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ABSTRACT

The integration of retroviral reverse transcripts into
the chromatin of the cells that they infect is re-
quired for virus replication. Retroviral integration
has far-reaching consequences, from perpetuating
deadly human diseases to molding metazoan evolu-
tion. The lentivirus human immunodeficiency virus 1
(HIV-1), which is the causative agent of the AIDS pan-
demic, efficiently infects interphase cells due to the
active nuclear import of its preintegration complex
(PIC). To enable integration, the PIC must navigate
the densely-packed nuclear environment where the
genome is organized into different chromatin states
of varying accessibility in accordance with cellular
needs. The HIV-1 capsid protein interacts with spe-
cific host factors to facilitate PIC nuclear import,
while additional interactions of viral integrase, the
enzyme responsible for viral DNA integration, with
cellular nuclear proteins and nucleobases guide inte-
gration to specific chromosomal sites. HIV-1 integra-
tion favors transcriptionally active chromatin such
as speckle-associated domains and disfavors het-
erochromatin including lamina-associated domains.
In this review, we describe virus-host interactions
that facilitate HIV-1 PIC nuclear import and inte-
gration site targeting, highlighting commonalities
among factors that participate in both of these steps.
We moreover discuss how the nuclear landscape in-
fluences HIV-1 integration site selection as well as
the establishment of active versus latent virus infec-
tion.

INTRODUCTION

Retroviruses are enveloped viruses that contain two copies
of plus-stranded RNA. The HIV-1 ribonucleoprotein com-
plex, composed of the RNA bound by viral nucleocapsid
(NC) protein as well as integrase (IN) and reverse tran-
scriptase (RT) enzymes, is housed within a capsid shell
made from ∼200 capsid protein (CA) hexamers and 12
CA pentamers (1,2). Together, these elements form the vi-
ral core. HIV-1 infects CD4+ cells including T cells and
macrophages by fusing its membrane with the cellular
plasma membrane (3). Once membrane fusion is complete,
the core is released into the cytoplasm and reverse transcrip-
tion ensues within the confines of the reverse transcription
complex (RTC), a high molecular weight derivative of the
viral core (Figure 1) (4). The RTC interacts with compo-
nents of the cell cytoskeleton to enable its inward movement
through the cytoplasm and toward the nucleus [reviewed in
(5)]. Reverse transcription yields linear double-stranded vi-
ral DNA (vDNA) with several internal discontinuities amid
the plus-strand (6,7).

A multimer of IN binds and bridges both ends of vDNA
together to form the intasome nucleoprotein complex [re-
viewed recently in (8)]. Two IN activities, 3′ processing and
strand transfer, are required for integration. IN hydrolyzes
vDNA ends during 3′ processing to yield recessed CAOH-3′
termini, converting the RTC to the preintegration complex
(PIC) (9) (Figure 1). After engaging a suitable target DNA
(tDNA) acceptor site, IN uses the vDNA 3′-OHs to cut
the major groove in staggered fashion, joining the vDNA
ends to the resulting 5′-phosphate groups. The gaps between
vDNA 5′ ends and tDNA 3′ ends in the hemi-integrant
are repaired by cellular machinery to yield stably integrated
provirus flanked by a short duplication (4–6 bp across retro-
viruses; 5 bp for HIV) of chromosomal sequence that was
cut during strand transfer. A detailed overview of retroviral
integration can be found in reference (10).
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Figure 1. Overview of HIV-1 cellular ingress and principle determinants of integration targeting. Infection is initiated by receptor binding and membrane
fusion, which releases the viral core into the cell cytoplasm where reverse transcription begins. During reverse transcription the core is trafficked to the
nuclear pore where it is transported into the nucleus via interactions between HIV-1 CA and several nucleoporins, including Nup358 and Nup153. Following
translocation, CPSF6 frees the core from the nuclear pore complex and facilitates progression of the PIC beyond the nuclear periphery and into the
nuclear interior. Integration is highly biased away from lamina-associated domains and towards speckle-associated domains, which are characterized by
active transcription and high gene density. The interaction of PIC-borne IN with LEDGF/p75 directs integration into the interior of gene bodies. HIV-1
proviruses are typically well expressed by cellular RNA polymerase following integration. However, a small population of proviruses (marked by lollipops)
are not expressed and become latent. These latent proviruses can be activated upon stimulation years after the initial infection.

HIV-1 efficiently infects non-dividing cells (11,12) due
to the active nuclear import of its PIC (13). Once inside
the nucleus, integration preferentially occurs in regions of
the genome characterized by high gene density and tran-
scriptional activity (14). In particular, HIV-1 integration
has been mapped to genomic regions in close proximity
to speckle-associated domains (SPADs) and far from het-
erochromatin markers such as lamina-associated domains
(LADs) (Figure 1) (15–18). These integration site selection
biases are influenced by a number of factors, including in-
teractions between the PIC and host proteins, the route of
nuclear entry, chromatin accessibility, and local nuclear en-
vironment (16–25). In this review, we provide an overview
of the factors known to influence HIV-1 integration target-
ing in the human genome. In addition, we discuss how in-
tegration site selection relates to the establishment of active
versus latent HIV infection.

Access of cell nuclei by HIV-1 PICs

Nucleocytoplasmic transport. Because some of the host
factors that help to determine chromosomal sites of HIV-
1 integration also play roles in viral nuclear import, a

review of integration site targeting necessitates a paral-
lel discussion of PIC nuclear translocation. In this sec-
tion we briefly review the process of cellular nucleocy-
toplasmic transport, paying particular attention to as-
pects that pertain to HIV-1. Readers interested in com-
prehensive reviews of cellular nuclear import are directed
elsewhere (26,27).

Nucleocytoplasmic transport of large macromolecules
and macromolecular complexes is regulated by the nuclear
pore complex (NPC), a huge ∼110 MDa assembly of ∼1000
proteins composed of 33 nucleoporins (Nups) arranged in
8-fold rotational symmetry [reviewed in (27)] (Figure 2A–
C). The NPC is constructed from Nup subcomplexes re-
ferred to as the coat Nup complex or the Y-complex, in-
ner ring Nups, pore membrane proteins (POMs), cyto-
plasmic filament Nups, and nuclear basket Nups (Figure
2A). About one-fourth of Nup proteins possess FG dipep-
tide repeats within intrinsically disordered domains that
are enriched for polar amino acid residues and depleted of
charged residues (28). The central channel of the NPC, ∼42
nm in diameter in human cells, is lined with FG repeat Nups
that restrict the passive diffusion of proteins greater than
∼40 kDa (29).
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Figure 2. Nuclear pore complex organization and CA-interacting components. (A) Cartoon depiction of the nuclear pore complex. Structural elements
were derived from entry 3103 in the Electron Microscopy Data Bank (EMDB) and PDB entries 5a9q and 5ijn in the Protein Data Bank (PDB). The
diagram depicts the nuclear pore complex as a vertical cross-section through the 8-fold symmetric architecture, revealing Y-complex Nups and several
inner ring Nups. The locations of cytoplasmic filament Nups and nuclear basket Nups were approximated manually. POMs are not depicted. The identities
of individual nucleoporins that are depicted in the cartoon are labeled in matching colors and bold-face font. Nups previously shown to facilitate PIC
nuclear import and/or interact with HIV-1 CA are labeled in italicized bold-face font. (B, C) Different perspectives of the intact 8-fold symmetrical nuclear
pore. (B) Top-view and (C) view tilted 40◦ from the top clearly highlight the overall toroidal architecture of the complex.

A variety of mechanisms have been characterized to facil-
itate the nuclear import of large cytoplasmic cargos. Clas-
sically, soluble �- or �-karyopherin nuclear transport fac-
tors engage cargo proteins through modular nuclear local-
ization signals (NLSs). In some cases, the NLS-containing
cargo first binds an �-karyopherin adapter protein before
complexing with a �-karyopherin partner, whereas in other
cases the �-karyopherin engages the NLS-cargo protein
directly [reviewed in (26)]. The �-karyopherin component
of the complex then docks to the NPC to effect nuclear
translocation [see (30) for review]. Some proteins, such as
transcription factor SPL1, by contrast can gain access to the
NPC through direct binding to Nup proteins, in this case via
Nup62 and Nup153 (31).

HIV-1 PIC nuclear import. Initial HIV-1 nuclear import
studies took reductionist approaches guided by the classical
view of nucleocytoplasmic transport to analyze karyophilic
properties of individual PIC components. The reasoning
was that if proteins in isolation were karyophilic and pos-
sessed bona fide NLSs, these would function in the PIC
to affect HIV-1 nuclear import. Although such approaches
revealed that matrix (32), IN (33,34), and viral protein R
(35) were indeed karyophilic, the relevance of these find-
ings to PIC nuclear import proved difficult to reproduce in
independent studies (36–40). A 99 nt overlap in the mid-
region of the vDNA plus-strand, termed the central DNA
flap, was also proposed to mediate PIC nuclear import (41).
Although follow-up work discounted a major role for the
flap (39,42,43), it can modestly influence the kinetics of
nuclear vDNA accumulation (40,44,45). The defining ex-

periment in the field of HIV-1 nuclear import came from
studying chimeric viruses between HIV-1 and Moloney
murine leukemia virus (MLV), a gammaretrovirus that un-
like HIV-1 is unable to infect growth-arrested cells. These
data clarified that CA is the determinant required for HIV-
1 to productively infect non-dividing cells (46). Because
HIV-1 gains nuclear access similarly in cycling and growth-
arrested cells (47), results derived from growth-arrested cells
pertain to interphase cells as well.

CA is composed of two alpha-helical domains, the N-
terminal domain (NTD) and C-terminal domain (CTD),
which are separated by a flexible linker (5). Intermolec-
ular NTD-NTD and CTD-NTD interactions juxtapose
CA molecules into ringlike hexameric and pentameric cap-
somers (Figure 3A) (48,49). Higher-order CTD-CTD inter-
actions among adjoining capsomeres template the canon-
ical honeycomb pattern formation within the assembled
conical capsid shell (Figure 3B) (1,2,50,51).

CA was shown recently to bind the �-karyopherin trans-
portin 1 (TRN-1) (52) and can also interact with NPC
proteins Nup62, Nup88, Nup98, Nup153, Nup214, and
Nup358 (Figure 2) (20,53–56). Other CA-binding pro-
teins that can affect HIV-1 PIC nuclear import include cy-
clophilin A (CypA) (57,58) and cleavage and polyadenyla-
tion specificity factor 6 (CPSF6) (Figure 4A) (59–62).

Host factors engage CA via two common binding re-
gions. One is the CypA-binding loop, which links alpha he-
lices 4 and 5 within the NTD (Figure 4B) (63). Nup358,
which is a cytoplasmic filament Nup, contains a C-terminal
cyclophilin-homology domain (CHD) that likewise engages
the CypA binding loop (Figure 4B) (19,20,64). Biochem-



624 Nucleic Acids Research, 2021, Vol. 49, No. 2

Figure 3. HIV-1 capsomeres and the capsid lattice. (A) The capsid lattice is comprised of exactly 12 CA pentamers and ∼200 hexamers, which are shown
in top and side views. In both capsomeres the CA CTD is shown in dark blue. While the CA NTD within the hexamer is light blue, it is shown in orange
within the pentamer. In each capsomere, a single CA subunit is depicted as a ribbon diagram with matched coloring scheme. (B) An all-atom model of the
assembled capsid shell derived from PDB entry 3j3y using the color scheme defined in panel A.

Figure 4. Capsid interactions in HIV-1 integration targeting. (A) Organization of principle CA-binding proteins including CypA, Nup358, Nup153 and
CPSF6. Locations of CA-binding portions of Nup358, Nup153 and CPSF6 are colored as in subsequent panels. Domain labels are as follows: LRR –
leucine-rich region; roman numerals I-IV – Ran binding domains I–IV; ZF – zinc finger; E3 – E3 ligase domain; CHD – cyclophilin homology domain; NTD
– N-terminal domain; FG – phenylalanine/glycine repeat domain; RRM – RNA recognition motif; PRD – proline-rich domain; RSLD – arginine/serine-
like domain. (B) Interactions of Cyp-like protein domains with the CA NTD. CypA and the C-terminus CHD of Nup358 both interact with the conserved
CypA-binding loop, one of two principle binding sites within HIV-1 capsomeres. The CypA and Nup358 structures were derived from PDB entries 1ak4
and 4lqw, respectively. Secondary structural elements of CA are noted on the leftward image. (C) Structures of hexameric capsomeres with peptides derived
from Nup153 (top) and CPSF6 (bottom) from PDB entries 4u0c and 4wym, respectively. These peptides lie in a pocket formed between two individual CA
subunits. The binding orientations of the respective peptides are non-identical, highlighting the promiscuity of this binding pocket for mediating CA-host
factor interactions. (D) Detailed superposition of Nup153 and CPSF6 peptides in complex with CA. Nup153-bound CA molecules are shown in blue while
the CPSF6 CA pair is shown in red. For both pairs of CA molecules, individual monomers are differentiated by light and dark coloring. The interaction of
each host factor with respective background CAs (light coloring) is anchored by a phenylalanine residue [F284 in CPSF6 (isoform 1 numbering scheme)
and F1417 in Nup153]. Docking of this phenylalanine facilitates main chain hydrogen bonding of each host factor with CA residue N57. N74 in CA by
contrast preferentially interacts with CPSF6 (green sticks) and not Nup153 (orange sticks). The most pronounced differences in binding modes are derived
from interactions with the foreground (darker) CA monomer. CPSF6 adopts a nearly cyclic conformation and interacts primarily with the CTD of the
second monomer. In contrast, Nup153 is more linear and interacts with the NTD of the foreground CA subunit.

ical, genetic and molecular modeling experiments suggest
that TRN-1 also engages CA via the CypA binding loop
(52) though, unlike CypA and the Nup358 CHD, a CA-
TRN-1 complex structure has not been solved using wet-
bench approaches such as X-ray crystallography. The sec-
ond region within CA, a pocket that is primarily formed by
NTD alpha helices 3–5 with contributions from a neighbor-
ing CA within the hexamer, is where Nup153 and CPSF6

bind (Figure 4C) (54,55,65–67). The FG repeat and cen-
tral proline-rich domains of Nup153 and CPSF6, respec-
tively, confer binding to CA (54,65). Due to the intrinsically
disordered nature of these protein domains, host-CA struc-
tures to date have been restricted to Nup153- and CPSF6-
derived peptides (55,65–67). For both proteins, a pheny-
lalanine residue of an FG dipeptide occupies the bind-
ing pocket, with additional interactions made with the ad-
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joining CA (Figure 4D). Both peptides accordingly bound
hexameric capsomeres ∼10-fold more efficiently than the
isolated NTD (66). Although Nup62, Nup88, Nup98 and
Nup214 in cell extracts co-pelleted with nanotubes assem-
bled from recombinant CA or CA-NC proteins in vitro
(53,55,56), direct interactions with CA, as demonstrated
through the use of purified Nup proteins or peptides, have
not in these cases been confirmed.

The shedding of CA from the core/RTC defines the pro-
cess of uncoating. Though initially thought to occur soon
after virus entry [see (68) for a review], recent evidence
suggests that the PIC structurally resembles the intact or
nearly intact core during nuclear import (62,69,70). Un-
coating (62,69) and the termination of reverse transcription
(18,62,69,71,72) are accordingly now thought to occur after
nuclear entry. The following scenario can be envisaged for
HIV-1 nuclear import. The CA-Nup358 interaction initially
docks the PIC to the NPC (20,73,74). One potential role
for CypA in nuclear import could be regulation of the CA-
Nup358 interaction. Because the CHD has been shown to
be dispensable for HIV-1 infection, it seems possible the PIC
could also engage one or several of the FG repeats present
throughout Nup358 (75). Although cytoplasmic filament
Nup214 can co-sediment with CA-NC in vitro (55), its role
in HIV-1 infection has been mapped to the post-integration
step of mRNA nuclear export (73). After docking, the PIC
is shuttled through the NPC in a process possibly involving
TRN-1 and/or additional FG repeat Nups such as Nup62
and Nup153. Because the diameter of the wide end of the
conical core is ∼60 nm (51,76), it is unclear how an intact
or nearly intact core could pass through. We envision that
structural flexibility, possibly imparted from both within the
viral complex [e.g. vDNA plus-strand discontinuities (77)
that enable remodeling (78)] and external to the core [e.g.
dynamic nature of the NPC (79,80)], work together to direc-
tionally ‘massage’ the oversized cargo. Eventually, the core
docks on the nuclear side of the NPC at the nuclear basket
via the CA-Nup153 interaction (54,55,67). Recent evidence
has suggested that CPSF6 displaces Nup153 from the cap-
sid lattice by competing for the same binding pocket and
frees the HIV-1 PIC from the NPC to further its journey
into the nucleus (Figure 1) (61).

Because changes in CA residues can dramatically alter
HIV-1’s dependency on specific nuclear import factors, it
seems that alternative nuclear import pathways must ex-
ist for the PIC (59,72). Although the dominant viral de-
terminant for HIV-1 nuclear import is CA (39,46), IN
has continued to garner significant focus (81–86) and IN-
host interactions could in theory predominate if alterna-
tive import pathways are less reliant on CA interactors.
IN can interact with numerous soluble transport receptors
including �-karyopherin KPNA2/�-karyopherin KPNB1,
�-karyopherin KPNA4, TRN-1 and �-karyopherin trans-
portin 3 (TRN-SR2/TNPO3) [reviewed in (87)], as well
as NPC components Nup62 (88) and Nup153 (89). How-
ever, the relevance of several of these interactions, includ-
ing those with KPNA4 (86), TNPO3 (90–92), and Nup153
(53,54), have been brought into question. Although HIV-
1 infection is significantly reduced via TNPO3 depletion
(19,83,90,93,94), this appears to be an indirect consequence
of restriction of virus infection due to enhanced cytoplasmic

CPSF6 accumulation (59,92,95–97). Comparatively weak,
∼0.1 mM, small molecule inhibitors of IN-TNPO3 (98) and
IN-KPNA2/KPNB1 (99) interactions have been reported.
Inhibitors with minimally 10-fold increases in potency to-
gether with the selection of drug resistance that maps to
IN should be accomplished to convincingly demonstrate a
pharmacological role for IN in HIV-1 PIC nuclear import.
For comparison, low �M to sub-nM HIV-1 inhibitors that
bind the CA Nup153/CPSF6 binding pocket displace these
proteins and, as part of their multimodal mechanisms of ac-
tion, inhibit PIC nuclear import (54,55,65,100–102).

HIV-1 integration site targeting

Integration site preferences. Several processes impact the
selection of retroviral integration sites in animal cell
genomes, with viruses that make up the different genera
of Retroviridae displaying largely similar preferences for
functional elements such as genes and promoter regions
[reviewed in (103)]. High-resolution mapping studies de-
manded genome-wide capabilities, which were enabled in
2001 via the release of the draft human genome (104).
The first genome-wide study, conducted by the Bushman
laboratory, revealed that HIV-1 integration is highly bi-
ased towards gene-dense regions and highly expressed genes
(14). HIV-1 integration was subsequently shown to track
with histone modifications associated with active chromatin
such as H4K16ac, H3K36me3 and H3K4me1, and disfa-
vor repressive heterochromatin markers such as H3K9me3,
H3K27me3 and LADs (15,16). Recent results have clari-
fied that HIV-1 integration highly favors SPADs (18), which
are genomic DNA regions that physically associate with nu-
clear speckles (105,106).

Comparisons of genic HIV-1 integration frequencies
across studies revealed the presence of recurrent integration
genes or RIGs, which by definition were genes targeted for
integration in two or more studies (16,25). RIGs can also
be tabulated as genes that are experimentally targeted more
frequently than expected based on random chance (17).
Imaging HIV-1 proviruses and RIGs in activated CD4+ T
cells revealed association of both with the nuclear periph-
ery, defining a specific nuclear architecture for HIV-1 in-
tegration site targeting (16). These results were consistent
with an independent study that highlighted HIV-1 target-
ing of chromatin in the peripheral region of the nucleus
in a manner dependent on the nuclear basket Nup protein
Tpr (23). While some prior studies supported the notion of
preferential localization of PICs and proviruses at the nu-
clear periphery (107,108), subsequent work has highlighted
a more pan-nuclear distribution of HIV-1 PICs and inte-
grated proviruses (17,60,62,109,110). In our hands, the vast
majority of RIGs harbored pan-nuclear distributions in
both transformed HEK293T and activated primary CD4+
T cells (17,18).

Activation of CD4+ T cells yields gross rearrangements
in nuclear architecture including actin network formation
(111,112). While pan-nuclear RIG distribution was corrob-
orated in resting CD4+ T cells, activation resulted in RIG
relocation closer to the nuclear periphery (25). The implica-
tions of this reorganization on integration site targeting are
not entirely clear. While comparatively slow reverse tran-
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scription kinetics limits the efficiency of resting T cell in-
fection in vitro (113), these cells nevertheless support HIV-1
integration (114,115). Although genic integration targeting
frequencies were similar in resting and activated CD4+ T
cells infected with HIV-1 in vitro, integration in resting cells
occurred in modestly less gene-dense regions of chromoso-
mal DNA (116). The limited number of integration sites
recovered from such analyses has precluded detailed RIG
analyses (25,116). Scaled-up studies should be performed
to ascertain whether RIG usage differs in resting versus ac-
tivated CD4+ T cells. Because SPADs track with gene-rich
chromosomal regions (18), such studies would also critically
address SPAD integration targeting as a function of T cell
activation.

Super-enhancers (SEs) are genomic regions enriched in
enhancers, activating epigenetic marks such as H3K4me1
and H3K27ac, as well as binding regions for certain tran-
scription factors [reviewed in (117)]. Recently, SEs were
shown to correlate with RIGs, though not with bulk HIV-
1 integration sites (18,25). Because SEs are enriched in
SPADs (105), the observed correlations between integra-
tion sites and SPADs/SEs are likely convoluted. Additional
work is required to clarify the contributions of these over-
lapping genomic markers as predictors of bulk versus RIG-
specific HIV-1 integration targeting frequencies.

IN-binding host factors and HIV-1 integration site target-
ing. Initial observations that viruses from different retro-
viral genera displayed dramatically different preferences
for promoters versus gene bodies (118,119) indicated that
genera-specific host factors could play a role in integra-
tion site targeting (120). Indeed, the first cell protein
shown to play a significant role in retroviral integration
site targeting (121), lens epithelium-derived growth fac-
tor (LEDGF)/p75, specifically binds the IN proteins of
lentiviruses (Figure 5) (122–124). LEDGF/p75 is a tran-
scriptional co-activator that harbors two conserved do-
mains, an N-terminal Pro-Trp-Trp-Pro (PWWP) domain
important for chromatin binding (125–127) and a down-
stream IN-binding domain (IBD) that is necessary and
sufficient to bind HIV-1 IN (128) (Figure 5A and B).
LEDGF/p75 significantly stimulated lentiviral IN cat-
alytic activities in vitro (124,126,128–131) and tethered
ectopically-expressed HIV-1 IN to cellular chromatin (132).
The LEDGF/p75 PWWP domain can engage the trimethy-
lated H3K36me3 modification on nucleosomes assem-
bled in vitro (133–135) and LEDGF/p75 binding sites
in cells correlate with H3K36me2 and H3K36me3 marks
(136,137). Through its IBD, LEDGF/p75 tethers several
different cellular proteins to chromatin to effect tran-
scriptional programming and leukemogenic transformation
(138–140).

Efficient knockdown of LEDGF/p75 by RNA interfer-
ence yielded at best marginal changes in HIV-1 integration
site targeting (24,121). By contrast, genic HIV-1 integration
targeting was reduced significantly by knocking out PSIP1,
the gene that encodes for LEDGF/p75 (141–143). Thus, the
normal cellular complement of LEDGF/p75 apparently ex-
ceeds by several fold that required by HIV-1 for efficient in-
tegration site targeting. LEDGF/p75 is a member of the
hepatoma-derived growth factor (HDGF) family, of which

one other member, HDGF like protein 2 (HDGFL2), con-
tains an IBD that is homologous to the LEDGF/p75 IBD
(128,144). Unlike LEDGF/p75, HDGFL2 at steady-state
is found in the nucleoplasm as compared to chromatin-
associated (144), which may account for why HDGFL2 ap-
peared to play little if any role in HIV-1 integration site tar-
geting in cells that express LEDGF/p75. A subsidiary role
for HDGFL2 in integration site targeting was observed in
cells that lacked LEDGF/p75 (145,146).

LEDGF/p75’s tell-tale signature in HIV-1 integration
targeting came from analyzing genic integration site dis-
tributions across all targeted genes. This analysis first re-
vealed that while MLV integration preferred promoter re-
gions, HIV-1 favored the interior regions of gene bodies
(118). HIV-1’s genic integration targeting preference shifted
toward gene 5′ end regions in the absence of LEDGF/p75
(24,147). LEDGF/p75 can interact with numerous mRNA
splicing factors (136,147) and overcome the transcriptional
block imposed by nucleosomes in vitro (137). Thus, current
models predict that LEDGF/p75’s function in HIV-1 in-
tegration site targeting is determined through interactions
with cellular mRNA splicing and/or transcriptional elon-
gation machineries.

Although >200 cellular proteins have been reported to
interact with HIV-1 IN [reviewed in (103)], we are un-
aware of studies that directly implicate any of these beyond
LEDGF/p75 and HDGFL2 in HIV-1 integration site tar-
geting. IN-binding factors that seemingly could play such
a role include IN interactor 1 (INI1)/SMARCB1 (148),
which is a component of BAF and PBAF chromatin remod-
eling complexes [reviewed in (149)], as well as the histone
acetyltransferase enzyme EP300 (150). Additional work is
required to ascertain whether these or other IN-binding fac-
tors beyond LEDGF/p75 and HDGFL2 play a role in HIV-
1 integration site targeting.

CA interactors and HIV-1 integration site targeting. Initial
glimpses of CA-binding partner functionalities in HIV-1 in-
tegration site targeting indicated these may fundamentally
differ from LEDGF/p75. Cellular depletion of TNPO3
or Nup358, but not LEDGF/p75, yielded significant re-
ductions in the number of genes per Mb (gene density)
that surrounded HIV-1 integration sites (19). Because an
HIV/MLV chimeric virus carrying the MLV gag gene,
which among other things encodes for CA, yielded the same
result, Ocweija et al. concluded that HIV-1 Gag proteins
interact with TNPO3 and Nup358 to target integration to
gene-rich chromosomal regions (19). Although as discussed
above we now believe that the result with TNPO3 was in-
direct due to dysregulated CPSF6 localization, preferential
disruption of integration into gene enriched regions was
observed subsequently in cells depleted for Nup153 (151)
or CPSF6 (24). CA mutant viruses with single amino acid
changes that disrupt binding to CPSF6, including N74D
(20,24,55,59,151) and A77V (152), phenocopied CPSF6
depletion and shifted integration from gene-rich chromo-
somal regions to gene-sparse regions. Contrastingly, CA
changes G89V or P90A, which disrupt the CA-CypA in-
teraction (153,154), retargeted HIV-1 integration to regions
marginally more enriched in genes than those targeted by
the wild type virus (20).
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Figure 5. The integrase-LEDGF/p75 interaction. (A) Domain organization of HIV-1 IN and LEDGF/p75. Domain annotations are as follows: NTD
– N-terminal domain; CCD – catalytic core domain; CTD – C-terminal domain; PWWP – Pro-Trp-Trp-Pro domain; CR – charged region; AT-hooks –
adenosine/thymine DNA binding motif; IBD – integrase binding domain. The key interacting domains, the IN CCD and LEDGF/p75 IBD, are colored
blue and dark red, respectively. (B) Depiction of the core tetramer of the HIV-1 strand transfer complex intasome (PDB 5u1c) bound by the LEDGF/p75
IBD, which was created by superimposing the CCDs of the IBD–HIV-1 IN CCD structure (PDB 2b4j) with the CCDs of the strand transfer complex.
Because LEDGF/p75 interacts with integrase at the interface between two CCD dimers, a single intasome contains multiple potential LEDGF/p75 binding
sites. Whether all or just a fraction of bound LEDGF/p75 molecules participates in HIV-1/lentiviral integration targeting is not presently known. The
IBD color in panel B matches panel A; one of the two CCD dimers in B also matches the panel A coloring.

Results obtained via imaging virus-infected cells have
greatly informed the role of CPSF6 in HIV-1 integration site
targeting. Depletion of CPSF6 or infection with binding-
defective viruses such as N74D and A77V CA mutants
resulted in PIC and proviral accumulation in the periph-
eral region of the nucleus (17,60–62,110,155,156). Concur-
rent genomic DNA analyses revealed significant upticks
in LAD-proximal integration site targeting with parallel
reductions in integrations into SPADs (17,18,157). HIV-1
PICs and CPSF6 were accordingly seen to colocalize with
nuclear speckles in a variety of acutely-infected cell types
including primary CD4+ T cells and macrophages (18).

CPSF6 functions as part of the cleavage factor I mam-
malian (CFIm) complex, which is one of many complexes
that compose the cleavage and polyadenylation complex
that processes mRNA 3′ ends for polyadenylation [re-
viewed in (158)]. CFIm is composed of a heterotetramer
of CPSF5 and one of two homologues, CPSF6 or CPSF7
(159). CPSF6 harbors three domains, an N-terminal RNA
recognition motif (RRM) that mediates the interaction
with CPSF5 (160), a central proline-rich domain that me-
diates binding to HIV-1 CA (65,161), and a C-terminal
arginine/serine-like domain (RSLD) that is enriched in
R(D/E) dipeptides and mediates TNPO3 binding (92,97)
(Figure 4A). It is somewhat unclear whether CPSF6 func-
tion in PIC nuclear import and integration site targeting
occurs in the context of CFIm. The vast majority of cel-
lular CPSF6 is sequestered in CFIm (162) and CPSF6- but
not CPSF7-containing CFIm colocalized with nuclear PICs
(61). However, expression of a CPSF6 RRM deletion mu-
tant defective for CPSF5 binding (163) efficiently restored
integration site targeting to CPSF6 knockout cells (162).
These data suggest that CPSF6 need not be complexed with
CPSF5 to effect PIC nuclear trafficking to speckles for in-
tegration into SPADs. As the CPSF6 RSLD was recently
shown to play a role in nuclear speckle condensation (164),
we suspect that it largely underlies CPSF6-dependent direc-
tional PIC trafficking to nuclear speckles (18).

Analyses of cells knocked out for LEDGF/p75 and/or
CPSF6 expression have helped clarify the role of each of
these factors in HIV-1 integration site targeting. Because
the shift in genic integration site distribution to gene 5′ end

regions observed in PSIP1 knockout cells was retained in
cells knocked out for both factors but absent from CPSF6
knockout cells, we concluded that LEDGF/p75’s primary
function is positional integration targeting into gene mid-
regions (24). Conversely, peripheral nuclear accumulation
of PICs and proviruses with integrations mapping nearby
LADs was observed in double knockout as well as CPSF6
knockout cells, indicating that the main CPSF6 role is en-
abling PIC passage from the periphery into the nuclear lu-
men to engage nuclear speckles for SPAD-proximal integra-
tion (Figure 1) (17,18). This model contrasts prior ones that
invoked NPC-proximal integration targeting as a function
of Nup153, Tpr and LEDGF/p75 (16,23). Zones of tran-
scriptional activity map to the nuclear periphery in associ-
ation with NPCs as well as the nuclear interior in close as-
sociation with nuclear speckles (105). Additional work con-
ducted in primary cells of HIV-1 infection including CD4+
T cells and macrophages should help to clarify the roles of
different host factors in integration targeting under physio-
logically relevant conditions.

Given the role of CPSF6 in PIC nuclear import together
with peripheral PIC and proviral accumulation in the ab-
sence of CA-CPSF6 binding, our model certainly invokes
that CPSF6 acts prior to LEDGF/p75 (Figure 1). While
chromatin-binding is essential for LEDGF/p75’s role in
HIV-1 integration (127,165), it is less clear if CPSF6 di-
rectly tethers PICs to chromatin for integration. Recent re-
search that indicates the PIC retains its CA complement
post-nuclear import (62,69,70) is consistent with a model
whereby CPSF6 remains PIC-associated post nuclear entry
to deliver it to nuclear speckles for integration into SPADs
(18) (Figure 1).

The roles of other CA-binding proteins such as Nup358,
Nup153 and CypA in HIV-1 integration targeting are less
clear. The fact that the Nup358 CHD and CypA share the
same binding region on CA (Figure 4B) yet invoke oppo-
site effects on integration into gene-dense regions upon dis-
ruption of these virus-host interactions sheds little insight.
Possibly, loss of CypA enhances integration into gene-dense
chromosomal regions via enhancing the CPSF6-CA inter-
action and/or slowing the rate of nuclear PIC uncoating.
Indeed, CypA was recently shown to block HIV restriction
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by the antiviral factor TRIM5� by impeding its interaction
with capsid (166). It is possible that this same effect is at-
play for other host factors involved in HIV-1 biology. CypA
was also recently shown to make novel contacts with two
additional hexamers in the assembled capsid honeycomb,
though the physiological relevance of these findings is not
clear (167). Given the breadth of full-length Nup358 with
associated FG repeats, it would not be surprising if novel
Nup358-CA interactions await discovery.

Many Nups play important cell biology functions out-
side of their roles as structural components of the NPC [re-
viewed in (168)]. For example, Y-complex Nup components
ELYS and Sec13 (Figure 2) can alter chromatin function-
ality via interacting with chromatin remodeling complexes
(169). Nup153 was recently shown to effect chromatin orga-
nization via interacting with architectural proteins CTCF
(CCCTC-binding factor) and cohesion (170). Given that
Nup153 and CPSF6 share the same binding pocket on CA
(Figure 4C and D), additional work is required to dis-
cern whether regulating the CA-CPSF6 interaction or per-
haps a novel pathway involving CTCF/cohesion underlies
Nup153’s role in HIV-1 integration site targeting.

Nucleosomes and tDNA flexibility in integration targeting.
Early biochemical studies demonstrated that HIV-1 integra-
tion in vitro preferentially occurred in the exposed major
groove of nucleosomal DNA (171,172). Subsequent work
revealed that a direct interaction between HIV-1 IN and the
tail region of histone H4 stimulated integration into nucle-
osomal DNA in vitro (173,174). Interestingly, DNA mini-
circles in large part recapitulated the stimulatory effect of
tDNA distortion on HIV-1 integration in vitro in the ab-
sence of bound protein factors (175).

Studies of prototype foamy virus (PFV) intasomes greatly
informed the structural basis of tDNA distortion in retro-
viral integration. To accommodate scissile phosphodiester
bonds that are separated by 4 bp into two IN active sites
within the intasome, the tDNA major groove had to dis-
tort significantly, to 26.3 Å, with concomitant minor groove
compression to 9.6 Å (176). Pyrimidine-purine (YR) dinu-
cleotides, which are inherently flexible, are accordingly nat-
urally selected at the center of the tDNA cut made by PFV
IN in cells and in vitro (176). Site-directed mutagenesis re-
vealed roles for PFV IN residues Ala188 and Arg329 in dic-
tating nucleobase selection at integration sites (176). Inta-
some models based on the PFV structures implicated simi-
lar roles for HIV-1 IN residues Ser119 and Arg231 (21,22).
Statistical analysis of tDNA sequence preferences of HIV-
1 integration revealed weak but significant bias towards
the consensus sequence RYXRY, which, akin to PFV, en-
forces YR at the two dinucleotides that span the center
of the 5 bp sequence (22). Interestingly, in addition to al-
tering tDNA bases at integration sites, certain Ser119 and
Arg231 substitutions marginally shifted sites of HIV-1 inte-
gration to gene-sparse genomic regions (21). Because not all
Ser119 and Arg231 substituents conveyed this phenotype,
the mechanistic basis for global integration retargeting in
these cases is unclear.

Genomic features of active versus latent infection. The vast
majority of cells that become infected with HIV-1 sup-

port active transcription and the production of new viral
progeny (177,178). The advent of combinatorial antiretro-
viral therapy (ART) enabled acute measures of viral and in-
fected cell dynamics, which revealed that infected cells per-
sist with a half-life of ∼1–2 days due to either virus-induced
cell death or immune system eradication (177–181). ART
treatment also helped to unveil a latent population of HIV-
1 proviruses in patient-derived samples (182–185) that is es-
tablished early during the course of infection (186,187). To-
day, it is widely recognized that this population of reacti-
vatable proviruses is the principle barrier to curative HIV-1
strategies (177,178,188,189).

The precise mechanism responsible for the establishment
of latent infection is not clear. HIV-1 primarily infects acti-
vated CD4+ T cells, but, as previously mentioned, can in-
fect resting CD4+ T cells in vitro. The latent reservoir is
most probably established by infection of activated CD4+
T cells that then transition to a resting (memory) state
(187,190,191). Interestingly, the vast majority (estimated to
be ≥98% in some studies) of integrated proviruses in patient
cells are defective due to deletions or hypermutation and
thus are incapable of supporting virus replication (189,192–
194). These defective proviruses accumulate rapidly during
the acute phase of infection (194). A significant fraction of
persistently infected cells in patients have moreover been
shown to clonally expand (192,195,196). Clonal expansion
of infected cells closely parallels seeding of the latent reser-
voir and tends to increase with time (192,197). Because the
majority of the proviruses in these cells are defective, it was
initially thought that viral recrudescence upon ART cessa-
tion was due to non-clonally expanded but quiescent CD4+
T cells that harbor intact provirus (192). However, subse-
quent studies have shown that sufficient intact proviruses
exist in the clonally expanded population to support the
resurgence of viral replication (193,198–200).

Like integration site preferences in vitro, the major-
ity of integrations in chronically infected patients are ob-
served in genes (192,195,196). Repressive chromatin marks
such as H3K9me3, H3K27me3 and CpG methylation have
been linked to the establishment of latency (201–206). In-
terference of HIV-1 transcription caused by active host
gene expression and provirus orientation have been pro-
posed to modulate latency (207–209). Components of the
mTOR complex and related downstream factors have also
been shown to influence latency, possibly through modulat-
ing TCR/CD28 signaling and/or NF-�B activation (210).
These observations are consistent with the notion that sup-
pression of viral transcription is a key component of HIV-1
latency. The use of barcoded viruses to track individual inte-
gration sites has accordingly indicated that latent proviruses
are more distal from activating epigenetic marks than are
expressed viruses (206,211). Recently, proviruses from elite
controllers, which represent a minority of patients that con-
trol their infection in the absence of ART, were shown to
adopt a state of ‘deep latency’ due to integration into het-
erochromatic regions such as centromeric satellite DNA
and Krüppel-associated box domain-containing zinc finger
genes (212).

Subsets of genic HIV-1 proviruses have been linked to
persistence and clonal expansion of infected cells in pa-
tients on long-term ART (195,196,213,214). Integration
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into specific regions of MKL2, BACH2 and STAT5B, for in-
stance, are highly enriched in patient samples (192,195,196).
Interestingly, these genes are linked to tumorigenesis, T
cell homeostasis, B cell development, and/or immune sig-
naling (215–220). It has been hypothesized that these in-
nate biological functions underlie their overrepresentation
in persistent/clonally expanded infected T cell popula-
tions (195). Consistent with this hypothesis, it has been
shown that many (but not all) integrations into BACH2
and STAT5B result in splicing-induced fusion of viral se-
quences to the first protein coding exon of these genes
(221) – a mechanism conceptually similar to the fu-
sion proteins found in many cancers (222). These fusions
can increase the proliferation and survival of T regula-
tory cells without imparting deleterious effects on their
function (221).

CONCLUSIONS

We have witnessed significant progress in understanding the
intricacies of HIV-1 integration site targeting over the past
two decades. Animal cell genomic sequences have enabled
the mapping of individual retroviral integration sites on
massive scales. Intasome studies have informed the struc-
tural bases of nucleobase selection at sites of vDNA joining.
Advances in cell biology have enabled rapid, targeted abla-
tion of specific cell factors by RNA interference and knock-
out strategies such as CRISPR-Cas9, greatly accelerating
the pace of research. Such approaches are crucial to inform
the roles of virus-host interactions in HIV-1 integration tar-
geting. Disruption of HIV-host interactions important for
integration site targeting has importantly informed novel
antiviral inhibitor development. Small molecule inhibitors
of CA-Nup153/CPSF6 (102) and IN-LEDGF/p75 [re-
viewed in reference (87)] interactions engage multiple copies
of their respective viral targets, eliciting multipronged al-
losteric antiviral responses.

Roles for integration sites in establishing and regulating
latency are beginning to emerge. Fundamental questions
remain, however. From the perspective of a cure, one of
the most pressing questions is the relationship between in-
tegration site and proviral transcription. Although chro-
matin landscape around HIV-1 integration sites can influ-
ence viral gene expression (206,211), how this relates to la-
tency and cellular persistence/clonal expansion in patients
is not explicitly known. Additional research on understand-
ing the reasons why particular integration sites are enriched
in clonally expanded and persistent cells in vivo is surely
warranted. Plausibly, this could inform the development of
novel therapeutics to eradicate viral recrudescence that oth-
erwise widely pervades ART cessation. The observation that
a small fraction of patients seemingly self-cure via the elim-
ination of cells that otherwise could reseed virus replication
indicates that an immunological approach to HIV cure may
be plausible (212).
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Kräusslich,H.G. (1999) Cyclophilin A incorporation is not required
for human immunodeficiency virus type 1 particle maturation and
does not destabilize the mature capsid. Virology, 257, 261–274.

155. Francis,A.C. and Melikyan,G.B. (2018) Single HIV-1 imaging
reveals progression of infection through CA-dependent steps of
docking at the nuclear pore, uncoating, and nuclear transport. Cell
Host Microbe, 23, 536–548.

156. Zila,V., Müller,T.G., Laketa,V., Müller,B. and Kräusslich,H.G.
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