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Abstract

An advanced graph theoretical approach is introduced that enables a higher level of functional interpretation of samples of
directed networks with identical fixed pairwise different vertex labels that are drawn from a particular population.
Compared to the analysis of single networks, their investigation promises to yield more detailed information about the
represented system. Often patterns of directed edges in sample element networks are too intractable for a direct evaluation
and interpretation. The new approach addresses the problem of simplifying topological information and characterizes such
a sample of networks by finding its locatable characteristic topological patterns. These patterns, essentially sample-specific
network motifs with vertex labeling, might represent the essence of the intricate topological information contained in all
sample element networks and provides as well a means of differentiating network samples. Central to the accurateness of
this approach is the null model and its properties, which is needed to assign significance to topological patterns. As a proof
of principle the proposed approach has been applied to the analysis of networks that represent brain connectivity before
and during painful stimulation in patients with major depression and in healthy subjects. The accomplished reduction of
topological information enables a cautious functional interpretation of the altered neuronal processing of pain in both
groups.
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Introduction

Concepts from network theory have successfully provided a

general framework with wide applicability to discover differences

as well as similarities in the structure and function of systems and

to understand organizational principles that drive interacting

elements. In particular the neurosciences have benefited from the

progress in modern network theory [1]. The organization of brain

areas has been studied empirically [2,3,4,5] 7]and theoretically

[6,7]. It has been shown that pathologically altered neural network

topology and altered functional connectivity seem to be correlated

with cognitive and psychiatric disorders such as Alzheimer’s

disease [8] and schizophrenia [9,10] that are described as

disconnection syndromes [11,12,13] or epilepsy [14]. In this

context network measures enable quantification of pathological

abnormalities in brain networks. For an overview of network

measures that quantify global and local network topology we refer

e.g. to [15,16,17].

System analysis is most commonly performed on single

networks, although the analysis of single networks can be

problematic as one network represents only an instance of the

system at hand and is not fully representative of the system itself.

With variance in the shape and properties of such instances, a

system’s underlying properties and phenomena cannot be easily

captured in their entirety in one single network alone. Such a

variance might for example be displayed in fluctuations in the

distribution of links or connection strengths. In this work we

investigate samples of networks drawn from a specific population.

An investigation of samples of networks can offer further

advantages besides avoiding the drawbacks outlined above, i.e.

the incorporation of pairwise different vertex labels into the

analysis. Vertex labeling exists in networks from many domains

but is particularly prevalent in neuroscience and should be

considered. Within this framework we investigate samples of

associated directed networks of equal size whose vertex labeling

comprises functional relevant information on the location of each

vertex in the network. The investigation thereby focuses on the

extraction of characteristic topological patterns shared by sample

element networks, and less important topological patterns are

filtered out. It is based on network motif detection in single

networks without vertex labeling [18,19]. Network motifs consti-

tute an interesting property of local network topology: They are

small, conserved and overrepresented directed subnetworks (or

subgraphs), which potentially act as building blocks or as

elementary information processing circuits and thus may make

important contributions to the functionality of their network. In

this context it is assumed that individual real-world networks (or

classes of networks) possess characteristic combinations of network

motifs that reflect topological constraints related to the function-

ality of the represented system and its history of development

[18,19,20,21]. Network motif detection has been applied to

decompose various single real-world networks, e.g. protein-protein

interactions, electronic circuits, the World Wide Web, transcrip-
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tional regulatory networks, synaptic connections in neural

assemblies and connections within and between cortical areas

[18,19,20,22,23,24]. A variation of network motif detection was

presented in [24] and in [23] where structural motifs with

contained functional motifs and composite network motifs were

detected, respectively. Network motif detection may also be

generalized to the case of weighted networks [25].

The conventional workflow to detect motifs in a single network

involves three fundamental steps that are computationally

expensive: (1) Enumeration [18] or sampling [26,27] of subnet-

works that are induced by a vertex set of k vertices. (2) Partitioning

of these subnetworks into topological equivalence classes and

obtaining their counts, i.e. determining graph isomorphism for the

subnetworks. (Subnetworks Si and Sj are isomorphic if they

contain the same number of vertices connected in the same way.

This might only be apparent after a permutation p of their vertices

V~f1,2,:::,ng such that fu,vg is an edge of Si if and only if

fp(u),p(v)g is an edge of Sj .) (3) Determination of statistical

significance of subnetwork counts.

Our approach differs from the conventional workflow outlined

above in a few ways. These differences stem from the subnetwork

enumeration in all sample element networks and an accordingly

adjusted statistical test to assign significance to subnetwork counts

obtained over the sample. Moreover, the enumeration must

account for the vertex labels. This novel approach complements

and expands an analytical approach we reported on previously

[28].

This publication is subdivided into parts as follows. In Section 2

a general description of our approach to extract topological

patterns from network samples is provided. Properties of the null

model we used for the statistical test are emphasized and a means

to estimate its parameters is proposed. We apply this approach to

EEG data. The samples of networks are derived from connectivity

data obtained from EEG recordings of patients with major

depression and healthy controls before pain perception and during

pain processing [29]. Analysis of characteristic topological patterns

in these network samples has clinical relevance since the

understanding of the connection between pain and depression is

preliminary. Section 3 comprises a concise summary of resulting

data; for further detail on data used in the study, its acquisition

and pre-processing, the Materials S1 is included. A discussion and

interpretation of the results with regard to altered effective

connectivity patterns in patients with major depression and the

control group is provided in Section 4. We conclude in Section 5

with a general discussion of our approach in the context of the

most notable findings from the current literature.

Methods

Ethics Statement
Prior to the experiment detailed information on the aim and the

procedures of the experiment was provided to each subject and

written informed consent was obtained. The procedure was

approved by the Ethics Committee of the Friedrich Schiller

University (reference number 2282–04/08).

Methodology
Given a sample of directed networks of equal size and with the

same pairwise different vertex labeling, the appearance of induced

connected and directed vertex labeled subnetworks (subgraphs) is

analyzed with respect to overrepresentation. A possible overrep-

resentation of subnetworks is established by a comparison of their

counts obtained from the sample to the respective counts in

random networks that are specified according to a suitable null

model. Subnetworks that are shared significantly often by sample

element networks can be interpreted as characteristic topological

patterns (sample-specific network motifs with fixed pairwise

different vertex labeling). These are, by definition, important

topological patterns whose further investigation promises to add

insight into the phenomena that underlie the network structure.

Moreover, they allow for comparing and distinguishing network

samples on the basis of topological properties and might reveal

differences in connectivity. Characteristic topological patterns

might not be exclusively constructed of edges that occur frequently

in the sample but might also contain less frequent edges.

Subnetworks that are not overrepresented in the network sample

are treated as less important and thus are discarded in a

subsequent interpretation of network structure-function relation-

ships. The location of a characteristic topological pattern in a

network clearly is relevant for the interpretation of its function in

the context of the network, i.e. this kind of spatial information is

linked to an underlying process or a property. The subnetworks of

EEG-derived networks that we analyze in Section 2.6 are locatable

in the sense that they have an unambiguously identifiable position

in their network, which is a direct consequence of the pairwise

different vertex labeling where each vertex label corresponds to

exactly one EEG electrode location in the 10–20 system (Figure 1).

The presented method can be applied to networks with any

pairwise different vertex labeling that entails different functional

information and makes all vertices distinguishable and each edge

unique. Due to its importance for functional interpretation the

information on vertex labeling is preserved. Pairwise different

vertex labeling has important consequences for the investigation of

topological patterns: the respective network samples do not

contain isomorphic subnetworks and each subnetwork occurs at

most only once in a single network. This differs from original

network motif detection in single networks without vertex labeling.

Instead of determining graph isomorphism, we can directly

compare two subnetworks. They are identical if and only if they

share exactly the same set of edges (as opposed to only sharing

their patterns of interconnections), i.e. their adjacency matrices are

identical. Accordingly, step (2) of the conventional workflow for

detecting network motifs in the original sense is not required,

which is an advantage with respect to the computational

complexity of our task. The consequence for statistical analyses

is that it’s not possible to assign significance to subnetwork counts

if the sample size is too small. Extracting locatable characteristic

topological patterns from a network sample begins with an

exhaustive enumeration of subnetworks that are induced by nS

different vertices in every sample element network. It is followed

by an appropriate statistical test to assign significance to their

counts. Notably, even for subnetwork size 2 the set of character-

istic topological patterns yielded by the statistical test of our

approach might be different from a set of subnetworks of the same

size yielded by applying a preset threshold to their counts obtained

over the sample.

Exhaustive enumeration of subnetworks
Let N~(N1,:::,Nn) be a sample of networks Ni~(V ,Ei) that all

comprise the same set V of v vertices with pairwise different labels

and a specific finite set Ei of directed edges. In particular, all

sample element networks Ni are required to have an identical

pairwise different vertex labeling. The ordered pair (vi,vj) denotes

a directed edge (arc) that leaves vertex vi and connects to vertex vj .

The vertex vi is called the tail and vertex vj the head of the edge.

All networks of the sample N are simple graphs. Consequently,

they do not contain loops (edges where tail and head coincide) or

Labeled Motifs in Network Samples
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multiple edges (multi-edges – edges that have the same tail and the

same head).

Whereas original network motif detection usually chooses 3, 4

or 5 as values for the subnetwork size parameter nS , in our

approach, due to the preserved location information of the

subnetworks, it makes sense to detect topological patterns even of

size 2. Generally, here and in original network motif detection, nS

is assigned a small value to avoid the long computation times as

well as difficulties in assessing functional roles of significant

patterns. Exhaustive enumeration of induced subnetworks in all

element networks of a network sample is practical for many

network sizes, especially those that are encountered in analysis of

EEG recordings (ƒ256 vertices). Subnetwork enumeration in Ni

is performed by investigating all combinations of nS labeled

vertices to determine whether they induce a connected subnetwork

in Ni. Thereby, the count of every such vertex-labeled directed

subnetwork in the sample N is obtained. Alternatively, for larger

network sizes and lower edge densities, where many vertex

combinations might not form subnetworks, another enumeration

scheme might be better suited. For example an enumeration

scheme based on the ESU algorithm [27] might be faster and

more memory efficient for those networks as it recursively finds for

every vertex the set of vertices that can be used to extend the

subnetwork rooted at it. However, for our data that is composed of

dense and smaller networks and for the investigated small

subnetwork sizes we found that investigating all vertex combina-

tions is faster (using the Matlab programming language).

At this point it is still unknown which subnetworks constitute

characteristic topological patterns of the sample N . To shed light

on this, these counts are compared to respective counts in null

model networks to assign significance to the subnetworks.

A degree sequence preserving null model
Distinctly nonrandom characteristics in network topology are

linked to functionally important substructures. A graph null model

is needed to construct a reference system that contrasts such

regularity with random effects that also influence the formation of

the network topology. Such a null model is used for statistical

testing to identify those vertex-labeled subnetworks that occur in

the network sample significantly more often than in a sample of

suitable random networks. A suitable null model might be based

on randomization of network data and represents the null

hypothesis that edges connect to vertices without preference.

The architecture of the resulting randomized networks has to be

formed by a random process that does not entail selection for or

against particular substructures but still maintains certain charac-

teristics of the network topology. Particularly, the effects of any

process that created structures with functional relevance in the

networks have to be reversed during the generation of the null

model networks. Choosing a suitable null model that fits given

network data is an open problem. In particular, it is difficult to

decide which low-level topological properties of the network data

the null model networks should capture while at the same time the

connectivity between vertices varies stochastically. Using an

inappropriate null model in the statistical test might introduce a

bias in the assignment of significance to subnetworks [30,31]. The

null model widely employed by original network motif detection

preserves the in-degree and out-degree sequence. The in-degree

and out-degree sequence is a basic and important attribute of a

directed network which consequently should be accounted for in

the generation of reasonable null model random networks [30,32].

This property determines the topology of a network to a certain

degree by imposing constraints on potential locations of edges and

therefore it ultimately affects many of the network’s properties.

Incorporation of the vertex degree sequence into the null model

potentially yields a statistical test for significant subnetwork counts

with a ‘‘good’’ amount of restrictiveness so that not too many false

positive results nor too many false negative results are expected.

The associated random networks are usually either generated by

the configuration model (‘‘stubs-pairing’’) [33,34,35,36,37,38] or

by a Markov chain Monte Carlo method (‘‘edge-switching’’)

[18,34,39,40,41].

By means of the ‘‘edge-switching’’ algorithm we generate a

certain number of randomized networks for each input network Ni

of a network sample N. The fundamental idea of the ‘‘edge

switching’’ algorithm is to rewire an input network by means of a

series of random reconnections of edges that do not change either

the in-degree or the out-degree of any vertex. For this elementary

graph transformation two directed edges (vi,vj) and (vi’,vj’) are

uniformly selected at random. The heads of both selected edges

are exchanged to yield two newly rewired edges (vi,vj’) and (vi’,vj) if

this exchange does not generate multiple edges or loops in Ni.

Otherwise the switch is rejected and the procedure continues to

randomly select the next pair of directed edges. The attempt to

switch a pair of directed edges is repeated QDEi D times, where DEi D is

the number of directed edges in Ni and Q is a (‘‘mixing’’)

parameter which is chosen large enough to allow the underlying

Markov chain to converge to its stationary distribution. In

particular, rejected switches, which correspond to the transition

from a network to itself, are also counted. Note that the edge-

switching algorithm does not preserve the number of bidirectional

links, which might be reasonable in several contexts [31].

No a-priori bound exists for the mixing time of the underlying

Markov chain and it is not known for rapidly mixing for general

degree sequences, which is a clear drawback of the ‘‘edge-

switching’’ algorithm [42]. Ideally, the choice of Q ensures that the

Figure 1. The location of the nine EEG electrodes selected for
the connectivity analysis according to the extended Interna-
tional 10–20 System of Electrode Placement. The vertex labeling
of the networks that represent significant interactions entails the
information about these electrode locations.
doi:10.1371/journal.pone.0070497.g001
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algorithm generates with uniform probability every directed

network with a prescribed degree sequence. In [34] the authors

find empirically ‘‘that for many networks, values of around

Q~100 appear to be more than adequate’’. However, current

literature on network motif detection does not usually specify the

selection of the parameter Q and often the choice of the number of

random realizations of the investigated single network remains

vague. To save computational time and main memory it is also

desirable to generate only as many random realizations of the

input network’s in-degree and out-degree sequence as necessary to

ensure that the distribution of relative subnetwork frequencies in

these random networks is likely to differ only within sufficiently

small bounds from a distribution obtained by generating a larger

number of realizations. Generating 1000 random networks has

been suggested [18,23,39,43] but the authors do not explicitly

outline the motivations for this choice of size for the random

ensemble. In [34] between 1000 and 10000 random networks

were used for network motif detection, also without further

justification. Another study [32] on the correlation profile and

clustering of the internet used 1000 and 100 randomized networks,

respectively, without detailed explanations.

We apply simple but effective procedures to determine both

quantities more accurately with regard to given network data. As

already mentioned, our aim is to analyze a network sample, not

single networks. Therefore, it would not be feasible to determine

the value of Q for every sample element network in a reasonable

amount of computational time. Instead we propose to identify one

sample element network that is representative of all other analyzed

networks of this sample with respect to the in-degree and out-

degree sequence (which is the property that we preserve in

network randomization). The identification of the representative

network might be performed by means of calculating the mean in-

degree and out-degree sequence of all networks of the sample and

finding the one whose degree sequence has minimal distance to it,

according to the metric induced by the maximum norm. This

network can subsequently be used for determination of the

parameter Q that is needed for the generation of null model

networks for each sample element network.

We are interested in the value of the mixing parameter Q for

which the edge-switching algorithm uniformly samples networks

with prescribed in-degree and out-degree sequence. Several values

of Q are thereby analyzed. Then the performance index J is used,

similar to the test statistics of the chi-squared goodness-of-fit test, to

investigate the influence of Q, because it cannot be ensured a

priori that the performance index J is asymptotically chi-squared

distributed. Given Q, by means of J it can be investigated whether

every network with the prescribed degree sequence of the

representative network will be generated with equal probability.

Each unique network with the prescribed degree sequence

corresponds to one category in this test. To approximate the

value of the common probability p0i for each category under the

uniform distribution hypothesis for generating each network (H0)

at a minimum a good lower bound for the number of networks

that have the same degree sequence as the representative network

has to be known. For this, large numbers of random realizations of

the representative network have to be generated using the edge-

switching algorithm with different values of Q. The results of the

independent simulations must then be pooled together, since for

different Q the algorithm might sample networks from different

regions in the network sample space. This union set of networks

with the prescribed degree sequence can be used to determine a

lower bound for the number of pairwise different networks.

Because this procedure provides only a lower bound, one is

interested in obtaining samples as large as possible, especially for

larger values of Q. It is to be expected that network generation

with very distinct values of Q, e.g. a small value and a large value

will probably result in almost entirely different sets of generated

networks with only few networks being shared among the sets.

Unfortunately, these computations will eventually be constrained

by time and main memory limits and one must stop the simulation

at some point. These limitations are less pronounced when

network sizes are comparatively small, as e.g. in EEG-derived

networks that are investigated in computational neuroscience.

Now we can calculate p0i by using the determined number of

pairwise different networks with the prescribed degree sequence to

compute J(Q) for every Q. Under H0 expected counts n0i~p0i
:n

for every network should ideally be at least greater than one and

often they must be greater than five when the chi-squared

goodness-of-fit test is applied. Due to the aforementioned

constraints on computational resources the number n of generated

networks might not be large enough to satisfy the assumption of

the expected counts. A binning of networks does not make sense

because there is no natural ordering. Still one is advised to

calculate the performance index. As mentioned above it cannot be

assumed a priori that J 0s distribution under H0 is chi-squared with

(m{1) degrees of freedom, where m is the number of categories.

In that case the corresponding quantile might be determined by

means of Monte Carlo simulations. The smallest Q for which J(Q)
falls below the (1{a)-quantile is selected. Otherwise, if J(Q)

exceeds the (1{a)-quantile of J 0s probability distribution under

H0 for all Q the edge-switching algorithm does not generate

uniformly distributed networks for any Q. Then we suggest using

that value of Q for the randomization for which J(Q) is minimal.

We describe in the Materials S1 how to obtain an estimation of an

upper bound for the number of networks with prescribed degree

sequences of the representative network by means of an

appropriate decomposition of its adjacency matrix.

After identifying the value of the mixing parameter Q, detection

of the number of random realizations b� for every sample element

network required for a reliable detection of characteristic

topological patterns is described. We propose to generate an

upper bound B of Bootstrap network samples of size n by applying

the edge-switching algorithm. Based on these Bootstrap network

samples, a reference distribution Ri
B of relative subnetwork

frequencies is calculated by enumeration of all interesting vertex-

labeled directed subnetworks Si. This distribution is compared to

distributions Ri
b obtained in the same way from lower numbers b

of Bootstrap network samples. Ri
b is accepted to be sufficiently

close to Ri
B if it holds db~maxi DRi

b{Ri
BDve for an arbitrary fixed

ew0. Finally, b� is defined by b�~minb(Vk§b : dkve).

Assignment of significance to subnetwork counts
After generating a random network ensemble that consists of b�

random realizations of every sample element network’s degree

sequence, statistical significance can be assigned to the subnetwork

counts that have been obtained from the input network sample. By

enumeration of these subnetworks in the random network

ensemble their relative frequencies can be obtained, which in

turn are needed to compute p-values for their counts in the input

network sample. Since several subnetworks are tested with respect

to a significant overrepresentation in the sample an alpha-

adjustment has to be applied. For this, we suggest using the

Bonferroni-Holm correction [44] with a multiple significance level

of a~0:05 for all multiple test procedures to conservatively control

the familywise error rate for all hypotheses at a in the strong sense

instead of controlling the expected proportion of incorrectly

rejected null hypotheses (false discovery rate). Locatable charac-
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teristic topological patterns, that is sample-specific network motifs

with pairwise different vertex labels, are those subnetworks that

have significantly enlarged counts over the network sample.

Application to EEG connectivity networks
To provide a proof of principle we applied our proposed

method to real-world data. The network samples are taken from a

previous EEG experiment and subsequent investigation of

effective connectivity [29]. They were also examined in [28,45].

In the following we denote these networks as effective connectivity

networks (ECNs). The ECNs that we examine here describe

directed interactions before pain perception and during pain

processing in a group of patients with major depression (MD) and

a healthy control group (HC). The EEG was recorded continu-

ously from 60 electrodes during each subject’s electrical intracu-

taneous stimulation at the tip of the middle fingers of the right and

the left hand. For the connectivity analysis data was used that was

recorded from nine selected electrodes (F3, Fz, F4, C3, Cz, C4, P3,

Pz and P4; re-referenced to linked ears) that are situated above

brain regions associated with pain processing, attention and

depression (Figure 1). To compare network topology in the pre-

and post-stimulus condition, signal sections of 700 ms duration

were extracted before and after stimulus onset. The effective

connectivity between each ordered pair of these electrodes was

measured by means of the generalized partial directed coherence

(gPDC) [46]. One gPDC value results for each of the 72 directed

interactions and the effective connectivity that we are interested in

is given by significantly increased gPDC values. It is represented as

an ECN, which consists of nine vertices and the significant

interactions. In the context of this study the vertex labels signify

the location of EEG electrodes and topological patterns might be

denoted as interaction patterns. Eight network samples result from

the association of the group assignment (MD or HC) to a

particular combination of stimulus condition (pre- or post-

stimulus) and stimulated side (left or right hand). The sample size

is fifteen for the ‘‘MD – post stimulus – right hand’’ sample,

whereas it is sixteen for all other samples. Example ECNs are

depicted in Figure 2. For more detailed information on their

fundamental characteristics, the EEG experiment and on the

investigation of effective connectivity, we also refer to the

Materials S1.

Each sample’s member networks comprise unique information

about the investigated underlying phenomena, namely the

processing of painful stimuli in the so-called neuromatrix of pain

[47] in both groups. Analyzing the interaction patterns in these

samples of ECNs can contribute to a more refined understanding

of the relationship between pain and depression, as many aspects

of this connection remain poorly understood. Yet it is known that

Figure 2. Examples of effective connectivity networks (ECNs). The upper row shows networks of a MD patient (#1) before (left network) and
after (right network) left hand side stimulation. The lower row shows networks of a healthy control subject (#1) accordingly. These networks are
representative for samples of equal sized networks with identical pairwise different vertex labels.
doi:10.1371/journal.pone.0070497.g002
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in many cases depression is a comorbidity of chronic pain and

conversely, chronic pain is often an additional symptom of

depressed patients [48,49]. However, the physiological basis for

pain perception, pain processing and the sensitivity to painful

stimuli of depressed patients remain unclear. It is supposed that

the processing of painful stimuli in the neuromatrix of pain is

altered in depressed patients [50], which consequently is expected

to be reflected in the effective connectivity being altered, too.

The method to detect locatable characteristic topological

patterns was applied to each of the eight network samples

separately. As shown by our previous investigations subnetworks of

size nS~f2,3g are interesting, because an interpretation of larger

interaction patterns seems difficult to obtain given the current state

of knowledge on pain, depression and information processing in

the brain. To further reduce the complexity when comparing

ECN samples, we decided not to detect and evaluate the

appearance of every subnetwork of size 3, but instead we focused

on those 3-subnetworks that occur in at least one sample of ECNs

at least four times, because these subnetworks represent the most

promising candidates for network motifs. This restriction decreases

the number of potential 3-subnetworks from (9
3):54~4536 to only

134 subnetworks. The equation above accounts for (9
3) combina-

tions of 3 different vertices where each combination might form

one of 54 different connected vertex-labeled 3-subnetwork

topologies. We generated null model networks by means of

applying the edge-switching algorithm to all element networks of

each network sample. The resulting randomization disintegrates

structures with functional relevance in the interplay of anatomy

and function of the underlying recorded brains. For determination

of the parameter Q we computed a representative ECN, which

turned out to be an element of the ‘‘HC-post-left’’ sample.

Random realizations of the representative ECN were generated

using the edge-switching algorithm with different values of Q. The

results of the independent simulations were then pooled together

to yield a total of 190,400,001 networks. In this set we found

101,996,824 pairwise different networks with the given prescribed

degree sequence, which seems to be an appropriate lower bound

for the number of such networks. The actual number of networks

is much larger but due to time and main memory limits of the

computations we had to stop the simulations at this point. During

this random network generation process we observed a few

interesting aspects: First, we noted that the network most often

yielded from the randomization process was the input network

itself. This can be explained by the incorporation of the results

obtained with low values of Q, where after only few edge switch

attempts (that moreover might have been unsuccessful) the input

network was yielded as the output of the underlying Markov chain.

Second, we noticed that generating networks with very distinct

values of Q resulted in almost entirely different sets of generated

networks with only few networks being shared among the sets.

This observation was expected, since for small values of the mixing

parameter the edge-switching algorithm can cover only a small

part of the network configuration space. We then calculated J(Q)
for each of the simulation results obtained by using a single value

of the mixing parameter Q. By using the lower bound for the

number of pairwise different networks with the prescribed degree

sequence we obtained p0i~9:8042:10{9 as value for the uniform

probability of network generation under H0. Due to the

aforementioned constraints on computational resources the

number of random realizations of the representative network

(approx. 18,000,000) generated for every given value of Q was not

large enough to satisfy the assumption on the expected counts.

This number was also much smaller than the lower bound on the

Figure 3. Results of the determination of the mixing parameter Q for which the edge-switching algorithm samples networks with
prescribed in-degree and out-degree sequence uniformly. For every Q the resulting value of the performance index J(Q) exceeds the
corresponding (1{a)-quantile of the test statistic distribution.
doi:10.1371/journal.pone.0070497.g003
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number of pairwise different networks (101,996,824). Finally, for

every Q the resulting value of the performance index J(Q) was

greater than the corresponding (1{a)-quantile of the test statistic

distribution. Thus, the edge-switching algorithm seems to generate

networks with ECN degree sequences with non-uniform distribu-

tion for every Q. It was intriguing to uncover that the proportion

of networks that were generated three times in each sample was

disproportionately high. Mainly, these sample elements are

responsible for increased J-values and the large deviation from

the expected (1{a)-quantile. Because we could not identify a

particular Q-value, where J(Q) falls below the (1{a)-quantile, we

decided to use the lowest value of Q for which J(Q) was minimal.

As it turned out this was Q~120 (see Figure 3). According to our

outlined procedure we determined the required number of

random realizations for every sample element network as

b�~7500.

In the following Section we present the neurophysiological

results of our approach applied to these network samples.

Results

Figure 4 showing motifs of size 2 revealed several interesting

points. MD patients show slightly more motifs of size 2 than HC

subjects. However, 8 out of 12 motifs in MD and 8 out of 9 motifs

in HC are similar with respect to the motif and the time period

when it occurs. Overall this demonstrates that motifs of size 2 show

strong communalities in processing between the groups. This

shows that the method allows the identification of robust

connections. One of these functional connections is present for

all time windows (Fz«F4) for both sites of stimulation. This motif

was seen in our earlier work [28]. It is likely that this connection

represents a part of the background activity or attentional

processes which are independent of group (MD, HC), time period

(pre, post), or site of stimulation (left, right). Other motifs, e.g.

F3«Fz, are primarily found in association with the stimulation of

the right hand. So this processing contralateral to the stimulation

site might represent processes of preparing to and analyzing the

nociceptive input. Interestingly, this motif is the only 2-motif in

HC that is also not present in MD. It occurs during the pre-

stimulus period prior to the left hand stimulation in HC. This

activity might represent a preparation in advance of the hand

stimulation, e.g. the process of distributing attentional resources.

The lack of the F3«Fz motif in MD fits with additional motifs in

MD which do not appear in HC. Similarly to previous work [28]

all these additional motifs are located in the right hemisphere or

midline. This might reflect the role of the right hemisphere in the

processing of emotions and mood in MD patients

[50,51,52,53,54].

Similarly to motifs of size 2, motifs of size 3 (Figure 5 and

Figure 6) are also more often identified in MD than in HC

subjects. However, the exact communalities are far less expressed

for the motifs of size 3 (5 of 18 in MD; 5 of 13 in HC) compared to

size 2 (8 of 12 in MD; 8 of 9 in HC). The results seem to indicate

that some motifs in HC are replaced by different motifs in MD.

For example, motifs 2 and 3 in HC seem to be replaced by motifs

1 and 2 in MD (including the communality of motif 2 for the

processing after stimulation of the right hand). Interestingly, when

comparing these motifs between groups, the principle difference

lies in stronger activation of the right frontal areas in MD patients.

This finding might be interpreted as agreeing with theories on the

role of the prefrontal cortex (PFC) in the processing of emotions

[51]. The left PFC has been demonstrated to be involved

preferentially in processing associated with approach-related,

appetitive goals, while the right PFC is more strongly involved

in the processing of behavioral inhibition and withdrawal [55,56].

This theory opens possible interpretations on pathophysiological

mechanisms for MD, namely a hypoactivity of the left PFC or a

hyperactivity of the right PFC [51]. Our data clearly point to a

hyperactivity of the right PFC in our patients. Our data are also

consistent with findings indicating the additional recruitment of

prefrontal areas by MD patients [57]. While there are nearly as

Figure 4. Motifs of size 2 that were detected in the eight ECN
samples. The occurrence of a 2-motif in an ECN sample is indicated by
filled areas. These motifs represent important patterns of directed
interactions that occur before and during the processing of painful
electrical stimuli. The ECN samples stem from combinations of the
group assignment and experimental conditions: MD–patients with
major depression, HC–healthy control subjects, left and right–stimulat-
ed sides, pre and post–time windows with respect to the stimulus
condition.
doi:10.1371/journal.pone.0070497.g004
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many motifs of size 3 in MD patients during the pre-stimulus

period as in the HC subjects, a clear difference can be found in the

pre-stimulus period with respect to the site that will become

stimulated. Seven out of the 8 motifs of size 3 in MD patients were

found before stimulation of the right hand, only one motif was

found before stimulation of the left hand. In contrast, in the HC

subjects we found 4 motifs of size 3 before stimulation of the right

hand and 3 motifs before stimulation of the left hand. Obviously,

there is a clear preponderance of motifs before stimulation of the

right hand in MD patients. One reason for this preponderance

might lie in the contralateral organization of somatosensory

information processing. Thus it might be more demanding for MD

patients to recruit resources for the analysis of the left hand

stimulation because the resources had to be redistributed from the

Figure 5. Six out of twelve motifs of size 3 that were detected
in the eight ECN samples. The occurrence of a 3-motif in an ECN
sample is indicated by filled areas. These motifs represent important
directed interaction patterns of brain activity recorded at three different
EEG electrodes that occur before and during the processing of painful
electrical stimuli. The ECN samples stem from combinations of the
group assignment and experimental conditions: MD–patients with
major depression, HC–healthy control subjects, left and right–stimulat-
ed sides, pre and post–time windows with respect to the stimulus
condition (The remaining 3-motifs are depicted in Figure 6.)
doi:10.1371/journal.pone.0070497.g005

Figure 6. Six out of twelve motifs of size 3 that were detected
in the eight ECN samples. The occurrence of a 3-motif in an ECN
sample is indicated by filled areas. These motifs represent important
directed interaction patterns of brain activity recorded at three different
EEG electrodes that occur before and during the processing of painful
electrical stimuli. The ECN samples stem from combinations of the
group assignment and experimental conditions: MD–patients with
major depression, HC–healthy control subjects, left and right–stimulat-
ed sides, pre and post–time windows with respect to the stimulus
condition (The other 3-motifs are depicted in Figure 5.)
doi:10.1371/journal.pone.0070497.g006
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more active right to the left hemisphere. In line with this

interpretation, most of the motifs active during the preparation to

stimulation of the right hand in MD patients include directed

information flow to or within the left hemisphere (i.e., motifs 1, 7,

9, 11, and 12). Another somewhat surprising finding is that there

are slightly more motifs in the post-stimulus period found in MD

patients. It was previously found that MD patients compared to

HC exhibit higher pain thresholds to external stimulation

including electrical stimulation [48,58], lower sensitivity to C-

fiber activation [59], and/or lower sensitivity to experimental

nociceptive stimulation [58,60]. However, it should be mentioned

that the stimulation was performed with stimuli that were adjusted

for subjective pain ratings (i.e., moderately painful in both groups).

This might be the reason that there is no obvious difference in the

number of motifs found in MD vs. HC subjects. Nevertheless,

there are clear differences with respect to the motifs themselves.

Thus there exists an interesting phenomenon regarding

differences in motif composition between the MD and HC group

after stimulation. It seems that the connectivity due to stimulation

shows an opposite direction compared to the pre-stimulus

connectivity. With regard to left- and right-hand stimulation,

MD showed an equal number of motifs (5), whereas the HC

showed more motifs after right-hand stimulation (6) and only one

after left-hand stimulation. This might again represent the nature

of stimulation with a preferred contralateral processing of the

information. So the noxious stimulation of the right hand will

primarily (or, at least, more quickly) activate the left hemisphere,

but nociceptive processing will activate behavioral inhibition and

withdrawal. Thereby a need exists to transfer the information from

the left hemisphere to the right and to activate the right PFC due

to the noxious stimulation in the HC subjects. Indications for such

a transfer might be seen in motifs 2, 4, or 8. In our MD subjects,

there is already a clear preponderance of right hemisphere

activation, as discussed in the previous paragraph. This might

indicate that activation of the right PFC in MD to the same degree

as in the HC, does not occur because it is already activated.

Discussion

The purpose of the null model used in this study was to

distinguish inherently regular topological effects from true

topological coincidences in the member networks of a sample.

The analytical statistical test of our preceding approach [28] was

based on incorporation of more simple properties of the input

networks into the null model, which accounts for the mean

number of edges of the input network sample. The advantage of

this statistical testing is that it can be computed efficiently as no

random network ensembles must be generated. However, the null

model used in this approach is stricter in assigning significance to

topological patterns, as it incorporates more topological informa-

tion of the input network sample. To generate random null model

networks we chose the Markov chain Monte Carlo edge-switching

algorithm [18,34,39,40,41] vs. the process of drawing networks

from the configuration model ensemble [33,34,35,36,37,38].

Using the edge-switching algorithm for network motif detection

is recommended by the authors of [34] as there is a good trade-off

between speed and accuracy (uniform sampling of random

graphs). Similarly to the edge-switching algorithm the configura-

tion model algorithm uses the information of prescribed in-degree

and out-degree sequences. One vertex is uniformly and repeatedly

chosen from the set of vertices which have not used up all their

outgoing edges and one is chosen from the set of vertices that can

still accept ingoing edges, to randomly create a directed edge

between them. This can be seen as connecting two types of

‘‘stubs’’: an out-stub of a vertex to an in-stub of another vertex.

Then another such pair of vertices is selected randomly and is

again connected by a directed edge until all vertices have all their

connections with respect to their degree sequence The configu-

ration model approach suffers from the possible introduction of

multiple edges and loops into the randomly constructed network,

thereby creating multigraphs or pseudographs. Moreover, due to

certain bad sequences of random edge selections structural

configurations might emerge that would inevitably lead to the

introduction of such degenerating edges at some point in the

process. Such a degeneration of the resulting random networks is

undesirable and should be avoided since it would affect the

statistical test for subnetwork significance in networks that are not

degenerate themselves. The introduced error is even greater for

the smaller and denser networks that we analyze, because in this

case degeneration of respective random networks is more likely

than in very large networks where in the limit of large network size

the density of multi-edges and loops tends to zero [37]. The

configuration model approach does not uniformly generate

networks since degenerate networks have lower sampling proba-

bility (fewer possible stub-pairings) compared to simple networks

[37,38]. Rejections that would be needed to obviate the addition

of degenerating edges are unfortunately somewhat problematic on

their own. A sampling bias would be introduced if following the

discard of a multi-edge an alternative vertex pair is chosen at

random from the set of available vertices with free ‘‘stubs’’ [38,39].

This modified strategy [61] would be equivalent to an extended

exploration of the search space in the neighborhood of non-simple

partial directed networks. Thus, the final simple network which is

generated would not be drawn uniformly from all possible stub-

pairings [38]. Such an introduced bias is increased for networks

with heavily tailed in-degree and out-degree sequences [39],

because of the existence of hub vertices that are prone to obtain

more than one edge between them. The algorithm also might be

modified to reject partial networks upon introducing a degenerate

edge. It then uniformly samples simple networks with prescribed

degrees but its acceptance rate is too small to apply to real-world

problems [38]. Nevertheless, numerical experiments have revealed

that the modified configuration model algorithm that discards

degenerating edges and instead selects a new vertex pair can be

acceptable in practice despite of its sampling bias [34]. The non-

Markov chain Monte Carlo method ‘‘go with the winners’’ [34,62]

applied to the construction of networks with prescribed degree

sequences generates statistically correct samples but is too

inefficient for our purposes.

Moreover, other types of null model networks could be adopted.

We tested the following random graph models to generate sample-

specific null model networks: the G(n,p) model of Poisson random

graphs [16,37] with probabilities p~0:5 and p~DEi D=v(v{1), the

G(n,p) model with the same probabilities as before but with the

additional constraint of preserving the number of edges and

bidirectional edges of the input network and lastly stickiness index-

based networks [63]. We observed that using these other types of

null model networks results in a much greater number of

unwanted characteristic topological patterns showing inexplicable

cross-linkages between the left and right hemisphere. Fewer such

cross-linkages are obtained using the edge-switching algorithm for

generating null model random networks.

From a computational resources point of view our approach is

best suited for smaller networks that typically arise in studies based

on EEG recordings (network size ƒ256 vertices) and moderate

network sample sizes. Much computation time can be saved by not

determining the parameter values for the network randomization

procedure but instead relying on fixed values of (e.g. 100) and a
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smaller number of null model networks for each input network

(e.g. 1000). This, of course, comes at the expense of accuracy.

The concept of gaining understanding of networks and their

design principles by decomposition into smaller relevant subunits

is accepted, yet it remains controversial. In particular controversy

remains focused on the functional interpretation of network motifs

and therefore also of locatable characteristic interaction patterns.

A null model network needs to incorporate basic structural

properties of a network as well as account for the rules that govern

its formation to prevent statistical tests from falsely assigning

significance to its features or substructures [30,31]. Otherwise,

those properties would incorrectly be more prominent in the

statistical test although they are not outstanding features for the

examined network. The process by which a network was formed,

even if free of selection for or against particular structural patterns

that perform functions, can also favor the emergence of significant

structures, like network motifs, although they do not necessarily

contribute to functionality in the network [30,31]. Generally, these

artifacts in the network motif signature are difficult to distinguish

from functional relevant network motifs and sometimes these

differences might even be imprecise [31]. Spatial clustering of

vertices either in topological space or in attribute space is related to

constraints on network construction. A test for whether network

motifs might arise solely from these geometric constraints and not

as a consequence of additional functional optimization has been

proposed [64]. It has been concluded that network motifs in real-

world networks are not solely determined by geometric constraints

[64,65]. Whether structure-function relationships might be

ambiguous and depend on the structural context in which the

subnetworks are embedded in the network has been debated [66].

For a more definite interpretation of motif function it might be

necessary to complement topological information with information

on parameters that describe dynamical behavior [67]. The

primary challenge in future research is to overcome these sorts

of complexities. Overall, strengthening the assigned significance of

network structures by experiments that reveal whether and how

they contribute to network functionality should be a goal of future

research, although carrying out such experiments is not an easy

proposition. Yet certain network motifs have been tested

experimentally and their presumed regulatory roles have been

confirmed in bacteria and yeast transcription networks [68,69].

We use relative frequencies of subnetwork counts in the random

ensemble to compute p-values for the respective subnetwork

counts in the input ECN sample. In contrast, the use of z-scores is

common in other studies [18,21,24,31], making the unsafe

assumption that subnetwork occurrences are normally distributed

[70], which is not always the case [71].

As a final remark, our method was applied to detect

characteristic topological patterns in networks derived from a

connectivity analysis in the sensor space. Therefore, stringent

informative value with respect to anatomical locations of those

patterns is limited.

Supporting Information

Materials S1 Supplementary Material that contains further

information on the EEG experiments, the connectivity analysis

and a characterization of the resulting network samples that are

the data basis for this study.

(PDF)
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