII ions leads to quenching the off-diagonal term,
which contributes to transverse anisotropy. Recently, our group has reported that the closer the twist
angle between ligands (ϕ) is to 45◦, the greater the Ueff value, and this can be adjusted by fine tuning
the octa-coordination geometries using a combination of porphyrin and phthalocyanine ligands [29].
This result is consistent with the fact that the contribution of the off-diagonal LF terms is due to the
symmetry of the octa-coordination environment.

In addition to the LF parameters, in a recent study, it has been shown that Ln–Ln interactions,
so-called f–f interactions, have a large effect on the SMM properties in the solid state [22,30–43].
In Ln SMMs, 4f electrons, which are responsible for the magnetism, are strongly shielded by the outer
shell electrons. Therefore, the exchange interactions via overlap of the 4f orbits are negligibly small,
and the magnetic dipole-dipole (MD) interactions are the dominant intermolecular interactions [32,34].
The MD interactions are known to act as an internal magnetic field [38]. In applied direct current
(dc) fields, the energies of the up and down spin states of SMMs become different due to Zeeman
splitting. As a result, applied dc fields diminish QTM between ground states, and the relaxation time
(τ) increases. On the other hand, when transverse fields are applied, the ground and excited states
mix, inducing QTM [44,45]. Since the magnetic field made by the magnetic moment of SMMs is highly
anisotropic, the direction of the easy magnetization between the Ln ions heavily affects the SMM
properties. In other words, when the easy axes of the magnetization of two SMMs align collinearly, τ

increases due to the suppression of QTM, and SMM properties improve. In contrast, if the easy axes
do not orientate in the same direction, QTM is enhanced, and SMM properties degrade [46].

As mentioned above, the SMM properties are strongly affected by QTM when the environment
is different from the crystalline phase. Considering two components of the LF parameters and the
MD interactions, we focused on two crystal structures of TbPc2 [47,48] with or without crystal solvent
molecules. In this study, we compared the molecular structure and the spin relaxation dynamics, and
herein we present an effective molecular design strategy for suppressing QTM via the coordination
geometry and the MD interactions.
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2. Results and Discussion

2.1. Comparison of the Crystal Structures of 1 and 2

TbPc2 crystallized without any crystal solvent molecules giving 1 and with dichloromethane
molecules giving 2 as reported previously [47,48] in the orthorhombic space groups P212121 and Pnma,
respectively (Figure 1). The average distance between the TbIII ions and a coordinated isoindole N
atom (Niso) was determined to be 2.408 Å in 1 and 2.418 Å in 2. The twist angle (ϕ) between the two Pc
rings was determined to be 41.37◦ in 1 and 44.93◦ in 2, causing a square antiprism (SAP) coordination
geometry and a pseudo four-fold axis (C4) perpendicular to the Pc rings in both crystal structures.
TbPc2 has a magnetic easy axis in same orientation with the C4 axis, as shown in Figure 2 with the red
arrow. In addition, the angle (α) between the C4 axis and the direction of the LnIII–Niso coordination
bond is known to have a strong influence on the LF parameters [22]. It was 54.56◦ in 1 and 54.60◦ in 2.
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only three parameters (k = 2, 4, and 6; q = 0) are needed, and these parameters contribute to the axial 
anisotropy. When coordination geometry is distorted from ideal D4d, the off-diagonal terms (B44,B64) , 

 
(a) 

(b) 

(c) (d) 

Figure 1. (a) Twist angle in square antiprism (SAP) in LnPc2; (b) Schematic illustration of the SAP
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Figure 2. Molecular packing of TbPc2 (a) for 1 viewed from the c axis, (b) for 2 viewed from the b axis.
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The LF Hamiltonian can be written as ĤLF = ∑k =2,4,6 ∑k
q=−k Bq

kOq
k . Bq

k is LF parameters, where
q accounts for the proportionality between the electrostatic potential, k is the order of spherical
harmonicity, and Oq

k are spin operators [22,23]. For ideal D4d SAP symmetry (ϕ = 45◦ and α = 54.74◦),
only three parameters (k = 2, 4, and 6; q = 0) are needed, and these parameters contribute to the axial
anisotropy. When coordination geometry is distorted from ideal D4d, the off-diagonal terms (B4

4,B6
4) ,

which are parameters for the transverse anisotropy, appear in the Hamiltonian. They cause mixing
between the ground states of the up and down spins and induce QTM. As describe above, ϕ strongly
affects the SMM properties via the LF parameters since the structures deviate from D4d symmetry.
In this study, the deviation from D4d symmetry is smaller for 2 than it is for 1. Therefore, we think that
QTM in 2 is effectively suppressed.

π–π stacking between the intermolecular Pc ligands caused a slipped column structure in both.
The strength of the MD interactions is inversely proportional to one third the distance between spin i
and j (rij). The nearest TbIII–TbIII distance was determined to be 8.838 Å in 1 and 7.892 Å in 2. Moreover,
the strength of the dipole interactions depend on the quantity (3cos2θ – 1), where θ is angle made by
the magnetic easy axis and the line between neighboring TbIII ions in the same column. θ is 43◦ in
1 and 35◦ in 2. Because the θ values are less than 54.7◦, the so-called magic angle, we thought that
ferromagnetic MD interactions were active in both 1 and 2 [49] and that the MD interactions were
stronger in 2 than they were in 1. Selected crystallographic data for 1 and 2 are compiled in Table 1.

Table 1. Structural parameters for 1 and 2.

1 2

average Tb–Niso distance (Å) 2.408 2.418
ϕ, (◦) 41.37 44.93
α, (◦) 54.56 54.60

rij, (Å) 8.838 7.892
θ, (◦) 43 35

2.2. Static Magnetic Properties

To determine the magnetic interactions in each molecular packing, dc magnetic measurements
were performed. To eliminate the effects of intermolecular interactions, magnetically diluted crystalline
samples were prepared (1′) by doping TbPc2 into YPc2, of which the crystal is isomorphous with that
of 1. Both TbPc2 and YPc2 have an unpaired electron delocalized on the Pc ligands [50,51]. Exchange
interactions mediated by π-stacking of Pc ligands in YPc2 compounds, where MD interactions are
negligible compared to TbPc2 have been extensively investigated. Literature reports on the low T
behavior of YPc2 indicate that antiferromagnetic interactions are active along the chains of stacked
YPc2. In contrast, YPc2·CH2Cl2 exhibits ferromagnetic interactions along the stacked chain [51,52].
As shown in Figure 3a, the χMT values for 1 and 2 increased with a decrease in T below 10 K due
to ferromagnetic MD interactions between the TbIII ions. The increase is larger for 2 than it is for 1.
This result indicates that the MD interactions in 2 are stronger, which is consistent with the conclusions
from the crystal structure. In contrast, the χMT value for 1′ decreased with a decrease in T because
of depopulation of the excited states [53,54]. In addition, our observations suggest that exchange
interactions in TbPc2 compounds are negligibly small compared to the MD interactions.

In the magnetization (M) versus field (H) curves for 1, 2, and 1′ at 1.82 K, magnetic hysteresis
was observed. The area inside the loop increased in order of 1, 1′, and 2. This result shows that the
MD interactions affect the magnetic hysteresis. On the other hand, the magnetic isolation of TbPc2 to
minimize the MD interactions also improved the SMM properties, as previously reported for most
SMMs [36,55–59]. Therefore, we concluded that the MD interactions in 1 degraded the SMM properties.
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Figure 3. (a) Direct current (dc) magnetic susceptibility for 1, 2, and 1′. The solid lines are guides for
eyes. Magnetization (M) versus field (H) and dM/dH versus H for (b) 1; (c) 2; and (d) 1′ at 1.82 K.
Average field sweep rate was 25 Oe s−1.

2.3. Dynamic Magnetic Properties

To investigate the magnetic relaxation process, ac magnetic measurements were performed on 1
and 2 with and without an applied external magnetic field (Hdc). τ was obtained by simultaneously
fitting the real (χM’) and imaginary (χM”) parts of the ac magnetic susceptibility with the generalized
Debye model (Equations (S1) and (S2)) [60]. The peaks in χM” plot for 2 were observed in a lower
frequency (ν) region than they were for 1, meaning that τ was slower for 2. As seen in Figure 4b, the
plot is divided into two parts. In the high-T region, where τ depends on T, the Orbach process is
dominant [61]. Ueff and frequency factor (τ0) were determined by fitting the data in the high-T region
using the Arrhenius equation (Equation (S6)) (1; Ueff = 523 cm−1, τ0 = 7.7 × 10−12 s, 2; Ueff = 556 cm−1,
τ0 = 2.2 × 10−10 s). Although in the low-T region, we tried to fit τ for 1, which still has some
dependence on T, by using combinations of direct, Raman, and QTM relaxation processes, the data
could not be correctly fit (Figure S7 direct + QTM, Figure S8 Raman + QTM, Figure S9 direct + Raman
+ QTM). We think that intermolecular interactions affect the spin ground state as a perturbation and
induce complex mixing of the relaxation process. We could fit the data points for 1 in the low-T region
by considering the Orbach process and QTM (Ueff = 3.92 cm−1, τ0 = 3.3 × 10−4 s, τQTM = 7.84 × 10−4 s)
(Figure S10), supporting that relaxation occurs through a complex mixture of processes in the low-T
region. One TbPc2 molecule does not have such an excited spin state Ueff = 3.92 cm−1 for the Orbach
process, whereas in the crystal structure, intermolecular magnetic interactions can split the ground
state as reported for the Tb triple-decker complex [37]. On the other hand, τ for 2, which scarcely
depends on T, was fitted by considering QTM (τQTM = 3.51 × 10−2 s) (Figure S11). Ueff values for
1 and 2 in the high-T region were found to be similar. However, the τ values were different in the
low-T region.
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Figure 4. (a) χM” vs. ν plot for 1 and 2 in a zero field. The solid lines were fitted by using the
generalized Debye model; (b) Arrhenius plots for 1 and 2. The solid lines were fitted by using the
Arrhenius equation. The dashed lines are guides for eyes.

In an Hdc of 3000 Oe, the peak in χM” plot for 1 clearly shifted toward the low ν region, as shown
in Figure 5a. Arrhenius plot for 1 in Hdc of 3000 Oe (Figure 5b) was fitted by using the Arrhenius
equation for high-T region (Ueff = 512 cm−1, τ0 = 5.3 × 10−12 s) and a combination of the Orbach
process and QTM for the low-T region (Ueff = 9.61 cm−1, τ0 = 4.2 × 10−2 s, τQTM = 8.83 × 10−2 s)
(Figure S12). The Hdc did not affect Ueff for the high-T region. On the other hand, Hdc caused τ to be
three orders of magnitude longer than it was in an Hdc of 0 Oe. Since the Hdc induce Zeeman splitting,
which causes a difference in the energies of the spin states, the QTM rate between ground states was
slower, and τ increased.

These results show that the molecular packing in 2 effectively suppresses QTM via the small
contributions of the off-diagonal terms in the LF Hamiltonian and the relatively strong MD interactions.
On the other hand, although ferromagnetic MD interactions were active in 1, the τ values in low-T
region were similar to those for 1′ (τ ≈ 10−4 s). This indicates that the MD interactions in 1 do not
suppress QTM. We believe that this is because of the large θ value mentioned in crystal structure
section. Moreover, from the results of dc and ac magnetic measurements, not only the off-diagonal
terms but also the collinearity of the MD interactions strongly affect QTM.
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3. Materials and Methods

3.1. Preparation of TbPc2 (1) and TbPc2·CH2Cl2 (2)

TbPc2 was synthesized following a reported procedure [47,48]. The obtained powder sample
was recrystallized from CHCl3/MeOH, which afforded deep green needle-like crystals of 1, and
recrystallized from CH2Cl2/Hexane, which afforded deep green needle-like crystals of 2.

3.2. Preparation of Magnetically Diluted Sample (1′)

TbPc2 5.69 mg (4.04 mmol) and YPc2 49.54 mg (37.01 mmol) were mixed in 10 mL of CHCl3
by using ultrasonication (Bransonic® ultrasonic cleaner 2510MT, Bransonic Ultrasonics Corporation,
Danbury, CT, USA) for 1 h. Addition of an excess amount of hexane afforded a powder sample of
diluted TbPc2 (1′).

3.3. Physical Property Measurements

Powder X-ray diffraction (PXRD) measurements were performed on crushed polycrystalline
samples by using an AFC-7R/ LW (Rigaku, Akishima, Japan) operated at 50 kV and 300 mA at 293 K
(Figure S1). The data were collected in the diffraction angle range of 3–60◦ in steps of 0.02◦ every 2 s.
To prevent the crystal solvent from evaporating, the samples were loaded into a capillary (diameter:
0.8 mm, length: 80 mm, Hilgenderg GmbH, Malsfeld, Germany) with the mother liquor. PXRD patterns
were simulated from the single-crystal data by using Mercury 3.0 (The Cambridge Crystallographic
Data Centre, Cambridge, UK).

Magnetic susceptibility measurements were performed by using Quantum Design SQUID
magnetometer (MPMS-XL and MPMS-3, Quantum Design, Inc., San Diego, CA, USA). Direct current
measurements were performed in the T range of 1.8–300 K in dc magnetic fields (Hdc) of −70.000 to
70,000 Oe. Alternating current measurements were performed in the frequency (ν) range of 1–1488 Hz
in an Hac of 3 Oe in the presence of an Hdc (zero and 3000 Oe). Measurements were performed on
randomly oriented powder samples of 1 and 2, which were placed in gel capsules and fixed with
n-eicosane to prevent them from moving during measurements. All data were corrected for n-eicosane
and diamagnetic contribution from the molecules by using Pascal’s constants.

4. Conclusions

In this work, we synthesized two different crystals of a terbium(III)-phthalocyaninato
double-decker complex (1: TbPc2, 2: TbPc2·CH2Cl2) and investigated the relationship between
molecular packing and magnetic properties. From crystal structure analysis, the ϕ value near 45◦ for 2
corresponded to a small contribution of the off-diagonal terms in the LF Hamiltonian. In addition, the
nearest TbIII–TbIII distance is shorter, and the TbPc2 molecules packed with a small θ for 2, suggesting
that MD interactions are stronger in 2 than they are in 1. This is consistent with the results obtained
from dc magnetic measurements. τ of 2 exhibited similar behavior with that of 1 in an Hdc of 3000 Oe,
and they were relatively slow. These results suggest that the molecular packing in 2 is suitable for
suppressing QTM. In contrast, although ferromagnetic MD interactions are active in 1, the τ values
were similar to those of 1′ where no magnetic interactions occur. From these results, we concluded
that the collinearity of the MD interactions was important for suppressing QTM. We believe that we
can increase τ by properly tuning the three parameters ϕ, rij, θ, and this idea can be applied to the
design of SMMs with slow τ.

Supplementary Materials: Supplementary materials are available online.
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