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Abstract: Despite the advances in screening protocols and treatment options, hepatocellular carcinoma
(HCC) is still considered to be the most lethal malignancy in patients with liver cirrhosis. Moreover,
the survival outcomes after failure of first-line therapy for unresectable HCC is still poor with limited
therapeutic options. One of these options is immune checkpoint inhibitors. The aim of this study
is to comprehensively review the efficacy and safety of immune checkpoint inhibitors for patients
with HCC.
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1. Introduction

Hepatocellular carcinoma (HCC) is still the most common and most lethal malignancy in patients
with liver cirrhosis, despite the advances in screening programs, chemoprophylaxis for high-risk
patients and treatment options [1,2]. With the rapid increase in prevalence of metabolic disorders,
nonalcoholic fatty liver disease became one of the leading risk factors of HCC after hepatitis B and
C [3,4]. Overall, HCC is considered an inflammatory prototypic cancer. The high mortality rate from
HCC is related to late diagnosis and the concomitant liver dysfunction. In that case, usually, curative
resection or liver transplantation is not feasible [5].

Despite the recent advances in systemic therapy for unresectable HCC, patients who progress
on first-line multikinase inhibitors, namely sorafenib [which targets vascular endothelial growth
factor receptor (VEGFR), platelet-derived growth factor receptor (PDGFR-β) and rapidly accelerated
fibrosarcoma (RAF) kinases] [6–8] and lenvatinib (which targets VEGFR1, VEGFR2 and VEGFR3,
PDGFR alpha, fibroblast growth factor receptor (FGFR) and KIT and RET tyrosine kinases) [9–13],
have limited options [5,14]. Moreover, these systemic therapies are usually associated with significant
resistance and side-effects. Furthermore, some clinical trials designed to expand on the already existing
options for patients with HCC showed disappointing results [15]. However, recently four additional
targeted therapies got approval for treatment of HCC based on phase III randomized controlled trials.
Those therapies include lenvatinib as first-line therapy [9] and regorafenib [14,16], cabozantinib [17]
and ramucirumab [18] as rescue therapies after failure of sorafenib.
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The tumor microenvironment of the HCC is infiltrated with different types of immune cells,
mainly T-cells (CD8+, CD4+, Treg), natural killer cells and myeloid cells (myeloid-derived suppressor
cells and tumor-associated macrophages). Due to the chronic inflammation and cirrhosis present in
most HCC patients, the tumor ecosystem gets complicated affecting the behavior of the tumor and
response to treatment. These changes are due to complex interactions between immune cells and tumor
cells in the tumor microenvironment conveyed through cytokines and signaling pathways leading
to exhaustion of pro-inflammatory immune cells and the dominance of the regulatory leukocytes
hindering the anti-tumor response. A study by Yu et al. [19] concluded that improved overall survival
was associated with high immune infiltration. The study further identified different immune clusters
based on their prognostic value showing that better outcomes were associated with clusters with
high levels of T-cells (mainly CD8+) and low levels of macrophages. A subset of tumor-associated
macrophages (M1) was shown to be associated with improved outcomes. Poor prognosis is
associated with the accumulation of myeloid-derived suppressor cells, tumor-associated macrophages,
CD4+/CD25+/FOXP3+ immune-suppressive T-cells(T-reg), exhausted Th1 CD4+, CD8+ T-cells,
dysfunctional NK cells and the expansion of Th2 CD4+ T-cells. Immune checkpoint molecules
including programmed cell death (PD-1), CD274, cytotoxic T lymphocyte antigen -4 (CTLA-4),
lymphocyte activated gene -3 (LAG-3) and IFNG were identified in clusters that had high levels
of CD8+ T-cells. However, these clusters were associated with poor prognosis which leads to the
assumption that these molecules are implicated in the HCC immune-exhaustion [20]. Therefore,
it is assumed that the administration of immune checkpoint inhibitors would be beneficial for these
HCC patients. In the United States, accelerated approval has been granted by the Food and Drug
Administration (FDA) to two anti-programmed cell death monoclonal antibodies (nivolumab and
pembrolizumab) and a combination of nivolumab plus ipilimumab, a monoclonal antibody against
CTLA-4, for patients who progressed on sorafenib based on the results of several phase III trials [21–23].
However, data from phase III trial did not show superior efficacy of nivolumab as first-line therapy over
sorafenib [24]. Moreover, the results of KEYNOTE 240 which assessed pembrolizumab as second-line
therapy compared to placebo did not meet its predetermined level of statistical significance [25].
Therefore, we aimed to review the current evidence in the literature regarding the use of immune
checkpoint inhibitors for the treatment of HCC.

2. Immune Checkpoint Inhibitors as a First-Line Therapy

2.1. PD-1/PD-L1 Inhibition

Avoiding immune destruction is one of the hallmarks of cancer. The PD-1/PD-L1 pathway plays
a pivotal role in this escape mechanism [26]. Studies have shown that PD-L1 is overexpressed in
tumor cells in different types of cancers including HCC, which leads to an increase in binding between
PD-L1 and PD-1 on T cells within the tumor microenvironment resulting in immune anergy and
apoptosis [27,28]. As a result, with overexpression of PD-L1, the tumor continues to grow unchecked
which leads to worse prognosis in patients with HCC [28,29]. Interfering with this binding can result
in enhancing immune reaction toward the cancer cells. (Figure 1) Therefore, the introduction of
monoclonal antibody in the landscape of treatment of HCC has gained accelerated approval for patients
who previously progressed on sorafenib based on the results CheckMate 040 trail [21]. However,
for first-line therapy, the CheckMate 459 trial compared nivolumab to sorafenib in patients with
Child-Pugh A (non-severe liver cirrhosis). Although the objective response rate was higher in the
nivolumab group than the sorafenib group, the overall survival and progression-free survival were not
significantly different between both groups [24] (Table 1).
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Table 1. Immune checkpoint inhibitors as first-line therapy for unresectable hepatocellular carcinoma (HCC).

Study ID NCT Study Design,
Key Inclusion Sample Size OS, Months (95% CI) PFS Months (95% CI) Response Rates Side Effects

PD-1/PD-L1 antibodies

CheckMate 459
ESMO October 2019 NCT02576509 RCT, CP: A

743 patients
Nivolumab: 371 pts
Sorafenib: 372 pts

Nivolumab vs. Sorafenib:
OS:

16.4 (13.9–18.4) vs.
14.7 (11.9–17.2)

12 mo (%):
59.7 (54.4–64.6) vs.

55.1 (49.8–60.1)
24 mo (%):

36.8 (31.8–41.8) vs.
33.1 (28.3–38.0)

Nivolumab vs. Sorafenib:
3.7 (3.1–3.9) vs.

3.8 (3.7–4.5)

Nivolumab vs. Sorafenib:
ORR: 57 (15%) vs. 26 (7%)

Complete response:
14 (4%) vs. 5 (1%)
Partial response:

43 (12%) vs. 21 (6%)

Nivolumab demonstrated a
favorable safety profile

consistent with
previous reports.

RATIONALE 301 NCT03412773 RCT, BCLC stage
C or B, CP: A

674 patients
Tislelizumab vs. Sorafenib Pending Pending Pending Pending

Dual immune checkpoint blockade:

HIMALAYA study NCT03298451
RCT,

BCLC stage C or B,
CP: A

1310 pts,
Durvalumab vs.

(Durvalumab + Tremelimumab)
vs.

Sorafenib

Pending Pending Pending Pending

Combination with biological therapy:

IMbrave 150 NCT03434379 RCT,
CP: A

501 patients
Atezolizumab + Bevacizumab:

336 pts vs.
Sorafenib: 165 pts

Atezolizumab + Bevacizumab
vs. Sorafenib;
Overall death:

28.6% vs. 39.4%; HR: 0.58
(95% CI 0.42–0.79)

OS:
NE vs. 13.2 (10.4—NE)

OS at 6 Mo:
84.8% vs. 72.2%

Atezolizumab + Bevacizumab
vs. Sorafenib;

Overall progression:
58.6% vs. 66.1%; HR: 0.59

(95% CI 0.47–0.76)
PFS:

6.8 (5.7–8.3) vs. 4.3 (4.0–5.6)
PFS at 6 Mo:

57.5% vs. 37.2%

Atezolizumab + Bevacizumab
vs. Sorafenib; % (95% CI)

ORR per RECIST 1.1:
27.3 (22.5–32.5) vs.

11.9 (7.4–18)
ORR per HCC specific

mRECIST:
33.2 (28.1–38.6) vs.

13.3 (8.4–19.6)

Atezolizumab +
Bevacizumab vs. Sorafenib;

Grade 3–4 complications:
186 (56.5%) vs. 86 (55.1%)
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Table 1. Cont.

Study ID NCT Study Design,
Key Inclusion Sample Size OS, Months (95% CI) PFS Months (95% CI) Response Rates Side Effects

Combination with biological therapy:

G030140 group F NCT02715531 RCT, CP: A

119 pts
Atezolizumab + Bevacizumab:

60 pts vs.
Atezolizumab: 59 pts

Atezolizumab + Bevacizumab
vs. Atezolizumab

Overall death:
27% vs. 31%

OS: not reached in both groups

Atezolizumab + Bevacizumab
vs. Atezolizumab

Overall progression:
HR:

per HCC mRECIST:
57% vs. 66%,

HR: 0.54 (80% CI 0.40–0.74)
per RECIST 1.1:

58% vs. 66%
HR: 0.55 (80% CI 0.40–0.74)

PFS Mo:
per HCC mRECIST:

5.6 mo (3.6–7.4) vs. 3.4 mo
(1.9–5.2)

per RECIST:
5.7 mo (3.5–9.3) vs. 2.0 mo

(1.9–3.7)

Atezolizumab + Bevacizumab
vs. Atezolizumab

ORR per RECIST 1.1:
20% (95% CI 11–32) vs. 17%

(95% CI 8–29)
ORR per HCC mRECIST:

27% (95% CI 16–40) vs. 17%
(95% CI 8–29)

Atezolizumab +
Bevacizumab vs.
Atezolizumab

Grade 3–4:
12 (20%) vs. 3 (5%)

The most common grade
3–4 SEs were: hypertension:

3 (5%) vs. none
proteinuria:

2 (3%) vs. none

G030140 group A NCT02715531 RCT, CP: A 104 pts
Atezolizumab + Bevacizumab

57 (55%) still alive at data cut off
OS not reached

Per RECIST 1.1:
66%; 7.3 months (95% CI

5.4–9.9)
Per HCC mRECIST:

66%; 7.3 months (95% CI
5.4–9.9)

ORR per RECIST 1.1: n (%;
95% CI)

37 (36%; 26–46)
ORR per HCC mRECIST:

41 (39%; 30–50)

Serious SEs: 25 (24%)
The most common serious

SEs were upper
gastrointestinal

hemorrhage, colitis,
esophageal variceal

hemorrhage and
pneumonitis, each occurring

in two (2%) patients.

COSMIC 312 NCT03755791 RCT, BCLC stage
C or B, CP: A

740 pts
Cabozantinib + Atezolizumab:

370 pts vs.
Cabozantinib: 185 pts vs.

Sorafenib: 185 pts

pending pending pending Pending

LEAP 002 NCT03713593 RCT, BCLC stage
C or B, CP: A

750 pts
Pembrolizumab + Lenvatinib

vs.
Lenvatinib alone

pending pending pending Pending

CheckMate 9DW NCT04039607 RCT
1084 pts

Nivolumab + Ipilimumab vs.
Sorafenib/Lenvatinib

pending pending pending Pending
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Table 1. Cont.

Study ID NCT Study Design,
Key Inclusion Sample Size OS, Months (95% CI) PFS Months (95% CI) Response Rates Side Effects

Combination with biological therapy:

KEYNOTE 524;
AACR April 2019 NCT03006926 Single-arm, BCLC

stage C or B, CP: A

104 pts will be recruited,
however, the presented results

are for 30 pts (6 pts in safety
part and 24 pts in efficacy part)
Pembrolizumab + Lenvatinib

pending pending

ORR
per mRECIST per investigator:

11 (36.7)
per mRECIST per IIR:

15 (50.0%)
Per RECIST IIR:

11 (36.7%)

Any-grade
treatment-emergent adverse
events (TEAEs) occurred in

28 pts (93%); the most
common any-grade TEAEs

were decreased appetite
(63%) and hypertension

(60%). 7 (23%) pts
discontinued treatment due
to TEAEs and no new safety

signals were identified.

VEGF Liver 100 NCT03289533 Single-arm, BCLC
stage C or B, CP: A

22 pts
Avelumab + Axitinib __

PFS: mo (95% CI)
Per RECIST:
5.5 (1.9–7.3)

Per mRECIST:
3.8 (1.9–7.3)

6 months PFS: % (95% CI)
Per RECIST:

35.1% (15.3–55.8%)
Per mRECIST:

30.9% (12.5–51.5%)

ORR
Per RECIST:

13.6% (95% CI, 2.9–34.9%)
Per mRECIST:

31.8% (95% CI, 13.9–54.9%)

The most common grade 3
treatment-related adverse
events (TRAEs) (≥10% of

patients) were hypertension
(50.0%) and hand-foot

syndrome (22.7%); no grade
4/5 TRAEs were reported.

Kelley 2017, arm five NCT02519348 RCT

433 pts
Durvalumab + Tremelimumab

vs.
Durvalumab vs.

Tremelimumab vs.
Durvalumab + Tremelimumab

(regmine two) vs.
Durvalumab + Bevacizumab

__ __ __ __

CP: Child-Pugh, RCT: Randomized Controlled Trial, RECIST: Response Evaluation Criteria in Solid Tumors, OS: Overall Survival, PFS: Progression-Free Survival, ORR: Objective
Response Rate.
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R1 mediated resistance that is, tislelizumab [31]. Clinical data
from the RATIONAL 301 trial, which is comparing tislelizumab against sorafenib, supporting this
mechanism are still pending [31].

2.2. Dual Immune Checkpoint Blockade

CTLA-4 is expressed on T regulatory cells regulating the early immune response after the primary
stimulation by antigens mainly in lymphoid organs whereas PD-1 is expressed mainly on activated T
cells in the tumor microenvironment regulating late immune response. Moreover, inhibition of the
CTLA-4/B7 signal in lymph nodes increases activated CD8+ cells which will subsequently infiltrate
the tumor and be part of the microenvironment [32,33]. Based on this, several studies have shown
promising results with dual immunotherapy [34,35]. The success achieved in these trials especially in
for patients with melanoma [36] has inspired the application of dual immune blockage for other types
of cancers including HCC. Therefore, after the success achieved by the phase I/II trial investigating the
efficacy and safety of dual immune therapy for patients progressed on sorafenib [37], a comparative
randomized controlled trial, HIMALAYA study, was designed to compare Duravalumab versus the
combination of Duravalumab plus Tremelimumab versus sorafenib. Its results are still bending
(Table 1).

2.3. Combination with Biological Therapy

Vascular endothelial growth factor (VEGF) has been linked with the development and progression
of HCC [38,39]. Moreover, it has a role in immune suppression as it has been found that it creates an
immunosuppressive microenvironment through the recruitment of several inhibitory cells such as T
regulatory cells, tumor-associated macrophages and myeloid-derived suppressor cells. Those cells
release cytokines such as IL-10 and TGF-β that inhibit natural killer cell and T cell activation and
impedes dendritic cell maturation as shown in Figure 2 [33,40,41].

The landmark IMbrave 150 trial comparing atezolizumab (PD-L1 monoclonal antibody) plus
bevacizumab (a monoclonal antibody against vascular endothelial growth factor) versus sorafenib found
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a better objective response rate and survival for patients treated with the combination therapy [42].
Moreover, the combination of atezolizumab plus bevacizumab showed a better progression-free
survival when compared to atezolizumab alone [43]. As the main concern for patients with liver
cirrhosis treated with bevacizumab is upper gastrointestinal bleeding, it occurred in 7% of the patients
who received the combination therapy which is comparable to earlier reports evaluating bevacizumab
alone in patients with HCC [42,44,45]. However, proteinuria and hypertension, as main side effects of
bevacizumab, still among the top side effects of combination therapy. However, further evaluation
of combination therapy versus sorafenib or lenvatinib as first-line therapy for HCC is still under
investigation. For example, the combination of nivolumab plus ipilimumab versus sorafenib/lenvatinib
as first-line therapy for HCC is still under investigation by the CheckMate 9DW trial (NCT04039607),
the combination of cabozantinib plus atezolizumab versus sorafenib is under investigation by COSMIC
312 trial (NCT03755791) and the combination between pembrolizumab plus lenvatinib versus lenvatinib
alone is under investigation by the LEAP 002 trial (NCT03713593). Nevertheless, the success achieved
by the landmark IMbrave 150 trial and G030140 trial has a great implication for the practice regarding
the upfront therapy for patients with unresectable HCC. Nevertheless, these trials included only
patients with early liver disease and the efficacy and safety of the combination therapy in patients with
advanced liver disease is still unelucidated. Furthermore, no data available about subsequent therapy
after the failure of immune checkpoint. More details are provided in Table 1.
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3. Immune Checkpoint Inhibitors as Second-Line Therapy

3.1. CTLA-4 Inhibition

Sangro et al. recruited 21 patients with hepatitis C virus who had progressed on previous lines
of treatment for HCC. The treatment was tremelimumab at a dose of 15 mg/kg IV every 90 days.
The drug showed a safe profile with a partial response rate of 17.6% [46]. Interestingly, the viral load
for HCV decreased. Denoting the antiviral effect with the enhanced immunity. Moreover, the addition
of ablation therapy to the anti-CTLA-4 showed a higher response rate with a similar safety profile [47]
(Table 2).
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Table 2. Immune checkpoint inhibitors after failure or intolerability for first-line therapy for patients with unresectable HCC.

Study ID NCT Study Design, Key
Inclusion Sample Size OS, Months (95% CI) PFS Months (95% CI) Response Rates Side Effects

CTLA-4 antibodies

Sangro 2013 NCT01008358 Single-arm, HCV
patients, CP: A or B

21 pts
Tremelimumab __ __

ORR: 17.6%
time to progression: 6.48

months (95% CI 3.95–9.14)

Grade 3–4 transaminase
elevation: 45%

Duffy 2017 NCT01853618 Single-arm, CP: A or B
32 pts

Tremelimumab
plus ablation

OS: 12.3 months (95% CI 9.3
to 15.4 months).

Six months OS: 85.7%
(66.3–94.4%)

One year OS: 50.8%
(29.1–68.9%)

PFS: 7.4 months
(4.7–19.4 months)

Six months PFS: 57.1%
(37.1–72.9%)

One year PFS: 33.1%
(16.2–51.2%)

Partial response: 26%
(95% CI 9.1–51.2)

Grade 3–4 increase AST:
7 pts (19%)

PD-1/PD-L1 inhibition:

KEYNOTE 240 NCT02702401 RCT, CP: A
413 pts

Pembrolizumab: 278 pts vs.
Placebo: 135 pts

OS:
Pembrolizumab: 13.9

months (95% CI, 11.6 to
16.0 months)

Placebo: 10.6 months
(95% CI, 8.3 to 13.5 months)

HR: 0.781; 95% CI, 0.611
to 0.998

PFS:
Pembrolizumab: 3.0 months
(95% CI, 2.8 to 4.1 months)

Placebo: 2.8 months
(95% CI, 1.6 to 3.0 months)

HR: 0.718; 95% CI,
0.570 to 0.904

PFS at 12 months:
Pembrolizumab: 19.4%

(95% CI, 14.6% to 24.9%)
Placebo: 6.7% (95% CI,

3.0% to 12.4%)

ORR:
Pembrolizumab: 18.3%

(95% CI 14–23.4)
Placebo: 4.4% (95% CI

1.6–9.4)
Estimated treatment

difference: 13.8 (95% CI:
7.7 to 19.5)

Any grade 3–4:
Pembrolizumab: 52%

Placebo: 46.3%
Grade 3–4 AST

elevation:
Pembrolizumab: 13.3%

Placebo: 7.5%

Scheiner 2019 NA Retrospective cohort
65 pts

Nivolumab: 34 pts
Pembrolizumab: 31 pts

OS:
Nivolumab: 9.0 (95% CI,

5.5–12.5) months
Pembrolizumab: 11.0

(95% CI, 7.4–14.5) months
1 year OS:

Nivolumab: 38%
Pembrolizumab: 44%

PFS
Nivolumab: 4.3 (95% CI,

2.0–6.7) months
Pembrolizumab: 5.6

(95% CI, 1.1–10.1) months

ORR:
Nivolumab: 15%

Pembrolizumab: 10%

High grade:
17% in both groups

Choi 2020 NA Propensity score
matching, CP: A

272 pts after matching
Regorafenib: 136 pts vs.

Nivolumab: 136 pts

weeks, median (95% CI)
Regorafenib: 31.3 (24.6–42.0)
Nivolumab: 37.1 (22.4–49.0)

time in weeks; median
(95% CI)

Regorafenib: 12.6 (10.6–15.7)
Nivolumab: 7.1 (6.1–11.1)

ORR:
Regorafenib: 3.7%
Nivolumab: 14%
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Table 2. Cont.

Study ID NCT Study Design, Key
Inclusion Sample Size OS, Months (95% CI) PFS Months (95% CI) Response Rates Side Effects

PD-1/PD-L1 inhibition:

Lee 2020 NA Retrospective cohort
150 patients

Regorafenib: 102 patients
Nivolumab: 48 patients

OS:
Regorafenib: 6.9 months

(95% CI, 3.5–13.1)
Nivolumab: 5.9

months (95% CI, 3.2–18.1)
Death rates:

Regorafenib: 37.3%
Nivolumab: 56.3%

mTTP
Regorafenib: 3.3 months;

(95% CI, 2.0–5.3)
Nivolumab: 4.0 months;

(95% CI, 1.8–8.7)
Progression:

Regorafenib: 60.8%
Nivolumab: 60.4%

ORR:
Regorafenib: 5.9%
Nivolumab: 16.7%

Yu 2019 NA Retrospective cohort

76 pts
Nivolumab alone: 22 pts

Nivolumab plus
radiotherapy: 54 pts

Patients who had received
previous/concurrent RT had

a significantly
longer progression-free
survival (PFS; p = 0.008)
and overall survival (OS;

p = 0.007)
than those who did not

receive RT

__

No complete response
PR:

Nivolumab alone:
1 pt (4.5%)

Nivolumab plus radio:
8 pts (14.8%)

Nivolumab-related
toxicities were generally
tolerable regardless of

the history of RT.

Qin 2020 NCT02989922 RCT

Total 220 pts
Camrelizumab every two

weeks group: 111 pts
Camrelizumab every three

weeks group: 109 pts.

OS:
Overall: 13.8 (11.5–16.6)

Two months: 14.2 (11.5–NR)
three months: 13.2 (9.4–17.0)

OS rates:
At 6 months, % (95% CI):
Overall: 74.4% (68.0–79.7)

Two weeks: 75.9%
(66.6–82.9)

Three weeks: 73.0%
(63.6–80.4)

At 9 months:
Overall: 64.0% (57.2–70.1)

Two weeks: 67.3%
(57.5–75.3)

Three weeks: 60.8%
(50.8–69.3)

At 12 months:
Overall: 55.9% (48.9–62.2)

Two weeks: 59.6%
(49.6–68.2)

Three weeks:52.2%
(42.3–61.2)

PFS:
Overall: 2.1 months (2.0–3.2)

Two weeks: 2.3 months
(1.9–3.2)

Three weeks: 2.0 months
(2.0–3.2)

Disease progression rate:
Overall: 73%

Two weeks: 72%
Three weeks: 74%

ORR: Number (%, 95% CI)
Overall: 32 (14.7%;

10.3–20.2)
Every two weeks: 13 (11.9%;

6.5–19.5)
Every three weeks: 19

(17.6%; 10.9–26.1)

Grade 3:
Overall: 11 (5.1%)

Two weeks: 11 (10.1%)
Three weeks: 6 (5.6%)

Grade 4:
Overall: 5 (2.3%)
Two weeks: zero

Three weeks: zero (I do
not know how both two
weeks and three weeks
are zero but ht overall

is 5)
Grade five:

Overall: 1 (0.5%), two
and three weeks

are zero.
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Table 2. Cont.

Study ID NCT Study Design, Key
Inclusion Sample Size OS, Months (95% CI) PFS Months (95% CI) Response Rates Side Effects

PD-1/PD-L1 inhibition:

CHECKMATE 040 Dose escalation Phase I/2 trial 48 pts
Nivolumab __ __ __ Treatment-related grade

3–4: 25%

Dose expansion

214 pts Nivolumab
uninfected Sorafenib

untreated/intolerant: 56 pts
uninfected Sorafenib
progressors: 57 pts

HCV: 50 pts
HBV: 51 pts

OS: not reached
6 months OS:

Overall: 83% (78 to 88)
uninfected

untreated/intolerant: 89%
(77 to 95)

uninfected Sorafenib
progressors: 75% (62 to 85)

HCV: 85% (72 to 93)
HBV: 84% (71 to 92)

PFS:
Overall: 4.0 (2.9 to 5.4)

uninfected
untreated/intolerant: 5.4

(3.9 to 8.5)
uninfected Sorafenib

progressors: 4.0 (2.6 to 6.7)
HCV: 4.0 (2.6 to 5.7)
HBV: 4.0 (1.3 to 4.1)

ORR:
Overall: 42 (20%; 15 to 26)

uninfected
untreated/intolerant: 13

(23%; 13 to 36)
uninfected Sorafenib
progressors: 12 (21%;

11 to 34)
HCV: 10 (20%; 10 to 34)
HBV: 7 (14%; 6 to 26)

Grade 3–4: (19%)

KEYNOTE 224 NCT02702414 Single-arm, CP: A 104 pts
Pembrolizumab

OS:
12.9 months (95% CI

9.7–15.5)
OS at 12 months:

54% (95% CI 44–63)

PFS:
4.9 months (95% CI 3.4–7.2)

PFS at 12 months:
28% (95% CI 19–37)

ORR:
17% (95% CI 11–26) Grade 3: 24%

He 2018 NCT02383212 Single-arm, CP: A 26 pts
Cemiplimab __ PFS:

3.7 months (95% CI: 2.3–9.1)
PR: 19.2%

Stable disease: 53.8%

1 death due to hepatic
failure related to

treatment

NCT04294498 Single-arm, HBV, CP:
A

43 pts
Durvalumab __ __ __ __

Dual immune checkpoint blockade

Kelley 2017 NCT02519348

RCT, here we present
the results of initial

phase one safety and
efficacy analysis

40 pts
Durvalumab/Tremelimumab

combination
__ __ ORR: 15%

Most common grade ≥3
related AE was

asymptomatic increased
AST (10%)

Combination with biological therapy:

Bang 2019 NCT02572687 Single-arm
28 pts

Ramucirumab and
Durvalumab

10.7 months (95% CI
5.1–18.4) 4.4 months (95% CI 1.6–5.7) ORR: 3 (11%)

Xu 2019 NCT02942329 Single-arm 18 pts
Camrelizumab + Apatinib OS: not reached

PFS: 5.8 months (2.6, NR)
At 6 months: 45.4%

(20.9%, 67.1%)
At 9 months: 37.8%

(15.0%, 60.7%)

ORR: 44.4%

CP: Child-Pugh, RCT: Randomized Controlled Trial, RECIST: Response Evaluation Criteria in Solid Tumors, OS: Overall Survival, PFS: Progression-Free Survival, ORR: Objective Response
Rate, TTP: Time to Progression, PR: Partial Response.
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3.2. PD-1/PD-L1 Inhibition

The progression-free survival, overall survival and response rates were found to be better
for patients treated with anti-PD-1/PD-L1 compared to placebo [25]. However, the data from
the retrospective analysis did not show differences between anti-PD-1/PD-L1 when compared to
regorafenib [48,49]. Interestingly, a combination of anti-PD-1/PD-L1 with radiation therapy showed
better progression-free survival and overall survival when compared to anti-PD-1/PDL-1 alone [50]
(Table 2).

3.3. Dual Immune Checkpoint Blockade

Initial results of a single-arm study examining a combination between durvalumab and
tremelimumab in patients with or without hepatitis infection. Out of 40 patients treated, 6 (15%) had
an objective response rate with an acceptable safety profile [37] (Table 2).

3.4. Combination with Biological Therapy

Two studies evaluated the combination of biologic therapy with immunotherapy. The first
evaluated ramucirumab plus duravalumab revealing an objective response rate of 11% and
progression-free survival of 4.4 months [51]. The other one evaluated camrelizumab plus apatinib
revealing an objective response rate of 44.4% and progression-free survival of 5.8 months [52] (Table 2).

4. Predictors of Response Using PD-L1 Expression

Immunohistochemical detection of PD-L1 has been studied in clinical trials as a predictor
of response. It has been found that the expression of PD-L1 is associated with better overall
response and survival outcomes [21,23]. A high tumor mutation burden (TMB), the number of somatic
non-synchronous mutations in the genome of cancer cells, is a known predictive factor for response in
different solid tumors. However, HCC has a low TMB compared to other solid malignancies which
limited the predictive ability of this marker for HCC [53–55].

5. Immune Checkpoint Inhibitors for Subgroups of Patients

5.1. Use of Immune Checkpoint Inhibitors in Patients Autoimmune Diseases

One of the main concerns while treating patients with immune checkpoint inhibitors is
immune-related adverse events which can be irreversible and even fatal [56–58]. Therefore, patients
with a pre-existing auto-immune disease usually excluded from clinical trials [42], and, as a consequence,
data about safety profiles in these populations is not available. However, liver cirrhosis can develop due
to autoimmune diseases such as primary sclerosing cholangitis, autoimmune hepatitis, primary biliary
cholangitis and so forth [59,60]. And, patients with HCC may suffer from another non-hepatobiliary
autoimmune disease. Thus, understanding the underlying pathophysiological mechanisms and its
interaction with the immune checkpoints’ pathways is crucial in order to provide these patients with
the therapeutic advantages without devastating side effects.

Several retrospective studies and case reports evaluated the safety profile of immune checkpoint
inhibitors for patients with cancer and concomitant autoimmune disease [61–68]. Abdel-Wahab et al.
conducted a systematic review evaluating the safety of immune checkpoint in patients with preexisting
autoimmune disease and they found that; although some events may be severe and even fatal, most
immune flares and immune-related side effects are managed without permanent drug discontinuation.
However, for patients with neurological diseases such as myasthenia graves and multiple sclerosis,
almost all patients developed exacerbation or immune-related side effects. Therefore, careful evaluation
should be considered before prescribing immune checkpoints inhibitors for patients with neurological
autoimmune diseases [61]. In a more recent large scale study, patients with a preexisting autoimmune
disease treated with immune checkpoints had a higher risk of immune-related side effects than the
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control group. Furthermore, active disease and female gender were found to be independent predictors
for the development of immune-related side-effects [62].

In summary, the immune-related side effects seem to be higher in patients with pre-existing
autoimmune disease. Active disease and female gender are independent risk factors for immune-related
side effects. Although immune-related side effects in patients treated with immune checkpoint inhibitors
with a pre-existing autoimmune disease can be fatal, most cases are managed successfully without
permanent discontinuation of the immune checkpoints. Nevertheless, these observations are derived
from case reports and small retrospective studies and a well-designed large scale trial still represents
an unmet need. Moreover, data about patients with HCC carcinoma specifically and hepatobiliary
autoimmune diseases is still sparse.

5.2. Use of Immune Checkpoint Inhibitors in Patients with Inflammatory Bowel Disease

Patients suffering from inflammatory bowel disease (IBD) usually suffer from other hepatobiliary
diseases such as drug-induced liver injury (about 30% of patients with IBD), primary sclerosing
cholangitis (1.4% to 7.5% of patients with IBD), autoimmune hepatitis, primary biliary cirrhosis and
nonalcoholic steatohepatitis [69]. These factors, along with the other traditional risk factors, can lead to
HCC either directly or indirectly through liver cirrhosis [59]. Therefore, some patients who will suffer
from HCC will have a concomitant IBD in which, as discussed before, immune checkpoint inhibitors
with or without biologic therapy may be an option. However, the safety of immune checkpoint
in this particular population is an ongoing and unanswered question. As known, the CTLA-4 and
PD-1/PD-L1 signaling are crucial for gut homeostasis [70,71]. Interestingly, defects in the CTLA-4 gene
or overexpression of PD-1/PD-L1 on intestinal epithelium were found to be higher in patients with
IBD [72–74]. Figure 3 Therefore, in murine models, it was not surprising that the blockade of these
pathways led to CD8 autoimmune enteritis [75]. And, it is not uncommon for a patient treated with
immune checkpoint inhibitors to suffer from diarrhea [76]. Thus, IBD exacerbation during treatment
with immune checkpoint inhibitors is a theoretical risk. Indeed, evidence about this question started to
emanate from high volume centers. For example, in a recently published case series from Mayo Clinic,
thirteen patients with a pre-diagnosed IBD were treated with immune checkpoint inhibitors and of
them flare occurred in 4 patients (31%) [77]. This observation was also noted in a previous cohort in
which 36% of patients with IBD treated with immune checkpoint inhibitors permanently discontinued
them for IBD flare [68]. From a larger sample size study, data from a multicenter retrospective analysis
included 102 patients with IBD treated with immune checkpoint inhibitors. Overall gastrointestinal
side effects occurred in 42 patients (41%) after a median 62 days compared to 11% without IBD.
Moreover, about 21% of patients with IBD treated with immune checkpoint inhibitors suffered from
grade 3–4 diarrhea and 4 patients (3.9%) had intestinal perforation two of them had surgery [78].
Of note, the rate of intestinal perforation in patients receiving immune checkpoint inhibitors without
concomitant IBD has been reported to be about 2.2% [79]. Importantly, most (~90%) of the included
patients, in the aforementioned study evaluating the safety of immune checkpoints in patients with
IBD, received a monotherapy of immune checkpoint inhibitors, only 10 patients (~10%) received a
combination of two immune checkpoint inhibitors and none of the included patients received biologic
therapy [78].

The combination of biologic therapy, especially bevacizumab, with immune checkpoint inhibitors
in patients with IBD is of particular importance. Indeed, in patients not suffering from IBD, the intestinal
perforation rate after using bevacizumab is about (1.5 to 2.5%) and severe bleeding is about
3% [80,81]. Importantly, the mortality rate for patients who develop intestinal perforation due to
bevacizumab is high (up to 16%) [80,81]. Thus, even in non-gastrointestinal malignancies, the treatment
with bevacizumab was found to be independently associated with a high risk of gastrointestinal
perforation [82,83]. Indeed, the evidence about the safety of bevacizumab in patients with IBD
is still lacking. Importantly, in patients with HCC, liver cirrhosis is common and gastrointestinal
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bleeding especially esophageal varices is a major concern, especially when selecting bevacizumab for
treatment [84].
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Figure 3. Role of CTLA-4 and PD-1/PD-L1 pathways in immune response regulation in gastrointestinal
tract. APC: antigen-presenting cells.Both CD28 and CTLA-4 compete with each other for a binding site
(B7) on the surface of APC. Binding of CD28 to B7 is associated with induction of immune response
through upregulation of production of IL2. On the other side, CTLA-4 B7 binding regulates the late
immune response by decreasing IL2 [71]. Therefore, inhibition of CTLA-4 by antiCTLA-4 antibodies
was found to be associated with an exaggerated immune response which might lead to colitis [85,86].
PD-1/PD-L1 binding leads to immune response regulation through PI3K and AKT pathways. Therefore,
inhibition of this binding might lead to immune response dysregulation which might lead to colitis and
autoimmune exacerbation [87].

Overall, the use of atezolizumab with bevacizumab in patients with IBD carries a risk for intestinal
perforation, gastrointestinal bleeding and the safety profile is still lacking in the literature.

6. Novel Immunotherapies

With the recent advances in the immunotherapeutic mechanisms, novel immunotherapies have
gained popularity. Different therapeutic targets have been evaluated such as lymphocyte activation
gene 3 (LAG-3). LAG-3 is first described by Triebel et al. and thereafter it was found to be overexpressed
on the activated T cytotoxic and T regulatory cells with a negative impact on T helper cells. Therefore,
during tumorigenesis, cancer cells use this pathway to escape from the immune system. Therefore,
immunoglobin against LAG-3 has been investigated in different clinical trials [88]. Several other novel
targets including T cell immunoglobulin and ITIM domain (TIGIT), T cell immunoglobulin and mucin
domain-containing -3 (TIM-3) and B and T lymphocyte attenuator (BTLA) have been evaluated in
clinical trials [88]. The current ongoing phase II trial [NCT03680508] is designed to evaluate the efficacy
of TIM-3 in combination with PD-1 antibody for patients with HCC with no results published yet.
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One other therapeutic target is the killer immunoglobulin-like receptor (KIR) which has an
inhibitory effect on the NK cells. Therefore, Lirilumab, a KIR antibody, is under investigation in
combination with immune checkpoint inhibitors in clinical trials [89].

Overall, the novel immunotherapies’ investigation in HCC is still restricted to being a part of
evaluation of their role in solid tumors in general. Therefore, a better understanding of these pathways
and their contribution to the HCC microenvironment is needed.

7. Conclusions

Hepatocellular carcinoma treatment represents a real challenge in patients with cirrhosis and
several pharmacological [72–75] and loco-regional [76–81] therapies have been tested with mixed
results. A combination of immune checkpoint inhibitors with biologic therapy seems to be promising
for a new therapeutic standard of care for patients with unresectable HCC. However, for the subset
of patients such as patients with preexisting autoimmune disease, inflammatory bowel disease or
nonalcoholic steatohepatitis, the safety and efficacy are still not well established and further studies
are needed to address all these open unanswered questions.
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