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INTRODUCTION 
 

Hepatocellular carcinoma (HCC) is the fifth most 

common cancer worldwide, with a high mortality rate 

due to poor prognosis. According to a study, 

approximately 50% of newly diagnosed cases of HCC 

occur in China [1]. The treatment mainly involves 

surgery, radiotherapy, and chemotherapy; however, these 

are often ineffective. 
 

The poor prognosis of HCC is attributed to the high 

frequency of recurrence and resistance to chemotherapy. 

The presence of cancer stem cells (CSCs),  a distinct sub- 

 

population of cells with high self-renewal ability or 

stemness, contributes to poor prognosis and high 

mortality of HCC [2].   Furthermore, this stemness 

feature confers resistance to existing drugs[3]. Enhanced 

expression of several CSC-related markers, such as 

epithelial cell adhesion molecule (EpCAM), CD44, 

CD133, and Nanog, is associated with poor prognosis of 

HCC [4–7]. Similarly, alterations in stemness-related 

signaling pathways, such as Wnt/β-catenin, Notch, and 

Hedgehog pathways, resulted in chemoresistance and 

recurrence of HCC [8–10]. Therefore, CSCs and their 

associated pathways are becoming the focus of potential 

therapies for HCC. 
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ABSTRACT 
 

The poor prognosis of hepatocellular carcinoma (HCC) is primarily attributed to its high frequency of recurrence 
and resistance to chemotherapy. Epithelial-to-mesenchymal transition (EMT) and the acquisition of cancer stem 
cells (CSCs) are the fundamental drivers of chemoresistance in HCC. Glycochenodeoxycholic acid (GCDC), a 
component of bile acid (BA), has been reported to induce necrosis in primary human hepatocytes. In the 
present work, we investigated the function of GCDC in HCC chemoresistance. We found that GCDC promoted 
chemoresistance in HCC cells by down-regulating and up-regulating the expression of apoptotic and anti-
apoptotic genes, respectively. Furthermore, GCDC induced the EMT phenotype and stemness in HCC cells and 
activated the STAT3 signaling pathway. These findings reveal that GCDC promotes chemoresistance in HCC by 
inducing stemness via the STAT3 pathway and could be a potential target in HCC chemotherapy. 
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The occurrence of HCC is closely related to chronic liver 

injury. The obstruction of bile duct and accumulation of 

bile acid (BA) can damage the liver [11]. Moreover, 

dysregulation of BA metabolism is associated with the 

development of HCC [12]. Glycochenodeoxycholic acid 

(GCDC), a component of BA, induced hepatocyte 

necrosis in patients with obstructive cholestasis [13]. 

Recently, a study indicated GCDC could induce 

autophagy and metastasis in HCC cells [14]. Here, we 

demonstrated that GCDC promotes chemoresistance of 

HCC cells by inducing stemness via the STAT3 signaling 

pathway. 

 

RESULTS 
 

GCDC enhances chemoresistance of HCC cells 

 

We first determined the effect of GCDC on 

chemoresistance of Huh7 and LM3HCCcell lines. The 

cells were treated with GCDC (200µm) and chemo-

therapeuticdrugs5-fluorouracil (5-FU) (120µg/ mL) and 

cisplatin (10 µg/mL), and the cell viability was detected 

using the CCK-8 assay. Figure 1A, 1B show that GCDC 

increased the cell viability of almost 20% in Huh7cells 

treated with5-FU and cisplatin. Similar results were 

obtained for LM3 cell line (Figure 1C, 1D). Next, we 

studied the effect of GCDC on drug-induced apoptosis. 

As shown in Figure 1E, 1F, compared with the 

chemotherapeutic drugs treated alone group, the 

GCDC-treated group showed reduced apoptosis in both 

Huh7 and LM3 cell lines after treatment with 5-FU and 

cisplatin. These results demonstrated that GCDC 

promoted chemoresistance in HCC cells. 

 

We further examined the effect of GCDC on the 

expression of anti-apoptotic (Bcl2, Bcl-xl and Il10) and 

apoptotic genes (Bcl10, Caspase 3, Caspase 4, Tp53, 

BAD) using RT-PCR assays and Western blot. As 

shown in Figure 2, compared with the control group, the 

expression of apoptotic genes was suppressed, whereas 

that of anti-apoptotic genes increased in the GCDC-

treated group. These results showed that GCDC 

promoted cell viability in 5-FU- and cisplatin-treated 

HCC cells. 

 

GCDC induces EMT and stemness in HCC cells 
 

The presence of CSCs in several cancers has been shown 

to confer chemoresistance. Therefore, we studied this 

property in HCC cells following treatment with GCDC. 

RT-PCR and western blotting were used to detect the 

expression of stem cell markers (Sox2, Sox9, Nanog, and 

CD133). The results showed that GCDC promoted the 

expression of Sox2, Sox9, Nanog and CD133 at both 

mRNA and protein levels (Figure 3A–3C). As epithelial–

mesenchymal transition (EMT) promotes the acquisition 

of CSC phenotype and development of chemoresistance, 

we studied the expression of epithelial cell marker (E-

cadherin) and mesenchymal cell marker (vimentin) by 

RT-PCR. As shown in Figure 3D–3G, compared with the 

control group, the mRNA and protein level of E-cadherin 

was down-regulated, and that of vimentin was up-

regulated in GCDC-treated Huh7and LM3 cells. These 

results suggested that GCDC promoted chemoresistance 

in HCC cells by conferring EMT phenotype and CSC 

properties. 

 

GCDC activates the STAT3 signaling pathway in 

HCC cells 

 

The STAT3 signaling pathway is known to be 

involved in cell survival and proliferation. To further 

investigate its role in GCDC-induced chemo-

resistance, we studied whether GCDC activated 

theSTAT3 pathway. We first examined the expression 

of several negative regulators of STAT3 signaling, 

including suppressor of cytokine signaling (SOCS) 

members, SOCS2 and SOCS5, and tyrosine 

phosphatases, PTPN1 and PTPN11, in GCDC-treated 

HCC cells. As shown in Figure 4A–4C, the expression 

of all four negative regulators was down-regulated in 

GCDC-treated Huh7and LM3 cells. Next, the 

expression of STAT3 in the nucleus (activated 

STAT3) was detected. These results implied that 

GCDC promoted the activation of the STAT3 

pathway in both Huh7 and LM3 cells (Figure 4D). 

 

GCDC promotes chemoresistance of HCC through 

activation of the STAT3 signaling pathway 

 

To further demonstrate that the STAT3 signaling 

pathway was involved in GCDC-induced chemo-

resistance in HCC cells, STAT3siRNA was used to 

down-regulate its expression in HCC cells. Western 

blotting confirmed that the siRNA efficiently knocked 

down the expression of STAT3 in the nucleus of 

Huh7cells (Figure 5A). We further examined the 

chemoresistance in GCDC-treated HCC cells when 

STAT3 was suppressed. As expected, the decrease in 

STAT3 reversed the GCDC-induced chemoresistance 

(Figure 5B–5E). Further, the expression of apoptotic 

genes increased and that of anti-apoptotic genes 

decreased in GCDC-treated Huh7cells when STAT3 was 

suppressed (Figure 5F). These data indicated that the 

activation of the STAT3 signaling pathway promoted 

GCDC-induced chemoresistance in HCC cells.  

 

DISCUSSION 
 

The high mortality rate of HCC is mainly attributed to 

its extreme resistance to systemic chemotherapy. We  
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Figure 1. GCDC enhances chemoresistance in HCC cells. (A–D) Cell viability was detected using the CCK-8 assay. *P<0.05, **P<0.01. 
(E–H) Cell apoptosis was analyzed by flow cytometry. *P<0.05. (I–J) GCDC enhanced the ability of chemoresistance of HCC cells in vivo. Huh7 
cells (5×106) were pretreated with GCDC and then were implanted in the right subcutaneous armpit area of nude mice. Then the cisplatin 
(4mg/kg) were injected in tumor every 3 days. After 27 days, the mice were sacrificed and the weight of the tumor was measured.*P<0.05, 
**P<0.01. 
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demonstrated that GCDC promoted chemoresistance of 

HCC cells in vitro by down-regulating the expression of 

apoptotic genes and up-regulating the expression of 

anti-apoptotic genes. Furthermore, GCDC induced 

stemness in HCC cells via EMT and activation of the 

STAT3 signaling pathway. These results proved that 

GCDC contributes to the chemoresistance of HCC and 

could be a potential target in HCC therapy. 

 

 
 

Figure 2. GCDC regulates the expression of apoptotic and anti-apoptotic genes. (A, B) The expression of apoptotic and anti-
apoptotic genes in HCC cells was examined by reverse transcriptase-polymerase chain reaction (RT-PCR) assays. *P<0.05, **P<0.01, 
***P<0.001. (C) The expression of apoptotic and anti-apoptotic genes in HCC cells was examined by Western blot. 
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Figure 3. GCDC promotes EMT and stemness in HCC cells. (A, B) Reverse-transcriptase polymerase chain reaction (RT-PCR) was used 
to detect the expression of stem cell markers (Sox2, Sox9, Nanog, and CD133) in HCC cells. *P<0.05, **P<0.01, ***P<0.001. (C) Western 
blotting was used to detect the expression of stem cell markers (Sox2, Sox9, Nanog, and CD133) in HCC cells. (D, E) RT-PCR was performed to 
examine the expression of E-cadherin and vimentin in HCC cells. *P<0.05, **P<0.01. (F, G) The protein expression of E-cadherin and vimentin 
was confirmed by immunofluorescence. 
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Figure 4. GCDC activates the STAT3 signaling pathway in HCC cells. (A, B) The mRNA expression of SOCS2, SOCS5, PTPN1, and PTPN11 
was detected by reverse-transcriptase polymerase chain reaction (RT-PCR). **P<0.01, ***P<0.001. (C) Western blotting was used to detect the 
expression of SOCS2, SOCS5, PTPN1, and PTPN11. (D) The expression of STAT3 in the cell nucleus was examined by western blotting. P84 was 

used as an internal reference. 
 

 

 

 
 

Figure 5. GCDC promotes chemoresistance of HCC through the STAT3 signaling pathway. (A) Western blotting was used to 
assess the effect of siRNA on the STAT3 expression. P84 was used as an internal reference. (B, C) Cell viability was detected by the CCK-8 
assay. *P<0.05, **P<0.01. (D, E) Cell apoptosis was analyzed using flow cytometry. *P<0.05. (F) The expression of apoptotic and anti-
apoptotic genes in Huh7 cells was examined by reverse-transcriptase-polymerase chain reaction (RT-PCR) assays. **P<0.01, ***P<0.001.  
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The EMT phenotype and the presence of CSCs are the 

major contributing factors to chemoresistance in several 

kinds of cancers, such as pancreatic cancer, ovarian 

cancer, colorectal cancer, and HCC [15–18]. In the 

present work, the expression of CSC markers, such as 

Sox2, Sox9, Nanog, and CD133, was shown to be up-

regulated in GCDC-treated HCC cells. The expression 

of Nanog and CD133has been reported to correlate with 

poor clinical outcome in patients with HCC [19, 20]. 

Similarly, Sox2 and Sox9 contribute to HCC prog-

ression and malignancy [21, 22]. EMT involves the loss 

of epithelial characteristics due to down-regulation of 

E-cadherin and acquisition of mesenchymal properties 

by up-regulation of the mesenchymal protein vimentin. 

The decrease in the expression of E-cadherin and an 

increase in the expression of vimentin in HCC cells 

following treatment with GCDC suggested that stem-

ness and EMT phenotype contributed to GCDC-induced 

chemoresistance in HCC cells. 

 

Studies have demonstrated that the JAK/STAT3 

signaling pathway contributes to cell survival and 

chemotherapeutic resistance in cancers [23, 24]. 

Furthermore, it enhances the development of CSC-like 

characteristics [25]. For example, the CSC marker, 

Nanog, is induced by the STAT3pathway in liver 

tumor-initiating cells [26]. Similarly, members of the 

SOCS and PTPN families have been demonstrated to 

negatively affect the JAK/STAT signaling pathway. We 

found that GCDC activated the STAT3 signaling 

pathway by repressing the expression of several 

negative regulators of STAT3 signaling, including 

SOCS2, SOCS5, PTPN1, and PTPN11 in HCC cells. 

GCDC-induced resistance to drugs was inhibited when 

the expression of STAT3 was suppressed by siRNA in 

HCC cells. These results demonstrated that the STAT3 

signaling pathway is involved in GCDC-induced 

chemoresistance of HCC cells. To summarize, our 

results showed that the treatment with GCDC enhanced 

the chemoresistance of HCC cells by inducing CSC-like 

characteristics and EMT phenotype, and activating the 

STAT3 signaling pathway via suppression of the 

expression of SOCS2, SOCS5, PTPN1, and PTPN1. 

Therefore, GCDC could serve as a potential target for the 

prognosis and therapy of HCC. 

 

MATERIALS AND METHODS 
 

Cell culture and reagents 
 

HCC cell lines, Huh7 and LM3, were cultured in 

Dulbecco’s modified Eagle’s medium (high glucose) 

(GIBCO, Invitrogen, US) with 10% fetal bovine serum 

(FBS) and 1% penicillin/streptomycin. The cells were 

incubated at 37°Cin a humidified atmosphere containing 

5% CO2. 

Cell proliferation and cytotoxicity assay 
 

Chemotherapy-induced cell death was determined by cell 

counting kit-8 assay [27]. Huh7 and LM3 cells were 

seeded in a 96-well plate at a density of 8 × 103 cells/well 

and incubated with GCDC and treated with 

chemotherapeutic drugs (5-FU and cisplatin) for 24 h and 

48 h, respectively. Next, the cells were washed with 

phosphate-buffered saline (PBS), and cell counting kit-8 

(CCK-8) solution (1/10 the volume of media) was added 

for 1 h. The cell viability was detected at 450 nm using a 

microplate reader. 

 

Apoptosis assay 
 

A total of 1 × 105 cells were seeded in a 6-well plate and 

treated with GCDC and chemotherapeutic drugs for 24 

h and 48 h, respectively. Next, the cells were washed 

with PBS and resuspended in the PBS and stained with 

Annexin V and propidium iodide (PI) according to 

manufacturer’s instructions (BD Biosciences; San 

Diego, CA, USA). Flow cytometry was used to analyze 

the proportion of apoptotic cells. 

 

Reverse transcriptase-polymerase chain reaction 

(RT-PCR) 
 

Total RNA was isolated using the TRIzol reagent 

(Invitrogen; Carlsbad, CA, USA) according to the 

manufacturer’s instructions. Next, cDNA was 

synthesized using the Prime Script RT reagent Kit 

(Takara; Kyoto, Japan). Reverse transcriptase-

polymerase chain reaction (RT-PCR) was performed 

using the SYBR Green PCR Kit (Applied Biosystems, 

US) according to the manufacturer’s instructions. 

 

Western blotting 
 

Proteins were resolved using 20% sodium dodecyl 

sulfate-polyacrylamide gel electrophoresis (SDS-

PAGE), followed by transfer of separated proteins onto 

a nitrocellulose membrane. Non-specific antigens on the 

membrane were blocked by incubating the membrane in 

1×TBST (Tris-buffered saline with 0.1% Tween-20) 

containing 5% non-fat skim milk at room temperature 

for 1 h. Afterward, the membrane was incubated 

overnight with primary antibodies at 4°C followed by 

incubation with the secondary antibody (goat anti-

mouse or anti-rabbit IgG antibody) at room temperature 

for 1 h. The primary antibodies used was anti-caspase3 

(Abcam, US, 1;500), anti-Bax (R&D system, US, 

1:1000), anti-Bcl2 (Abcam, US, 1;500), anti-Sox2 

(Abcam, US, 1:1000), anti-Sox9 (Abcam, US, 1:1000), 

anti-CD133 (Proteintech, US, 1;1000), anti-Nanog 

(Proteintech, US, 1:1000), anti-SOCS2 (Abcam, US, 

1:1000), anti-SOCS5 (Abcam, US, 1:500), anti-PTPN1 
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(Proteintech, US, 1:2000), anti-PTPN11 (Proteintech, 

US, 1:500), anti-STAT3 (Proteintech, US, 1:1000) The 

immunoblots were developed using the BeyoECL kit 

(Beyotime, China) and Tanon 5200 system (Tanon, 

China). 

 

Immunofluorescence 

 

Cells were seeded in a 48-well plate and fixed with 4% 

paraformaldehyde for 15 min, followed by treatment 

with 0.1% Triton X-100 for 10 min. The samples were 

blocked with 3% bovine serum albumin (BSA) at 37°C 

for 30 min and incubated with primary antibodies 

against E-cadherin (Abcam, US, 1:200) and vimentin 

(Abcam, US, 1:200) overnight at 4°C. Subsequently, 

the cells were incubated with conjugated secondary 

antibodies at 37°C for 30 min. Nuclei were stained 

with DAPI for 2 min, and samples were observed 

under a microscope (Olympus ZX71; Olympus Corp., 

Japan). 

 

Short interfering RNA interference 

 

A short interfering RNA (siRNA) sequence 

(GAGAAGCAUCGUGAGUGA[dT] [dT]) targeting 

STAT3 was designed by OBiO Technology (Shanghai, 

China). A scramble siRNA sequence was used as a 

negative control. Western blotting was used to detect the 

interference efficiency of siRNA. 

 

Animal model  

 

Nude mice (6 weeks old) were purchased from 

Shanghai Experimental Animal Center, Chinese 

Academy of Science. HCC cells in different groups 

were implanted in the right subcutaneous armpit area 

of nude mice. The mice were sacrificed at the end of 

the experiment and the weight of the tumor was 

measured. All procedures involving animals were 

performed in accordance with the institutional animal 

welfare guidelines of Second Military Medical 

University. 

 

Statistical analysis 

 

The data were analyzed using GraphPad Prism 6.0 

(GraphPad Software). Quantitative data are expressed as 

mean ± standard deviation (SD) for each experiment. 

Significance between the groups was determined using 

Student’s t-test. For all analyses, P < 0.05 was considered 

significant. 
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