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Abstract Modeling in neuroscience occurs at the intersection of different points of view and 
approaches. Typically, hypothesis-driven modeling brings a question into focus so that a model 
is constructed to investigate a specific hypothesis about how the system works or why certain 
phenomena are observed. Data-driven modeling, on the other hand, follows a more unbiased 
approach, with model construction informed by the computationally intensive use of data. At 
the same time, researchers employ models at different biological scales and at different levels of 
abstraction. Combining these models while validating them against experimental data increases 
understanding of the multiscale brain. However, a lack of interoperability, transparency, and reus-
ability of both models and the workflows used to construct them creates barriers for the integration 
of models representing different biological scales and built using different modeling philosophies. 
We argue that the same imperatives that drive resources and policy for data – such as the FAIR 
(Findable, Accessible, Interoperable, Reusable) principles – also support the integration of different 
modeling approaches. The FAIR principles require that data be shared in formats that are Findable, 
Accessible, Interoperable, and Reusable. Applying these principles to models and modeling work-
flows, as well as the data used to constrain and validate them, would allow researchers to find, reuse, 
question, validate, and extend published models, regardless of whether they are implemented 
phenomenologically or mechanistically, as a few equations or as a multiscale, hierarchical system. To 
illustrate these ideas, we use a classical synaptic plasticity model, the Bienenstock–Cooper–Munro 
rule, as an example due to its long history, different levels of abstraction, and implementation at 
many scales.

Review Article

*For correspondence: 
olivia@kth.se (OE); 
jeanette@kth.se (JHK)

Competing interest: See page 
22

Funding: See page 22

Received: 06 April 2021
Accepted: 13 May 2022
Published: 06 July 2022

Reviewing Editor: Ronald L 
Calabrese, Emory University, 
United States

‍ ‍ Copyright Eriksson et al. This 
article is distributed under the 
terms of the Creative Commons 
Attribution License, which 
permits unrestricted use and 
redistribution provided that the 
original author and source are 
credited.

https://en.wikipedia.org/wiki/Open_access
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://doi.org/10.7554/eLife.69013
mailto:olivia@kth.se
mailto:jeanette@kth.se
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


 Review article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Eriksson et al. eLife 2022;11:e69013. DOI: https://doi.org/10.7554/eLife.69013 � 2 of 31

Introduction
Dynamical models provide an essential counterpart to experiments in the endeavor to understand the 
brain, and today a large ecosystem of model types and approaches exists (Figure 1). For example, 
hypothesis-driven modeling typically brings a question into focus so that a model is constructed to 
investigate a specific hypothesis about how the brain works. Data-driven modeling, on the other hand, 
often follows a more unbiased approach, with model construction informed by the computationally 
intensive use of data. Although hypothesis- and data-driven modeling approaches are not mutually 
exclusive, a plethora of modeling formalisms, simulation platforms, and data formats has fragmented 
the neuroscience modeling community, particularly when it comes to modeling at different biological 
scales or levels of abstraction. This diversity is beneficial: most models and model building tools have 
a clear and specific role, but at the same time combining these approaches in an interoperable way 
would have an immense impact on our understanding of the brain. The FAIR (Findable, Accessible, 
Interoperable, Reusable) principles (Wilkinson et al., 2016) have been widely discussed and imple-
mented for data management (Wittig et al., 2017), and recently also for computational workflows 
(Goble et al., 2020). We suggest that these principles would be beneficial for models and modeling 
workflows within neuroscience as well. In this review, we examine the different steps of a general 
modeling workflow and look at different alternatives for model building, refinement, analysis, and use 
(Figure 2). For each step we consider how the FAIR principles can be applied to the different aspects 

��
���
���

����
����

���
�����
�

���
��
����

��

��
���
���
��

�

���
��
����

��

��
���
���

	�
���

��
���

����
����
��

���

���
����
���
���

����
���

���

���
����
���
���

����������������

���������
�����������

�
��������
	�����

����
	������ ����
���

���

���
����

����

�
�
����
���
���
��

���
���
 ��

��
���
�
��
���
�


��
���
����
�


���

��

�
�
���
���
�

���

���

���

���
� ��
���

���
��
��

Figure 1. Schematic illustration of different types of models and their relative relationships. A subset of 
neuroscience models are visualized based on four criteria: (A) biological scale, (B) level of abstraction, (C) the 
degree to which a hypothesis-driven, or (D) data-driven approach have been used for the model construction. 
Illustration includes examples from the text as well as several classical models: Albus, 1971 (hypothesis-driven 
phenomenological model of the cerebellar circuitry as a pattern recognition system); Bienenstock et al., 
1982 (algebraic bidirectional synaptic plasticity rule); Bruce et al., 2019b (mechanistic molecular model of 
the regulation of adenylyl cyclase 5 by G-proteins in corticostriatal synaptic plasticity induction); Dreyer et al., 
2010 (data-driven mechanistic model of tonic and phasic dopamine release and activation of receptors in the 
dorsal striatum), Frémaux et al., 2013 (hypothesis-driven phenomenological model of a reward-modulated 
spike-timing-dependent learning rule for an actor-critic network); Gurney et al., 2015 (basal ganglia model 
with corticostriatal reinforcement learning using data-driven synaptic plasticity rules); Hayer and Bhalla, 2005 
(data-driven biochemical bidirectional synaptic plasticity model involving calcium/calmodulin-dependent protein 
kinase II [CaMKII]); Hodgkin and Huxley, 1952 (classic biophysical model of action potentials); Knight, 1972 
(hypothesis-driven phenomenological model of stimulus encoding into a neuronal population); Markram et al., 
2015 (large-scale digital reconstruction of somatosensory cortex microcircuitry); Marr, 1969 (cerebellar algorithm 
model); Traub et al., 1994 (biophysical hippocampal CA3 neuron model showing the importance of dendritic ion 
channels).

https://doi.org/10.7554/eLife.69013
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of the modeling process. We focus on models at the intracellular or cellular level, where the field of 
computational neuroscience meets systems biology modeling, with an emphasis on models of brain 
plasticity and learning. However, the discussed methodology and concepts can be applied to other 
biological systems and scales as well (see, e.g., Einevoll et al., 2019).

As an illustration of the wide variety of model types, Figure 1 depicts a number of models arranged 
according to four criteria: biological scale, level of abstraction, and to what degree hypothesis- and 
data-driven approaches were used during model development. The axes of the figure are qualitative, 
additional dimensions could be considered, and the precise arrangement of the models could be 
interpreted differently as there are no strict metric spaces defined. Regarding biological scale, we 
note that experimental data can be measured and applied at different resolutions — from a molecular 
signaling pathway in a single synapse to an entire brain. This is reflected in the models, which exist, for 
example, from the level of molecular interactions important for plasticity in specific synapses (Bruce 
et al., 2019b) to brain structures with an aim of understanding generalized learning rules (Gurney 
et al., 2015). Because of different modeling goals, models are also constructed with different levels of 
abstraction. For example, the dopamine signal is important for reward learning, addiction, and moti-
vation, and has been modeled phenomenologically with a reward-prediction error (Frémaux et al., 
2013) or more mechanistically, taking into account dopamine diffusion and the affinity of dopamine 
receptors (Dreyer et al., 2010). Figure 1 also includes the data- and hypothesis-driven aspects of 
models. Models that have a high score on the data axis are typically based on a large amount of quan-
titative data and/or have been developed using data science methodology. Models that have a high 
score on the hypothesis axis, on the other hand, are strongly driven by a particular question or idea, 
and one aim could be to investigate if some assumed mechanism explains the studied phenomena. As 
a side note, we have used the concepts of ‘top-down’ and ‘bottom-up’ modeling restrictively within 
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Figure 2. The modeling process. Model development starts with assembling the information that is the foundation of the modeling study, such as the 
relevant experimental literature, published models, and additional experimental results (box 1). This is specified in a structured model and data format 
(box 2a), and the model is next refined and updated (box 2b). The model refinement step is an iterative process, where the model is simulated a large 
number of times to update the model parameters so that the model captures specific experimental data (quantitatively) or phenomena (qualitatively). 
Once developed, the model can be exploited for a variety of applications (box 3).

https://doi.org/10.7554/eLife.69013


 Review article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Eriksson et al. eLife 2022;11:e69013. DOI: https://doi.org/10.7554/eLife.69013 � 4 of 31

this article since those concepts are often implicitly linked to different field-dependent contexts, espe-
cially concerning the intensive use of data in systems biology and neuroscience, for example compare 
(Bruggeman and Westerhoff, 2007) and (Eliasmith and Trujillo, 2014; Dudai and Evers, 2014).

All these different types of models can be useful, but their value is greatly increased if they can be 
integrated to understand the same experimental data and phenomena at multiple scales or different 
levels of abstraction. For example, an abstract model of reward prediction can be given details through 
multicompartmental modeling, allowing this new form to be directly compared to experimental data. 
An experimentally validated model can then be used for designing new experiments or to predict 
efficient therapeutic interventions. Across all model types, it is also important to support new tools 
for model validation and refinement including methods for efficient parameter estimation, global 
sensitivity analysis, uncertainty quantification, and other data science approaches (Alber et al., 2019). 
Not only is this critical for increasing the accuracy and reproducibility of model development, but also 
for the efficient inclusion of new data. A FAIR modeling infrastructure that includes both models, data 
and software is essential for establishing synergy among modeling approaches and for the refinement 
and validation of models.

Wilkinson et al., 2016 subdivided the FAIR principles into 15 subcategories that describe important 
details regarding scientific data that are Findable, Accessible, Interoperable, and Reusable. The intent 
was to not only consider ‘data’ in the conventional sense but also the algorithms, tools, and workflows 
that led to the data. In this review, we follow this path and consider FAIR with regard to models and 
modeling tools in addition to experimental data. While all 15 subcategories should be considered 
by modeling software and database developers, here we focus on the subset of actions that can be 
taken by individual researchers, and we avoid technological complexity in our suggestions. The prin-
ciples of findability and accessibility for models and modeling workflows both require the availability 
of databases and repositories where models, software and associated data can be stored, and the 
use of persistent, unique identifiers and metadata. When it comes to interoperability of models, our 
main focus concerns the ability to run the same model using different simulation platforms and model 
analysis tools. Nonetheless, we also discuss interoperability across neighboring scales, such as when 
the output from a model at a finer resolution is used as the input to a model at a more coarse-grained 
resolution. Concerning reusability, our main focus is that different laboratories should be able to reuse 
and rebuild each other’s models efficiently, while acknowledging the provenance of a model, as well 
as the data used to constrain and validate the model.

Reusability is related to the issue of research reproducibility, which has been discussed within many 
scientific fields. In a recent study (Tiwari et al., 2021), the authors attempted to reproduce more than 
400 kinetic models of biological processes published in peer-reviewed research articles in conjunc-
tion with the curation process in the BioModels (Chelliah et al., 2015) repository, and they found 
that only about half of the models could be directly reproduced. They note that there is a difference 
between reproducibility and repeatability. In principle, a modeling process is repeatable if someone 
else can run the same code and get the same results. Reproducibility on the other hand requires that a 
different researcher starting from the same information but with another implementation reaches the 
same result. Reproducibility therefore provides a stronger quality check for computational scientific 
results. Other interpretations of these terms exist, as discussed in a recent study (Plesser, 2017), but 
here we follow the terminology described above.

In order to further develop modeling workflow capabilities fulfilling the FAIR criteria, a tightly 
integrated ecosystem of databases, software, and standardized formats is needed. Many of these 
pieces exist, supporting the modeling process from initial model development, to the use of models in 
exploration and prediction. For example, over the years, the field of computational neuroscience has 
developed a set of open-source simulation environments (Gewaltig and Cannon, 2014). At the same 
time, the community is depositing published models into online repositories, such as model data-
bases (Birgiolas et al., 2015; Gleeson et al., 2019; Hines et al., 2004; Li et al., 2010) and GitHub (​
github.com), for others to inspect or use. Simulator independent, standardized model specifications 
such as the Systems Biology Markup Language (SBML) (Hucka et al., 2003) and NeuroML (Gleeson 
et  al., 2010) have been developed to promote model interoperability and reproducibility. Finally, 
increasingly, experimental data are being used extensively in the modeling process, and frameworks 
for model calibration (Ashyraliyev et al., 2009; Mitra and Hlavacek, 2019; Sun et al., 2012) and 
for validating models against data (Omar et al., 2014) are available, or under development. What 

https://doi.org/10.7554/eLife.69013
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remains is to develop standardized workflows and data formats that integrate the components of this 
ecosystem to facilitate reusing, extending, and comparing models, within and across scales. The aim is 
to promote interoperability among different software packages used within neuroscience, to increase 
shareability of models, and at the same time improve transparency and reproducibility with regard to 
the model building process and the data used for parameter calibration and validation. All this can in 
the end also contribute to increased automation of the entire process to set the stage for wider use 
of data intensive methods.

As we consider the modeling workflow shown in Figure 2, we discuss how FAIR principles can be 
introduced to this process. To illustrate these steps with a concrete example, we use a classical model 
of activity-dependent synaptic plasticity, the Bienenstock–Cooper–Munro (BCM) rule (Bienenstock 
et al., 1982), described in detail below. Here, plasticity depends on pre- and postsynaptic activity, 
and leads to long-term depression (LTD) or long-term potentiation (LTP). The BCM rule is chosen as 
an example because it was first modeled phenomenologically and also has been subsequently repro-
duced using mechanistic models with increasing levels of detail as more data and knowledge have 
accumulated (Lisman, 1989). More recent models of signaling underlying the BCM rule are substan-
tially data driven (Castellani et al., 2005; Hayer and Bhalla, 2005).

An example: the BCM rule
The BCM rule is a synaptic plasticity model (Bienenstock et al., 1982) formulated in the context of 
the development of orientation selectivity in the visual system. It states that as postsynaptic activity 
increases, there are two domains of plasticity that induce either depression or potentiation. This rule 
has since been used as the basis for considerable theoretical and experimental work on synaptic 
plasticity, and here it is employed to illustrate approaches for modeling plasticity and to motivate our 
discussion of modeling workflows and FAIR approaches.

The original BCM rule describes the rate of change of synaptic weight ‍m‍ as

	﻿‍
dm

(
t
)

dt = ϕ
(
c
(
t
))

s
(
t
)
− ϵ m

(
t
)

,‍�

where ‍s‍ is the synapse input current, ‍ϵ‍ is the time constant of synaptic decay, and ‍c‍ is the postsyn-
aptic activity. ‍ϕ‍ represents the postsynaptic activation function, formulated as

	﻿‍ ϕ(c) < 0 for c < ΘM and ϕ(c) > 0 for c > ΘM‍�

where ‍ΘM‍ is the activity threshold at which the synaptic strengths are modified. The BCM rule is 
phenomenological because ‍ϕ‍ does not map to any biological mechanisms, and the authors showed 
that this learning rule can account for the formation of orientation selectivity for a wide range of values 
for ‍ΘM‍. A typical graph of ‍ϕ‍ is depicted in Figure 3A, and similar curves have been obtained experi-
mentally (Kirkwood et al., 1996).

This model was published in a widely read society journal and predates today’s FAIR principles. The 
article included simulations of the model equations, but, lacking today’s open-source, code-sharing 
infrastructure, readers were left to their own skills to replicate these implementations. Like many 
abstract models, the BCM model is a mostly qualitative representation of concepts derived from 
a substantial amount of data, including many features of synaptic plasticity, network-level data for 
orientation selectivity, and data for the degradation of orientation selectivity in the case of monoc-
ular deprivation and similar experiments. The publication includes simulations of several such cases, 
showing a qualitative match to data but does not explain how parameters were derived. In summary, 
due to the minimal, abstract nature of the model, the BCM study is not difficult to reproduce; however, 
there is no reference implementation available for simulations, and the parameters for several simula-
tions are not available. Thus, the published simulations and parameters are not consistent with today’s 
FAIR principles.

Moving forward a few decades, one finds mechanistic, mass-action models of synaptic signaling 
and the BCM rule, where the relevance of FAIR and data-driven approaches becomes more apparent. 
First, the quantities under consideration (input activity and synaptic strength) correspond directly 
to synaptic molecules. Experimental data tell us that intracellular calcium concentration is a good 
proxy for postsynaptic activity, ‍c‍, and that the phosphorylation state of the AMPA receptor is one 
of the proxies for synaptic efficacy, ‍m‍. Filling in the reaction diagram, one obtains a simplified reac-
tion network of the form shown in Figure 3B. Remarkably, the properties of these molecules result 

https://doi.org/10.7554/eLife.69013
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Figure 3. Abstract and mechanistic versions of the Bienenstock–Cooper–Munro (BCM) rule model. (A) Original 
version where the rate of plasticity change, ‍ϕ‍, is a function of the stimulus strength ‍c‍. At the threshold ‍ΘM‍ the 
sign of synaptic change flips from negative to positive. (B) Simplified mechanistic (chemical) model based on 
known pathways that could implement the BCM rule. The calcium stimulus activates both a kinase, CaMKII, and a 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.69013
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in a response that resembles the BCM curve. The phosphatase calcineurin (CaN) has a high affinity 
for calcium bound calmodulin, and also can partly become activated directly by calcium (Creamer, 
2020). Hence, it is activated at moderate calcium and triggers an initial decrease in phosphory-
lated AMPAR and LTD (‍ϕ(c) < 0‍ from the BCM formulation). Calcium/calmodulin-dependent protein 
kinase II (CaMKII) has a weaker affinity for calcium bound calmodulin, but is present in overwhelming 
amounts, so its activation surpasses CaN at high calcium concentrations, thus implementing ‍ϕ(c) > 0‍ 
for ‍c > ΘM‍, and leading to increase in phosphorylated AMPAR and thus LTP. The resulting curve from 
this mechanistic but simplified model matches the BCM curve (Figure 3C). More detailed mechanistic 
versions of the BCM model have been implemented using known synaptic chemistry in considerably 
greater detail (Lisman, 1989; Hayer and Bhalla, 2005).

How FAIR and data driven are these more recent models? The Lisman, 2017 is not consistent with 
our current definition of FAIR: it provides full disclosure of equations and rate constants, but reuse 
requires reimplementation. The more recent model (Hayer and Bhalla, 2005) exists in at least two 
open-access databases, the Database of Quantitative Cellular Signaling, DOQCS (Sivakumaran et al., 
2003), and BioModels (Li et al., 2010), hence is findable and accessible. It has been converted to the 
standardized SBML model description format, promoting interoperability and reusability. The DOQCS 
version has citations and calculations for the derivation of some of the parameters, and the BioModels 
version maintains the provenance, referencing the DOQCS entry from which it was derived.

Parameter access greatly improves as models become FAIR. For example, Lisman’s study acknowl-
edges the original BCM model as a key motivation (Lisman, 1989), but no parameters were available, 
leading Lisman to use ‘plausible’ estimates for rates that form the BCM curve. In contrast, Hayer and 
Bhalla had access to reaction schemes and rates from databases such as DOQCS (Sivakumaran et al., 
2003), and model construction was facilitated considerably by the FAIR principles. However, the data-
base version of this model does not include the provenance for the data underlying some of the 
parameters, in part because data were unavailable. Building on Hayer and Bhalla, 2005, numerous 
studies benefited from increasing convergence toward FAIR principles and have derived model struc-
tures and parameters from models placed in accessible repositories (e.g., Li et al., 2012; Nakano 
et al., 2010; Mäki-Marttunen et al., 2020).

To summarize, the history of models that implement the BCM rule demonstrates a clear progres-
sion from abstract, qualitative, and unFAIR formulations to more mechanistic, quantitative, and FAIR 
formulations of the same conceptual model using data-driven parameterization. This progression is a 
natural consequence of the accumulation of experimental data and nascent concepts of FAIR princi-
ples. In what follows, we consider how to improve data-driven models further through FAIR workflows 
and data science-based approaches.

Framework for FAIR modeling workflows
A typical model development process can be divided into different stages or modules, as illustrated 
in Figure 2. The model foundation (Figure 2, box 1) stage corresponds to the process of collecting 
the experimental data and prior knowledge that will be used for the rest of the modeling process 
and combine these into an initial plan for the model structure (or topology), that is, a description of 
the different model entities and how they interact. In the next stage, the specification of the model 
and data (Figure 2, box 2a), the information from step 1 is formalized into a standardized, machine 
readable format. During the model refinement stage (Figure 2, box 2b), the model is transferred to 
a mathematical formalism, simulated, calibrated, and refined. After model refinement is complete, 
the specification files are to be updated with this new information. Finally, during the model usage 

phosphatase, CaN. These act in an antagonistic manner on the AMPA receptor, leading to its dephosphorylation 
and removal from the synapse when the calcium concentration, [Ca2+], is moderate, but insertion when [Ca2+] is 
high. The output from the model is p_AMPAR, the phospho-form of AMPAR, which is inserted into the membrane. 
(C) Simulated response of the model in Panel B, measured as phosphorylated receptor p_AMPAR. This curve has 
the same shape as the abstract BCM curve model in Panel A, including a threshold level of [Ca2+] = ‍ΘM‍ at which 
the synaptic change as measured by AMPA phosphorylation changes sign from negative to positive. The basal 
fraction of p_AMPAR is 0.4. Model from accession 96 on DOQCS (see Table 1, Row 15).

Figure 3 continued

https://doi.org/10.7554/eLife.69013
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stage (Figure 2, box 3), the resulting model is validated, analyzed, and used to predict or investigate 
additional phenomena. Some examples of tools and formats that can be used in this process are given 
in Table 1–4. Note that these tables do not provide an exhaustive list, but rather a starting point for 
discussion.

Model foundation: experimental data and prior knowledge
The Model foundation (Figure 2, box 1) may include information from published literature, novel 
unpublished experimental data, experimental data and models retrieved from databases, or, for multi-
scale modeling, information from models at other biological scales (Table 1). These different data 

Table 1. Databases in cellular neuroscience and systems biology.
These are some of the commonly used databases for creating and constraining models at the intracellular and cellular scale.

Database, alphabetically Purpose/focus Reference Homepage

Computational models

1 BioModels Database

Physiologically and pharmaceutically 
relevant mechanistic models in standard 
formats Li et al., 2010 http://www.ebi.ac.uk/biomodels/

2 MoDEL Central Nervous System
Atomistic-MD trajectories for relevant 
signal transduction proteins  �

http://mmb.irbbarcelona.org/MoDEL-
CNS/

3 NeuroML-DB
Models of channels, cells, circuits, and 
their properties and behavior Birgiolas et al., 2015 https://neuroml-db.org/

4 NeuroElectro

Extract and compile from literature 
electrophysiological properties of 
diverse neuron types Tripathy et al., 2014 https://neuroelectro.org

5 ModelDB Computational neuroscience model McDougal et al., 2017
https://senselab.med.yale.edu/
modeldb/

6 Ion Channel Genealogy Ion channel models Podlaski et al., 2017 https://icg.neurotheory.ox.ac.uk/

Experimental data

7 Allen Brain Atlas Human and mouse brain data Lein et al., 2007 http://www.brain-map.org/

8 BRENDA Enzyme kinetic data  � Chang et al., 2021 https://www.brenda-enzymes.org/

9
CRCNS - Collaborative Research in 
Computational Neuroscience

Forum for sharing tools and data for 
testing computational models and new 
analysis methods Teeters et al., 2008 https://CRCNS.org

10 NeuroMorpho Neuronal cell 3D reconstructions Ascoli et al., 2007 http://neuromorpho.org/

11 Protein Data Bank (PDB)
3D structures of proteins, nucleic acids, 
and complex assemblies wwPDB consortium, 2019 http://www.wwpdb.org/

12 Sabio-RK

Curated database on biochemical 
reactions, kinetic rate equations with 
parameters and experimental conditions Wittig et al., 2012 http://sabio.h-its.org/

13 Yale Protein Expression Database (YPED) Proteomic and small molecules Colangelo et al., 2019
https://medicine.yale.edu/keck/nida/
yped/

Experimental data and models

14 Channelpedia Ion channel data and channel models Ranjan et al., 2011 https://channelpedia.epfl.ch/

15
DOQCS The Database of Quantitative 
Cellular Signaling

Kinetic data for signaling molecules and 
interactions Sivakumaran et al., 2003 http://doqcs.ncbs.res.in/

16
EBRAINS (including EBRAINS 
Knowledge Graph)

Digital research infrastructure that 
gathers data, models and tools for brain-
related research  �

https://ebrains.eu
(https://search.kg.ebrains.eu)

17 FAIRDOMHub

The FAIRDOMHub is a repository 
for publishing FAIR Data, Operating 
procedures and Models for the Systems 
Biology community Wolstencroft et al., 2017 https://fairdomhub.org/

18 Open Source Brain

A resource for sharing and 
collaboratively developing 
computational models of neural systems Gleeson et al., 2019 https://www.opensourcebrain.org/
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http://doqcs.ncbs.res.in/
https://ebrains.eu
https://search.kg.ebrains.eu
https://fairdomhub.org/
https://www.opensourcebrain.org/


 Review article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Eriksson et al. eLife 2022;11:e69013. DOI: https://doi.org/10.7554/eLife.69013 � 9 of 31

sources may include qualitative as well as quantitative data. Qualitative data give information about 
qualitative traits such as the possibility that two proteins interact or knowledge of positive or negative 
correlations, which are useful for defining the structure of the model, that is the modeling entities and 
how they interact. As an example, in the case of intracellular pathway models, such model structure 
defines which molecular species and reactions to consider, as exemplified in the chemical signaling 
network in Figure 3B. Quantitative data, on the other hand, are needed to specify quantitative enti-
ties in models, such as rate constants, equilibrium constants, or initial concentrations of molecules. 
This can be done either through direct measurements or indirectly during the model refinement stage 
(Figure 2, box 2b), where model outputs are compared to experimental readouts.

Findable data, data provenance, and data reusability are key components of the FAIR principles 
(Wittig et al., 2017) and are important for this first step of the modeling process. FAIR modeling 
workflows are facilitated by the many databases that can be used to constrain neuroscience models, 
which also includes databases for models from earlier studies. As mentioned above, the focus of 
this review is on cellular- and intracellular-level models, and data and model sharing resources for 
this level can be found in Table 1. For example, summary statistics (e.g. [Tripathy et al., 2014]) and 
morphological data for different neuron types (e.g. [Ascoli et al., 2007]), and integrated data for 
gene expression, connectivity, and neuroanatomy (e.g. Allen Brain Atlas [Lein et al., 2007; Sunkin 
et al., 2013]) are useful for constructing models at the cellular level. Often, published computational 
neuroscience models are shared via ModelDB (McDougal et al., 2017), which includes over 1700 
models and is tightly coupled with NeuronDB, a database of neuronal properties that are used to 
constrain models based on experimental observations. Other repositories of neuroscience models 
include NeuroML-DB with over 1500 models in NeuroML format at multiple scales (Birgiolas et al., 
2015), and Open Source Brain, a platform for collaborating, simulating, and sharing neuroscience 
models (Gleeson et al., 2019). Systems biology databases, such as BRENDA (Chang et al., 2021) and 
SABIO-RK (Wittig et al., 2018), contain kinetic data on enzyme kinetics and protein–protein interac-
tions, which are critical for modeling subcellular signaling pathways. SABIO-RK is a curated database 
that was specifically designed to facilitate systems biology modeling, which provides reaction kinetics 
data along with information on experimental conditions, units, and kinetic rate equations. Systems 
biology models are also available through model databases such as BioModels, which includes many 
models that are relevant to systems biology level models in neuroscience (Malik-Sheriff et al., 2020). 
One important feature of databases for experimental data and models is the accompanying meta-
data, which are critical for finding and using these data. For example, associating ontology references 
to biological terms makes it possible to use the associated domain knowledge in formulating search 
strategies (Birgiolas et al., 2015) and in the model building process.

For the synaptic plasticity model example described here, the models that employ the BCM rule 
have progressively used more information and data from different databases as new models have 
been developed. As mentioned above, mechanistically detailed versions of the synaptic plasticity 
model use model reaction schemes and reaction rates from existing databases: DOQCS (accessions 
59–64) and the BioModels Database. Additionally, several subsequent cellular and network models 
available in ModelDB rely on various versions of the synaptic plasticity model (Jedlicka et al., 2015; 
Wilmes and Clopath, 2019; Mäki-Marttunen et al., 2020; Manninen et al., 2020).

In spite of the large amounts of data available at different biological scales, data are still sparse if 
one wants to build mechanistic, ‘bottom-up’ models to better understand multiscale, causal chains 
of events such as how properties of proteins affect cellular-level phenomena or how cellular and 
synaptic properties affect network dynamics and function (Klipp et al., 2010). However, it is some-
times possible to use predictions from a model at finer biological resolution to provide constraints 
to model parameters at the next level of abstraction (Boras et al., 2015; Stein et al., 2007; Wang 
et al., 2018; Xie et al., 2014). For example, molecular dynamics simulations which use biomolecular 
structural data can provide important quantitative or qualitative constraints on kinetic parameters, 
binding affinities, and their modulation by allosteric interactions in intracellular signaling pathway 
models (Bruce et  al., 2019b, Bruce et  al., 2019a; Gabdoulline et  al., 2003; van Keulen et  al., 
2022). Tools exist to facilitate the use of biomolecular structural data in model building (Stein et al., 
2007). For example, SYCAMORE (Weidemann et al., 2008) can use protein structural data along with 
published kinetic measurements for parameter assignment in the construction of signaling pathway 
models. Additional modeling tools and use cases for reuse of model components in multiscale models 

https://doi.org/10.7554/eLife.69013
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are being implemented through the EBRAINS infrastructure (ebrains.eu). This combination and reuse 
of model components at multiple biological scales emphasizes the importance of FAIR principles, 
since model components must be not only reusable, but also interoperable and findible for this to be 
achieved.

Specifications of model and data
An important part of a FAIR modeling workflow is the specification of the model and experimental 
data (Figure 2, box 2a). Standardized formats for models have been developed with a goal of making 
it possible to efficiently reproduce the modeling results of another laboratory. Specifically, standard-
ized model formats are critical for both interoperability and reuse. If we want to reproduce the entire 
modeling process, including model refinement, this requires information not only about the model, 
but also the quantitative data used for calibration and validation, a description of the different simu-
lation experiments performed (corresponding to the biological experiments to be reproduced or 
predicted), as well as the prior assumptions made on parameters, all in machine readable format. A 
minimal requirement on such a specification is (but not limited to):

•	 the model
○ the model constituents, for example molecular species in a biochemical signaling model;
○ the interactions, for example reactions in a biochemical signaling model or synaptic 
connectivity in neuronal network model;
○ the parameters, for example synaptic conductances, reaction rates;

•	 the simulation experiments
○ the changes that are made to the model to replicate each of the biological experiments in 
for example initial conditions, parameters, or input functions;

•	 the quantitative experimental data
○ used to constrain model parameters;
○ used for validation – if model validation was performed;
○ the mapping between model output and experimental data readouts;

•	 the prior (i.e., before the model refinement) assumptions on parameter values;
•	 the posterior (i.e., after the model refinement) estimates for parameter values.

The prior assumptions on parameter values inform the model refinement process and may contain 
parameter ranges or distributions, or previously estimated values based on data, including error 
bounds. To be complete, the model and data specification may also include metadata on the cali-
bration method used and identifiers for all model entities. This recommendation is similar to MIASE 
(Minimum Information About a Simulation Experiment) compliance; in Waltemath et al., 2011 the 
authors list more specific measures that authors can take to make their models easier to simulate by 
others. These simulation experiments can range from a time series simulation, to a parameter scan, to 
a sensitivity or bifurcation analysis, methods that are further described below. COMBINE (co.mbine.​
org, Hucka et al., 2015) is an initiative to coordinate the development of the various community stan-
dards and formats for computational models.

There are many ways to archive and share this information, and we discuss several possibilities. 
One approach is to maintain all information in one location, but often, a more distributed approach 
is required. In either case, the information should be clearly described and linked through metadata, 
including unique persistent identifiers to the different components like models or experimental data. 
In Table 2, we list various model description standards and file formats that can be used, and in later 
sections we describe ways to retrieve permanent unique identifiers.

At the systems biology level, examples of existing storage formats for the information above 
include SBtab (Lubitz et al., 2016) and the JSON format used in FindSim (Viswan et al., 2018). SBtab 
is well structured, so it is machine readable as well as human readable, and it is able to capture infor-
mation about biochemical network models and associated calibration data in a single location. SBtab 
has defined fields for sbo (systems biology ontology) terms (Courtot et al., 2011), as well as database 
identifiers (e.g. to UniprotKB [UniProt Consortium, 2021] or KEGG [Kanehisa and Goto, 2000]), and 
additional information can be included to map between experimental readouts and model simulation 
outputs. In the FindSim framework, an experiment is codified as a file with information about the 
experimental stimuli and the readouts, as well as how they map to the model output.

SBML provides a standardized machine readable markup language for sharing only the model 
description that is supported by many simulation platforms. For example, the MOOSE and STEPS 

https://doi.org/10.7554/eLife.69013
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simulators accept models in the SBML format. One advantage of SBML is that it describes all aspects 
of a model using a simulator-independent approach, but a disadvantage is that an SBML file can be 
hard to write by hand so that SBML files typically are created using an applications programming inter-
face (API) such as libSBML. In some cases, a simulation platform may provide an API as the primary 
method for model specification. This API approach is taken by packages such as rxd (Newton et al., 
2018). Another approach to model handling, taken by VFGEN (vector field generator, Weckesser, 
2008), is independent of biology but specific to differential equations. VFGEN converts an input file 

Table 2. Model standards and file formats in cellular neuroscience and systems biology.
The formats described in this table allow standardized representation of models and their porting across simulation platforms.

Name Purpose Webpage Reference

Formats for intracellular models in systems biology

1 SBML
Systems biology markup language, 
for storing and sharing models https://sbml.org Hucka et al., 2003

2 SBtab

Systems Biology tables, for storing 
models (and data for parameter 
estimation) in spreadsheet form https://sbtab.net/ Lubitz et al., 2016

3 CellML
Store and exchange mathematical 
models, primarily in Biology https://www.cellml.org/ Kohl et al., 2001

Formats for cellular and network-level models in Neuroscience

4 NeuroML

A XML-based description language 
that provides a common data 
format for defining and exchanging 
descriptions of neuronal cell and 
network models http://www.neuroml.org/ Gleeson et al., 2010

5 NineML
Unambiguous description of 
neuronal network models

https://github.com/INCF/nineml-
spec Raikov et al., 2011

6 NestML

Domain-specific language for the 
specification of neuron models 
(python) https://github.com/nest/nestml Plotnikov et al., 2016

Custom formats for specific simulators

7 sbproj Simbiology Project file
https://se.mathworks.com/
products/simbiology.html Schmidt and Jirstrand, 2006

8 COPASI project file
COPASI native format for models 
and simulations http://copasi.org/ Hoops et al., 2006

9 SONATA
Efficient descriptions of large-scale 
neural neworks

https://github.com/AllenInstitute/
sonata Dai et al., 2020

10 JSON (HillTau)
JSON files for FindSim and HillTau 
model reduction method

https://github.com/BhallaLab/
HillTau Bhalla, 2020

11 MOD
Expanding NEURON’s repertoire of 
mechanisms with NMODL

https://www.neuron.yale.edu/
neuron/ Hines and Carnevale, 2000

Formats for specification of parameter estimation problems

12 SBtab

Systems Biology tables, for 
storing both models and data 
for parameter estimation in 
spreadsheet form https://sbtab.net/ Lubitz et al., 2016

13 PEtab

Interoperable specification of 
parameter estimation problems in 
systems biology

https://github.com/PEtab-dev/
PEtab Schmiester et al., 2021

Formats for specification of experiments and data

14 SED-ML
Simulation Experiment Description 
Markup Language https://sed-ml.org Waltemath et al., 2011

https://doi.org/10.7554/eLife.69013
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https://www.cellml.org/
http://www.neuroml.org/
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that describes a differential equation to source code for many different solvers in various languages 
(e.g., cvode in C, javascript, gsl in C, RADAU5 in Fortran).

For neuron and circuit models at other scales, several standards have been developed and adopted 
to varying degrees for use by simulation platforms. Examples of these include NeuroML, CellML, 
SONATA, and others (see Table 2). In particular, NeuroML is an International Neuroinformatics Coor-
dinating Facility (INCF) (Abrams et al., 2021) endorsed standard supported by dozens of downstream 
software packages. Well-tested software libraries can be used to convert NeuroML model description 
files to code for specific simulators such as NEURON or MOOSE or to programming languages such 
as Python or Matlab (Gleeson et  al., 2010). NeuroML also includes defined fields for ontological 
metadata, such as the terminology provided by the Neuroscience Information Framework (NIF) ontol-
ogies (Bug et al., 2008). There are standards for data as well, which aid the comparison of model 
simulation outputs to experimental data. Neurodata Without Borders (NWB) (Teeters et al., 2015; 
Rübel et al., 2019) and neuroscience interchange format (NIX) (Stoewer et al., 2014) are both stan-
dards for describing electrophysiology data that are recognized by the INCF.

How should the abstract and the mechanistic BCM models be specified using a standardized 
approach? The abstract version of the model should be defined using an existing simulator inde-
pendent standard, such as SBtab or SBML, and should include the published data for the shape of 
the curve (Kirkwood et al., 1996). Similarly, the mechanistic version of the BCM model should be 
specified using SBML or SBtab, where the chemical experiments are defined using, for example, 
SBtab or JSON for FindSim. An important validation step for the mechanistic model would be to 
recreate the same final curve used to constrain the abstract model, demonstrating that the two formu-
lations converge. To be able to reproduce the parameter estimation process, information on prior 
assumptions made on possible parameter ranges should be added to the files, as well as metadata 
concerning the optimization procedure.

Model simulation
Over the past 25 years, many general purpose and domain-specific simulation tools have been devel-
oped for modeling and simulation of biochemical and biophysical events in cells and circuits and even 
whole brain regions (Figure 2, boxes 2b and 3). Representative examples of these tools are provided 
in Table 3.

In simulations, molecular reactions and cellular- or network-level behavior and interactions are 
often described by a set of ordinary differential equations (Hodgkin and Huxley, 1952) or stochastic 
differential equations (Manninen et al., 2006). Standardized model specifications like those described 
above are interpreted by simulators as terms and parameters in the differential equations, and given 
appropriate initial values, the mathematical equations are solved using numerical solvers. In systems 
biology, Boolean networks have also been applied successfully, for example Calzone et al., 2010. 
Another useful modeling paradigm is rule-based modeling (Boutillier et  al., 2018; Danos and 
Laneve, 2004; Harris et al., 2016).

For biochemical models, a common approach is to model them deterministically using the law of 
mass action and Michaelis–Menten kinetics; these models are continuous in state space and macro-
scopic. This approach is accurate for large numbers of molecules and is more computationally efficient 
than stochastic approaches, when applicable. In contrast, stochastic approaches are more accurate 
but numerically costly; however, stochastic methods must be favored at low molecule numbers to give 
accurate results. Reaction–diffusion simulations, which take into account that particular molecules can 
diffuse, require additional geometrical information. The geometry can be relatively simple such as 
the morphology of a reconstructed neuron in a multicompartment model or more intricately detailed 
such as a tetrahedral mesh. Some reaction–diffusion simulators, such as MOOSE (Ray et al., 2008), 
NeuroRD (Jedrzejewski-Szmek and Blackwell, 2016), and STEPS (Hepburn et al., 2012), allow both 
stochastic and deterministic modes of simulation.

Table 3 provides examples of widely used model simulation frameworks for different spatial scales 
– from the molecular level to networks of spiking neurons and whole brain regions (Brette et al., 
2007; Sanz-Leon et  al., 2015; Einevoll et  al., 2019) It is, of course, valueble when such simula-
tors and also other software are interoperable. This is facilitated by standardized, machine readable 
formats for model descriptions. Interoperability can have another meaning in addition to file format 
compatibility among simulators and other software: the possibility to run two simulation frameworks 

https://doi.org/10.7554/eLife.69013
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Table 3. Software for model simulation.
These tools span a wide range of scales and levels of abstraction.

Name Purpose
Interchange file 
formats supported Homepage RRID Reference

Molecular level

1 BioNetGen
Rule-based modeling 
framework (NFsim) BNGL, SBML http://bionetgen.org/ Harris et al., 2016

2 COPASI
Biochemical system 
simulator SBML http://copasi.org/ SCR_014260 Hoops et al., 2006

3 IQM Tools

Systems Biology 
modeling toolbox in 
MATLAB; successor to 
SBPOP SBML

https://iqmtools.
intiquan.com/

4 MCell

Simulation tool 
for modeling the 
movements and 
reactions of molecules 
within and between 
cells by using spatially 
realistic 3D cellular 
models and specialized 
Monte Carlo 
algorithms SBML https://mcell.org/ SCR_007307

Stiles et al., 1996; 
Stiles and Bartol, 
2001, Kerr et al., 
2008

5 NeuroRD

Stochastic diffusion 
simulator to model 
intracellular signaling 
pathways XML

http://krasnow1.gmu.
edu/CENlab/software.
html SCR_014769 Oliveira et al., 2010

6 Simbiology

MATLAB’s systems 
biology toolbox 
(Mathworks) sbproj

https://www.
mathworks.com/
products/simbiology.
html

Schmidt and 
Jirstrand, 2006

7 STEPS

Simulation tool for 
cellular signaling and 
biochemical pathways 
to build systems that 
describe reaction–
diffusion of molecules 
and membrane 
potential SBML

http://steps.
sourceforge.net/
STEPS/default.php SCR_008742 Hepburn et al., 2012

8 VCell

Simulation tool 
for deterministic, 
stochastic, and 
hybrid deterministic–
stochastic models of 
molecular reactions, 
diffusion and 
electrophysiology SBML, CellML https://vcell.org/ SCR_007421 Schaff et al., 1997

Cellular level

9 NEURON

Simulation 
environment to build 
and use computational 
models of neurons and 
networks of neurons; 
also subcellular 
simulations with the 
reaction–diffusion 
module

SONATA (after 
conversion) for 
networks, but can also 
use NeuroML and 
SBML

https://neuron.yale.
edu/neuron/ SCR_005393

Carnevale and Hines, 
2009; Hines and 
Carnevale, 1997

Network level

10 BRIAN Simulation tool for 
spiking neural networks

SONATA https://briansimulator.
org/

SCR_002998 Goodman and Brette, 
2008; Stimberg et al., 
2019

Table 3 continued on next page
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in parallel (e.g., at different biological scales), denoted cosimulation, and establish communication 
between them (Cannon et al., 2007; Djurfeldt et al., 2010; Newton et al., 2018).

Model refinement
Once a model can be simulated, the next critical step in model development is model refinement: 
the adjustment of the model structure and parameter values (Figure 2, box 2b). Here, we emphasize 
automation and the use of new data science methodologies to improve this process. This is important 
as the amount of data rapidly increases, and models become more complex. Other important aspects 
of model refinement are the inclusion of measures of uncertainty into the parameter estimates and 
predictions, as well as making the refinement process reproducible.

Model structure constraints
There are often physical or mathematical conditions that relate to the structure of the model, which 
must be respected for the model to be valid, in most cases to make sure that physical laws of some 
kind are not violated. Automatic methods for such structure refinement require machine readable 
standardized model specifications that can be updated easily in an automatic fashion, like those 
described above. Such standardized formats also enable interoperability so that different software 
can be used for different types of refinement on the same model.

For models at the biological scale of neurons or circuits, model structure refinement might include 
checking morphological structures of dendrites or axons for closed paths (Ascoli et  al., 2007) or 
performing unit checking. The use of model description standards can aid these efforts by allowing 
easy access to model components in an object-oriented way, and at least one library for interacting 
with description standards provides support for unit checking (Cannon et al., 2014).

Name Purpose
Interchange file 
formats supported Homepage RRID Reference

11 NEST

Simulation tools for 
large-scale biologically 
realistic neuronal 
networks

SONATA (after 
conversion)

https://www.nest-
initiative.org/ SCR_002963 Diesmann et al., 1999

12 PyNN

A Common Interface 
for Neuronal Network 
Simulators SONATA

http://neuralensemble.
org/PyNN/ SCR_005393 Davison et al., 2008

Multiscale

13 MOOSE

Multiscale object-
oriented simulation 
environment to 
simulate subcellular 
components, neurons, 
circuits, and large 
networks. SBML, NeuroML

https://moose.ncbs.
res.in/ SCR_002715 Ray and Bhalla, 2008

14 NetPyNe

Multiscale models for 
subcellular to large 
network levels NeuroML/SONATA netpyne.org SCR_014758

Dura-Bernal et al., 
2019

15 PottersWheel

Comprehensive 
modeling framework in 
MATLAB  �

https://potterswheel.
de/ SCR_021118

Maiwald and Timmer, 
2008

16 SYCAMORE

Building, simulation, 
and analysis of models 
of biochemical systems SBML

http://sycamore.h-its.
org/sycamore/ SCR_021117

Weidemann et al., 
2008

17 The Virtual Brain

Create personalized 
brain models and 
simulate multiscale 
networks hdf5, Nifti, GIFTI

https://thevirtualbrain.
org/ SCR_002249 Sanz-Leon et al., 2015

Table 3 continued
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Models at the subcellular level often require structure refinements that include modifications 
due to mass conservation laws and thermodynamic parameter relationships (Wegscheider, 1902; 
Klipp et al., 2016, chapter 4). Mass conservation means that the total quantity of a substance should 
not change, for example the total of all forms of protein kinase A (holoenzyme or bound to cAMP) 
should remain constant. The exception is when molecules are deliberately introduced or removed 
from the simulation. Thermodynamic constraints require that the combined reaction rates from a set 
of substrates to a set of products need to be the same regardless of the route taken. Checking for 
conservation laws and thermodynamic constraints can be done in a semi-automatic fashion through 
stoichiometric analysis, as is done for conserved substances by the Copasi simulator (Hoops et al., 
2006). Software is also available to introduce such relationships semiautomatically into the SBtab 
format (Santos et al., 2021).

Parameter estimation and uncertainty quantification
The refinement of model parameter values, called parameter estimation or calibration, is typically an 
iterative process where the model is simulated, compared to experimental data, and then updated 
— repeatedly (Figure 2, box 2b). This requires model and experimental data in a machine readable 
(preferably standardized) form and software that efficiently searches the parameter space. Parameter 
estimation is a field under development, and here we describe classical optimization methods as well 
as some data science methods for uncertainty quantification more novel to this field. More informa-
tion is given in, for example, Ashyraliyev et al., 2009; Mitra and Hlavacek, 2019; Sun et al., 2012.

In an ideal world, parameters such as rate constants and species concentrations would be directly 
reported in publications. The reality is that there are many experiments that potentially provide good 
constraints for parameters, but do not directly report the parameters in the form needed for a model. 
For example, the rate of appearance of the phospho-form of a protein depends on the concentra-
tion of the phosphorylating enzyme, its kinetics, the concentration of the substrate, and possibly 
other factors. What is most useful for a model is an estimate of the kinetic rate because enzyme and 
substrate concentration are determined by other reactions. The kinetic rate, and other parameters, 
could potentially be inferred (indirectly) from experimental data for quantities like the relative activa-
tion of the enzyme or turnover of the protein. The overall approach, denoted parameter estimation, 
is as follows.

•	 Select the experimental data to be used for the parameter estimation, and formalize a mapping 
between model output and experimental readouts.

•	 Describe the prior assumptions made on possible parameter ranges. These assumptions guide 
your parameter estimation process and could be based on experimental information or physical 
constraints, for example all parameters are often assumed to be nonnegative.

•	 Calibrate the model, that is do parameter estimation, either through optimization techniques 
that provide one good parameter set, or through an approach resulting in a distribution of 
good parameter values.

•	 Quantify the uncertainty in your parameter estimates. Ideally by describing the whole param-
eter space that would correspond to a good fit with the data used for parameter estimation 
through for example a Bayesian approach, or at least by performing a sensitivity analysis.

•	 Update the model specification with the new parameter values, and if possible, uncertainty 
estimates.

In the section ‘Model specification and data’, we describe different formats and practices that can 
be used to contain all this information, keeping FAIR aspects in mind.

Numerous approaches have been developed for finding parameters that allow a model to match 
experimental data through optimization (Ashyraliyev et al., 2009; Villaverde et al., 2019). For most 
models, the optimization method must be able to deal with multiple local minima. A key aspect of 
optimization is to specify the function that compares simulations with experimental data to find the 
best set of parameters. This function is often called the objective function, cost function, or energy 
function and includes a decision on how the different experiments should be weighed against each 
other. The most common function to use is the sum of the squared differences between simulations 
and data, weighted by the measurement error (Ashyraliyev et al., 2009). Some existing tools that can 
be used for parameter estimation are listed in Table 4.

https://doi.org/10.7554/eLife.69013
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Criticisms are often heard about the large numbers of parameters in modeling studies implying 
that ‘anything can be fitted’. Implicitly, this means that the model lacks explanatory and predictive 
power. This is a more common criticism for models that include many details, like mechanistic models 
built at a fine granularity in a bottom-up manner. However, it is important to note that the mecha-
nistic model structure itself puts a lot of restrictions on the possible model behaviors. Also, since the 
parameters and variables that are associated with mechanistic models can be mapped to biological 
entities, these are also restricted through known physiological constraints, increasing the specificity of 
the model. Thus, it can actually be very hard (or impossible) to fit a specific dataset. If solutions exist, 
however, it is often so that there are many parameter sets that produce simulation results with a good 
fit to data, thus explaining the data equally well (Gutenkunst et al., 2007). Different parameter sets 
may however give different model predictions (Eriksson et al., 2019). This calls for methods that go 
beyond the use of a single parameter set, accounting for uncertainty in the modeling of neurosci-
ence systems. Such uncertainty can come from sparse experimental data or structural unidentifiability 
(Raue et al., 2009) or it may reflect actual biological variability (Marder et al., 2015). In key studies, 

Table 4. Tools for model refinement and analysis.
This table exemplifies some common and new tools for parameter estimation and different types of model analyses.

Name Purpose
Interchange file 
formats supported Homepage RRID Reference

1 Ajustador

Data-driven parameter estimation 
for Moose and NeuroRD models. 
Provides parameter distributions.

CSV, MOOSE, 
NeuroRD

https://neurord.github.io/
ajustador/

Jedrzejewski-Szmek 
and Blackwell, 2016

2 AMICI
High-level language bindings to 
CVODE and SBML support. SBML

https://amici.
readthedocs.io/en/latest/
index.html Fröhlich et al., 2021

3 BluePyOpt
Data-driven model parameter 
optimization.  �

https://github.com/
BlueBrain/BluePyOpt SCR_014753

Van Geit et al., 
2016

4 PottersWheel

Parameter estimation, profile 
likelihood: determination of 
identifiabilty and confidence 
intervals for parameters. SBML https://potterswheel.de/ SCR_021118

Maiwald and 
Timmer, 2008; Raue 
et al., 2009

5 pyABC

Parameter estimation through 
Approximate Bayesian 
Computation (likelihood free 
Bayesian approch).

PEtab, SBML via 
AMICI

https://pyabc.
readthedocs.io/en/latest/ Klinger et al., 2018

6 Simbiology

MATLAB’s systems biology 
toolbox (Mathworks), performs, for 
example, parameter estimation, 
local and global sensitivity analysis, 
and more. SBML

https://se.mathworks.
com/products/
simbiology.html

Schmidt and 
Jirstrand, 2006

7 Uncertainpy Global Sensitivity Analysis
NEURON and 
NEST models

https://github.com/
simetenn/uncertainpy  Tennøe et al., 2018

8 XPPAUT/AUTO

Model analysis including phase 
plane analyses, stability analysis, 
vector fields, null clines, and more 
XPPAUT contains a frontend to 
AUTO for bifurcation analysis.  �

http://www.math.pitt.
edu/~bard/xpp/xpp.html SCR_001996

Ermentrout, 2002 
(XPPAUT)

9 pyPESTO Toolbox for parameter estimation SBML, PEtab
https://github.com/ICB-
DCM/pyPESTO/ SCR_016891 Stapor et al., 2018

10 COPASI
Simulation and analysis of 
biochemical network models SBML https://copasi.org SCR_014260 Hoops et al., 2006

11 PyBioNetFit Parameterizing biological models BNGL, SBML, BPSL https://bionetfit.nau.edu/ Mitra et al., 2019

12 Data2Dynamics
Establishing ODE models based on 
experimental data SBML

https://github.com/
Data2Dynamics/d2d Raue et al., 2015

13 HippoUnit Testing scientific models HOC language
https://github.com/
KaliLab/hippounit Sáray et al., 2021
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Prinz et al., 2004 investigated the possibility of variability in small neural invertebrate circuits using 
computational models. With an ensemble model approach, they showed in models of the pyloric 
rhythm of the crustacean stochastic ganglion that similar oscillatory network activity could arise from 
widely disparate circuit parameters (Prinz et al., 2004), suggesting that there could be considerable 
animal-to-animal variability in many of the parameters that control network activity. This has also been 
confirmed in experiments (Schulz et al., 2006).

Although computationally expensive, Bayesian approaches provide the perfect tools for describing 
such uncertainty in parameter estimates (Vanlier et al., 2013). These approaches often use Markov 
Chain Monte Carlo (MCMC) methods to explore the possible parameter space, resulting in a joint 
distribution describing good parameter values (e.g. Girolami and Calderhead, 2011). However, 
currently, MCMC methods are only applicable for medium sized models, on the order of dozens of 
parameters. A less costly approach with a similar goal is profile likelihood (Raue et al., 2009), which 
provides a possible range for each of the uncertain parameters, but not the joint parameter distribu-
tion. Global sensitivity analysis can also be used to investigate uncertainty, assuming that the param-
eters have specific predefined distributions (Tennøe et al., 2018).

Parameter space exploration is a process that could benefit from additional automation. For 
example, many conventional plasticity models are ‘manually tuned’. Nonetheless, parameter opti-
mization has been combined into different workflows, often using custom scripts to interface with 
an optimization tool. FindSim (Viswan et al., 2018) is a framework for integrating many individual 
electrophysiological and biochemical experiments with large, multiscale models so that model output 
can be compared with experiments in an optimization workflow. Santos et al., 2021 describe an auto-
matic workflow for parameter estimation using an SBtab file as input, rendering itself to automatic 
parameter estimation through many of the optimization tools that exist within Matlab, and with a final 
step of global sensitivity analysis. Ajustador (Jedrzejewski-Szmek et  al., 2018) is an optimization 
algorithm for models specified in declarative format for either MOOSE or NeuroRD that allows spec-
ification of the weights of various data features. SciUnit (Omar et al., 2014) provides a Python-based 
framework for creating standardized tests that compare model outputs to experimental data. Neuro-
nUnit provides a domain-specific repository of tests for use within the SciUnit framework that neuron 
models must pass to demonstrate validity when modeling at the detailed cellular level. These tests 
can also be used as the basis for model optimization (Gerkin et al., 2018). More parameter estimation 
tools are listed in Table 4.

To be able to reproduce the model refinement process, it is important that the model, experimental 
data, and prior parameter assumptions are well described and explicitly specified, as described above. 
If this is the case, then ideally different parameter estimation tools should come to similar conclusions, 
at least if a methodology including a distribution of possible parameter values is used.

BCM example
Parameter estimation is not confined to data-driven, mechanistic models. Even abstract models reflect 
the observables that they set out to explain. Thus, one can ‘tune’ parameters in abstract models to 
data using the same techniques discussed above. The authors of the original BCM model (Bienen-
stock et  al., 1982) did this to obtain observed ocular dominance properties in their simulations. 
Another early model of synaptic plasticity (Lisman, 1989) explicitly proposed a set of pathways that 
could result in bidirectional plasticity equivalent to the BCM curve and implemented chemical reac-
tions with rates that were tuned to obtain properties consistent with the BCM model. Today more 
efficient parameter estimation methods are used, and a next step could be to quantify the uncertainty 
in the parameter estimates and predictions through a Baysian methodology, if possible, or perform a 
global sensitivity analysis, to understand the effects of different parameters on the model behavior.

Model validation and usage
Following the model refinement process, we obtain the final version of the model that can be vali-
dated, analyzed, and used in simulation studies to make predictions and test hypotheses (Figure 2, 
Box 3). In multiscale modeling the output from the model can also be used as the input for another 
scale. Ideally, before the model is used for predictions, it is validated against data that were not 
used in the model construction and refinement process. However, data may be sparse requiring that 
validation occur through experimental tests of model predictions. After the model is finalized, the 

https://doi.org/10.7554/eLife.69013
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predictions from the model can be extended and better informed through model analysis. This could 
be done by sensitivity analysis, with tools from dynamical systems theory or through experimental 
design. Some examples of tools for model analysis are listed in Table 4.

Sensitivity analysis is a methodology that investigates how different input factors, such as model 
parameters or model input, affect the model output (Saltelli et  al., 2007; Zi, 2011).The output 
could be the concentration of the active form of a protein as an example. Sensitivity analysis can be 
performed through local methods, which considers the partial derivatives in the close neighborhood 
of a point in parameter space, or global methods, which investigate a much larger region of the 
parameter space, often with statistical methods. Local methods are computationally efficient, but 
can be problematic due to limited range. Global sensitivity analysis on the other hand investigates a 
larger region, but is computationally costly. One example where a global sensitivity analysis was used 
is the study by Halnes et al., 2009. There are, however, also coarse-grained global sensitivity analysis 
methods as well as novel methods that interface coarse-grained global with local sensitivity analyses 
methods. Several studies have also investigated the sensitivity by a so-called one-at-a-time approach, 
where parameters are perturbed one at a time, for example Gutierrez-Arenas et al., 2014. Finally, a 
Bayesian approach for uncertainty quantification can also be combined with global sensitivity analysis 
(Eriksson et al., 2019), as illustrated in Figure 4. Tennøe et al. have recently developed a software for 
global sensitivity analysis (Tennøe et al., 2018).

In an experimental design process, models can be used to simulate a large number of different 
scenarios corresponding to different potential experimental setups and in this way be used to design 
experiments that provide the most amount of new information (Kreutz and Timmer, 2009). Statistical 

INVERSE 
UNCERTAINTY 

QUANTIFICATION

FORWARD 
UNCERTAINTY 
PROPAGATION

SENSITIVITY
ANALYSIS 

Model structure

Quantitative data

Prior

Possible parameter 
distribution Prediction

f(x)

x

k2

k1

k1

k2

Figure 4. Workflow for uncertainty quantification. An important aspect of data-driven, mechanistic modeling is to describe the uncertainty in the 
parameter estimates (inverse uncertainty quantification), that is to find and describe the parameter space that provides a good fit with the selected data. 
This is often done through Bayesian methodology starting from a model structure, some quantitative data that can be mapped to the output from the 
model and prior information on the parameters (like assumed ranges or distribution). The parameter space retrieved from this process is referred to as 
the posterior parameter distribution. This uncertainty is propagated (forward uncertainty propagation) to the predictions that we make from the model, 
by performing simulations from a sample of parameters representing the possible parameter distribution (corresponding to an ‘ensemble model’). 
Finally a global sensitivity analysis can be performed based on the posterior distribution (Eriksson et al., 2019). Global sensitivity analysis are also often 
performed in other settings (not shown here) directly on a preassumed parameter distribution. Figure modified from Eriksson et al., 2019.
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methods have been developed for this, often using Bayesian methodology, see for example Liepe 
et al., 2013.

Another way of analyzing dynamical models is to use tools from dynamical systems theory. Such 
methods typically examine asymptotic stability, provide phase diagrams, and identify bifurcations 
in parameter space that identify and explain how major changes in model behavior rely on param-
eters or input. This approach has, as an example, been used to better understand systems level 
mechanisms (e.g., how a cell goes from silent to spiking, or how oscillatory phenomena in networks 
might be controlled [Ermentrout et  al., 2019; Keeley et  al., 2017]). With regard to subcellular-
level phenomena important for plasticity, intracellular calcium release (Li and Rinzel, 1994) as well 
as switch-like behaviors have been investigated, for example CaMKII and protein kinase M – zeta 
(PKMζ) (Graupner and Brunel, 2007; Helfer and Shultz, 2018; Pi and Lisman, 2008). For instance, 
stability analysis shows that CaMKII can be at two stable states at resting intracellular calcium concen-
tration (Graupner and Brunel, 2007), and the system of coupled CaMKII and protein phosphatase 
A (PP2A) could behave as a tristable system that describes LTP and LTD (Pi and Lisman, 2008). The 
original BCM study also included analysis with tools from dynamical systems theory to test whether 
the plasticity rule was stable.

Toward FAIR modeling workflows
There are many options for assembling the resources and approaches described to create specific 
modeling workflows that follow the steps outlined in Figure 2. A flexible workflow going through all 
the steps requires:

1.	 Much effort toward identifying the scientific questions to be addressed and the model prereq-
uisites (see ‘Model foundation’).

2.	 A well-defined format for the model, the quantitative experimental data, and the assumptions 
on prior parameter ranges or distributions (see ‘Specifications of model and data’).

3.	 A simulator that supports a machine readable, standardized specification of the model (see 
‘Mathematical formulation and simulation’).

4.	 A tool for searching the parameter space, that compares the simulations with the experimental 
data guided by the parameter prior information (see ‘Model refinement’).

5.	 Tools for model analysis (see ‘Model usage and validation’).
6.	 Parsing tools to go between the specification of model and data format and internal formats for 

the model refinement and model analysis tools.

In Figure 5, we provide three specific example workflows for subcellular- and cellular-level modeling 
that traverse these steps in different ways. These examples illustrate recent steps toward FAIR work-
flows and provide a starting point for further discussion within the community.

Aside from single steps and components, we will now consider some questions that are important 
for all parts of the workflow, and in relation to this we also recommend the article by Goble et al., 
2020, which describes FAIR computational workflows from a more general perspective. The first ques-
tion concerns findability and here we emphasize the importance of metadata and providing unique 
and stable identifiers to the workflow components. Concerning models and data, some databases 
provide a unique Digital Object Identifier (DOI) for its constituents. This can be retrieved when the 
model or data are deposited in the database and included in the metadata of the workflow. Each 
resource and software used in the workflow should also be indicated using the associated, unique 
SciCrunch Research Resource Identifier (RRID) (Vasilevsky et al., 2013; Bandrowski and Martone, 
2016), if it exists. It can be noted that in order to get an identifier to a more complex research object a 
general database like Zenodo (European Organization For Nuclear Research, 2013) could be used. 
As an example it is possible to use Zenodo to get a DOI for a GitHub repository release.

The second question concerns approaches for the packaging, description, and dissemination of the 
entire model building workflow, which is important for transparency and reproducibility. FAIRDOMhub 
(Wolstencroft et al., 2017) is a repository and collaboration environment for publishing FAIR data, 
operating procedures, and models for the systems biology community. EBRAINS has a similar ambi-
tion to provide a collaboration hub for brain research. Virtual machines or containers (Merkel, 2014) 
can play a role in reproducing all steps and results of a workflow. Easily accessible technologies such as 
Jupyter notebooks (Kluyver et al., 2016) can aid in interoperability, dissemination, and collaboration. 

https://doi.org/10.7554/eLife.69013
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The Common Workflow Language allows users to fully specify inputs, outputs, and other execution 
details needed for tools in a workflow and instructions for executing them within containers (Piccolo 
et al., 2021). The workflow around a model can also be made public analogous to publishing the 
protocol of a lab experiment, for example via protocols.io (Teytelman and Stoliartchouk, 2015). 
The recently published Research Object Crate (RO-Crate) provides a way to package and aggregate 
research ‘artifacts’ with their metadata and relationships (Soiland-Reyes et al., 2022), like spread-
sheets, code, examples, and figures.

Finally, we illustrate a FAIR workflow by considering how one would today develop simulations 
for the BCM curve in Figure 3. Even though the original BCM model and many subsequent experi-
mental studies predate the advent of FAIR principles, it is interesting to think about what would need 
to be done in order to make them FAIR compliant. Ideally, these studies would be Findable through 
PubMed and other resources. This implies that both metadata and data are easy to locate for both 
humans and computer programs. We would probably rely more heavily on later models, for example, 
Hayer and Bhalla, 2005, that are easily Accessible and in an Interoperable format such as SBML or 
SBtab. The Hayer model is available via the DOQCS database (Sivakumaran et al., 2003). In order to 
be Reusable, models should be replicable and compatible in different contexts. Quantitative exper-
imental data could today be specified using FindSim or SBtab formats. Both formats support the 
comparison of model behavior with the experimental data, which is necessary for model refinement. 
For the model refinement to be reproducible it is important that the prior assumptions on parameters 
are described. It should be noted that the provenance for the Hayer model is not machine readable, 
though ideally it would be. Furthermore, more comprehensive metadata and appropriate license 
information should be included. Finally, since the refined model is defined in SBML, it could be used 
on any of several dozen simulator platforms (Table 3), and uploaded back to the Accessible databases 
to become part of the FAIR ecosystem.

Conclusions and outlook
We have investigated how data- and hypothesis-driven modeling approaches can be combined, 
through a FAIR infrastructure, in order to improve modeling capabilities within the neuroscience 
community. We suggest a minimal format for the ‘specification of model and data’ (Figure 2, box 2a) 
in order for the modeling process to be reproducible. We also describe different databases, formats, 
and software (Tables 1–4) and methods for combining them to achieve FAIR modeling workflows. 
We believe that such workflows would increase the capacity for combining different types of models, 
extending models as new data accumulates, and validating existing models.

When it comes to model refinement (Figure 2, box 2b), we have emphasized the importance of 
uncertainty quantification with for example Bayesian methods (Figure  4) in order to describe the 
uncertainty in the parameter estimates and model predictions. However, currently such methods are 
only possible (in practice) for models of the order of some dozens of parameters, pointing to a need 
for further method development. Concerning approaches for model analysis (Figure  2, boxes 2b 

Features from experimental traces can be extracted using eFEL (https://github.com/BlueBrain/eFEL), and kinetic parameters for ion channel models 
obtained from Channelpedia. During the neuron model reconstruction step, the model is represented in NeuroML and model parameters such as 
conductance density are optimized with BluePyOpt. In silico experiments can be performed using NEURON. (b) Example workflow for building a 
chemical kinetic model to implement the Bienenstock–Cooper–Munro (BCM) curve. The expected shape of the curve is obtained from the classic 
Bienenstock et al., 1982 study, and a first pass of likely chemical pathways from Lisman, 1989. Detailed chemistry and parameters are from databases 
that cover models (DOQCS, BioModels) and from BRENDA, which hosts enzyme kinetics. Both model databases support SBML, which can be used 
to define the model and parameters. Several simulators including MOOSE and COPASI can run the SBML model during the optimization step and 
subsequently for model predictions. For optimization, the FindSim framework (Viswan et al., 2018) compares model outcome to experiments. The 
score from these comparisons is used by HOSS (Hierarchical Optimization of Systems Simulations https://github.com/upibhalla/HOSS) to carry out 
parameter fitting. (c) An example of a workflow used in subcellular model building with Bayesian parameter estimation. A prototype of the workflow 
was used in Church et al., 2021, where the experimental data is described. The model structure was adopted from Buxbaum and Dudai, 1989. A 
smaller demo version can be found at https://github.com/icpm-kth/uqsa (copy archived at https://doi.org/10.5281/zenodo.6625529). Experimental 
data and model structure are taken from literature and saved in the SBtab format. Scripts written in R convert the SBtab file to R code and the Bayesian 
parameter estimation is performed with the UQSA software written in R (https://github.com/icpm-kth/uqsa, copy archived at https://doi.org/10.5281/
zenodo.6625529). The SBtab files can subsequently be updated with the refined model with new parameter estimates including uncertainties.
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and 3) an important aspect is to characterize models more objectively, thus avoiding the situation 
that the model has been ‘tuned’ to give a certain outcome. This is especially important as the goal 
of a model often is to reproduce specific observed behaviors in order to validate a hypothesis, rather 
than being predictive. This is particularly true for abstract, phenomenological models; however, data-
driven mechanistic models that are portrayed as predictive often play the same, useful postdictive 
role. Many studies of such models now conduct parameter sensitivity analysis and parameter explo-
rations to discover regimes in which new properties emerge, thereby providing an unbiased overview 
of the possible properties of the model.

In the future, it is likely that machine learning tools increasingly will be integrated with traditional 
modeling approaches as a complement but also a necessity for dealing with high throughput data of 
varying fidelity (Alber et al., 2019). While machine learning approaches are useful for finding correla-
tions in big data, traditional mechanistic models are important for revealing causal relationships and 
mechanistic explanations. Mechanistic models also have the added possibility to generalize to new 
situations not considered during the model construction process.

If we want to understand the brain — from molecules to behavior — we need to model the brain 
at all biological scales to integrate and interpret various heterogeneous experimental data across 
scales. Here we have examined the opportunities associated with models arising at the scale where 
subcellular signaling processes meet the cellular level, corresponding to the field where the systems 
biology community meets the computational neuroscience community. Although the development of 
resources that integrate the FAIR principles into the computational neuroscience field has progressed 
over the last decade (e.g., compare De Schutter, 2008), standards and best practices still need to be 
further developed and aligned, an important endeavor coordinated by INCF (Abrams et al., 2021). 
The adoption of FAIR principles is timely due to the recent debut of brain initiatives around the world 
(Grillner et al., 2016), including the establishment of the International Brain Initiative (International 
Brain Initiative, 2020). Such efforts will help promote data and model exchange and reuse through 
international research and infrastructure collaborations.
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