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Simple Summary: RNA-binding proteins (RBPs) play central roles in regulating posttranscriptional
expression of genes. Many of them are known to be deregulated in a wide variety of cancers.
Dysregulated RBPs influence the expression levels of target RNAs related to cancer phenotypes,
such as proliferation, apoptosis, angiogenesis, senescence, and EMT/invasion/metastasis. Thus,
understanding the molecular functions of RBPs and their roles in cancer-related phenotypes can lead
to improved therapeutic strategies.

Abstract: RNA-binding proteins (RBPs) crucially regulate gene expression through post-
transcriptional regulation, such as by modulating microRNA (miRNA) processing and the alternative
splicing, alternative polyadenylation, subcellular localization, stability, and translation of RNAs. More
than 1500 RBPs have been identified to date, and many of them are known to be deregulated in cancer.
Alterations in the expression and localization of RBPs can influence the expression levels of oncogenes,
tumor-suppressor genes, and genome stability-related genes. RBP-mediated gene regulation can
lead to diverse cancer-related cellular phenotypes, such as proliferation, apoptosis, angiogenesis,
senescence, and epithelial-mesenchymal transition (EMT)/invasion/metastasis. This regulation can
also be associated with cancer prognosis. Thus, RBPs can be potential targets for the development of
therapeutics for the cancer treatment. In this review, we describe the molecular functions of RBPs,
their roles in cancer-related cellular phenotypes, and various approaches that may be used to target
RBPs for cancer treatment.
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1. Introduction

RNA-binding proteins (RBPs) play central roles in regulating gene expression at the
post-transcriptional level. Recent advances in screening techniques have led to the identification of
more than 1500 RBPs, which account for about 7.5% of all protein-coding genes in the human genome.
RBPs can interact with proteins and various classes of RNAs (mRNAs, ncRNAs, tRNAs, snRNAs,
snoRNAs, and others) to form ribonucleoprotein (RNP) complexes [1]. RBPs recruit various factors
and enzymes, and form different complexes in diverse combinations to modulate the fates and/or
functions of target RNAs [2,3]. Conventional RBPs have various impacts on RNA metabolism, such as
by regulating microRNA (miRNA) processing and the alternative splicing, alternative polyadenylation,
subcellular localization, stability, and translation of RNAs. More than half of the RBPs harbor one or
more RNA-binding domains (RBDs), such as the RNA-recognition motif (RRM), K-homology (KH)
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domain, double strand RNA-binding domain, zinc-finger domains, PAZ domain, and others. Indeed,
the RBPs can be classified by their RBDs. The RBPs use these RBDs to form sequence-dependent
or structure-specific interactions with target RNAs [4]. Recent studies involving RNA interactome
capture and RBP structural analysis have highlighted the nonconventional RBPs, which do not contain
any canonical RBD for forming protein-RNA complexes. Numerous nonconventional RBPs have been
found to participate in a broad range of biological processes, but their relationships with RNAs have
not yet been fully elucidated [2,5].

Many studies have suggested that dysregulated RBPs are associated with various human diseases,
including numerous cancers [6]. In cancer, aberrantly expressed RBPs regulate the expression
levels of target RNAs related to cancer cell proliferation, apoptosis, angiogenesis, senescence,
and epithelial-mesenchymal transition (EMT)/invasion/metastasis. In a broad sense, RBP-mediated
regulation ultimately contributes to cancer development and pathology [6,7]. Given that RBPs are
critical regulators of cancer, they could be promising targets of cancer therapeutics [6,7]. Thus,
improving our understanding of the mechanistic, functional, and pathological roles of RBPs in cancers
will contribute to providing therapeutic perspectives for cancer therapy.

In this review, we will discuss various molecular and cellular functions of RBPs in cancer, as well
as their clinical implications and potential therapeutic strategies.

2. Mechanistic Roles of RBPs in Cancer

2.1. miRNA Processing

RBPs act as key regulators of miRNA biogenesis and maturation; they primarily facilitate or inhibit
miRNA processing through their effects on canonical proteins, such as Drosha and Dicer. In cancer,
alteration of RBP expression is closely linked to the impairment of miRNA processing, which leads to
modulation of target mRNAs related to cancer progression and development [8].

LIN28 proteins (LIN28A and LIN28B) are RBPs that contain three RBDs: a cold-shock domain
(CSD) and two zinc-knuckle domains (ZKDs). These domains of LIN28 proteins are required for the
selective recognition of members of the let-7 miRNA family and the binding of LIN28 proteins to the
terminal loops (TL) of these miRNAs [9]. In the nucleus, LIN28B binds to the TL of pre-let-7 and inhibits
its miRNA processing by negatively regulating microprocessor activity [10]. In contrast, LIN28A plays
regulatory roles in the cytoplasm: It recognizes a tetra-nucleotide sequence motif (GGAG) and recruits
uridylyl transferase (TUTase) TUT4/7 to pre-let-7, and the formed LIN28-TUT4/7 promotes uridylation
at the 3′-end of pre-let-7 to block Dicer processing. Subsequently, the uridylated pre-let-7 is degraded
by the 3′-5′ exoribonuclease, DIS3L2 [11–13]. Functionally, LIN28-mediated let-7 downregulation
derepresses the target genes of let-7, which include K-Ras, c-Myc, HMGA1, HMGA2, VEGF, PDK1, Cyclin
D, BMP4, IL-6, IGF1R, and IGF2BP2. Eventually, LIN28/let-7 pathway leads to cancer development
and progression-related phenotypes, including proliferation, invasion, metastasis, tumor-promoting
inflammation, and angiogenesis [14,15].

KH-type splicing regulatory protein (KHSRP, also known as KSRP) is a component of the Drosha
and Dicer complexes. KHSRP binds to the TL of a target miRNA precursor with high affinity and
facilitates the maturation of miRNAs, such as miR-26a, miR-26b, let-7a, miR-23a, miR-23b, miR-192-5p,
miR-21, miR-130b, and miR-301 [16–21]. In small cell lung cancer (SCLC), high-level expression of
KHSRP promotes miR-26a maturation. Increased miR-26a binds to the 3′-UTR of PTEN to inhibit its
expression [17]. In miR-26 and let-7a mediates the translational silencing of IL-6 and IL-1αmRNA by
binding to 3′-UTR of IL-6 and IL-1α [20]. In non-small cell lung cancer (NSCLC), KHSRP promotes the
maturation of miR-23a precursors. Increased miR-23a downregulates EGR3 expression through binding
to its 3′-UTR, leading to inhibition of NSCLC mobility [18]. The miR-192-5p precursor is subjected to
KHSRP-mediated maturation in NMuMg cells (a murine immortalized mammary epithelial cell line).
Increased miR-129-5p regulates the expression of EMT factors, such as Fn1, Col12a1, and Col6a2 [19].
In esophageal squamous cell carcinoma (ESCC), miR-21, miR-130b, and miR-301 downregulate their
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target mRNAs, which include BMP6, PDCD4, and TIMP4, and induces EMT [21]. KHSRP functions as
either a tumorigenic or tumor-suppressive protein by regulating miRNA biogenesis [16–21].

Heteronuclear ribonucleoprotein A1 (hnRNP A1) harbors two RRMs and has been implicated in
miRNA processing [22]. hnRNP A1 acts as an auxiliary factor for the processing of miRNA precursors,
such as pri-miR-18a. It recognizes two UAG motifs of pri-miR-18a (one in the TL and one in the proximal
stem region), forms a 1:1 complex with this miRNA, and increases the efficiency of Drosha cleavage by
causing relaxation at the stem of the pri-miRNA [22]. In lung cancer, cervical cancer, prostate cancer, gastric
cancer, and mesothelioma miR-18a downregulates target mRNAs, such as IRF2, PTEN, WNK2, SOX6,
STK4, and PIAS3, to induce cancer progression and development. In other cancers, in contrast, miR-18a
negatively regulates CDC42 and SREBP1 to suppress cancer cell proliferation, invasion, and metastasis [23].
Conversely, hnRNP A1 negatively regulates the processing of let-7a by binding to the conserved terminal
loop of pri-let-7a-1 to block the interaction of KHSRP, which increases let-7a biogenesis [24]. hnRNP A1
and KHSRP play antagonistic roles in the processing of let-7a precursors [24].

SMAD, which is a signal transducer of TGF-β and BMP, positively regulates the maturation of
miR-21 and miR-199a, which contain the RNA Smad-binding element (R-SBE) [25]. SMAD directly
binds to this consensus sequence and recruits RNA helicase p68 (also called DDX5), which is a
component of the Drosha microprocessing complex. The interactions of SMAD with pri-miR-21 and
pri-miR-199a increase the expression levels of miR-21 and miR-199a by mediating their efficient cleavage
by the Drosha complex [25]. Increased miR-21 negatively regulates the tumor suppressor, PDCD4,
by binding to its 3′-UTR, and this promotes tumor invasion, intravasation, and metastasis [26].

2.2. Alternative Splicing

Alternative splicing is a critical mechanism through which pre-mRNA transcripts are processed
to generate multiple mRNA variants with different stabilities and protein-coding potentials. Different
splice variants of mRNAs contribute to protein diversity in cancer [27]. Alternative splicing events are
controlled by the core spliceosome, which is a large molecular complex composed of small nuclear
proteins (snRNPs), polypeptides, and RBPs. Alternative splicing is regulated by cis-acting elements
(i.e., enhancers or silencers located in exons or introns) and trans-acting splicing factors, which promote
or suppress exon splicing, respectively. RBPs, such as SRSF, hnRNPs, PTB, ESRP, and QKI, bind to
cis-regulatory elements and form trans-acting splicing factors to regulate (negatively or positively)
the splicing reaction [28]. Compared to normal cells, aberrant patterns of alternative splicing are seen
in cancer cells. These alterations can lead to modulation of oncogenes or tumor-suppressive genes,
and thereby help drive cancer development and progression [28,29].

Serine/Arginine-rich (SR) family proteins, which represent the best-characterized splicing regulators,
have one or two RRMs and a C-terminal arginine (R) and serine (S) amino acid sequence (RS domain);
these functional regions participate in RNA recognition and protein–protein interactions to recruit the
spliceosome [30]. SR proteins contribute to multiple steps in splicing events, and they are involved
in both constitutive and alternative splicing [31]. SRSF1 (also known as SF2/ASF) is known to alter
the splicing of the protooncogene Ron, the tumor suppressor BIN1, the kinases MNK2 and S6K1,
and the proapoptotic regulators Bcl-x, Mcl-1, CASP2, CASP9, and ICAD [32–35]. SRSF1 is modulated its
alternative splicing activity through the interaction with the lncRNA, MALAT1. MALAT1 influences the
distribution of SRSF1 at nucleus and nuclear speckles, thereby modulating the levels of phosphorylated
SRSF1 [36]. In hepatocellular carcinoma (HCC), MALAT1-upregulated SRSF1 enhances the isoforms of
the antiapoptotic gene BIM and the oncogenes S6K1 and TEAD1, leading to cancer cell proliferation,
survival, and tumorigenesis [37]. Moreover, in glioblastoma, SRSF1 physically associates with circRNA
SMARCAS5 to regulate the alternative splicing of VEGF, thereby affecting angiogenesis [38]. SRSF3
(also known as SRp20) is the smallest member of the SR protein family; it is involved in the alternative
splicing of FoxM1 to generate the FoxM1a, b, and c isoforms. Conversely, SRSF3 overexpression increases
the FoxM1b and 1c isoforms and results in upregulation of the FoxM1 targets, PLK1 and CDC25B [39].
In colon cancer cells, SRSF3 regulates the alternative splicing of HIPK2. Research revealed that SRSF3
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depletion promotes skipping of 81 5′ nucleotides (27 amino acids) from exon 8 of HIPK2. This generates
HIPK2 ∆e8, which has no binding site for SIAH1 ubiquitin ligases, and is thus protected from proteasomal
digestion [40]. Transcriptomic profiling of SRSF3-mediated altered splicing showed that SRSF3 binds
to the CA(G/C/A)CC(C/A) sequence of the exonic splicing enhancer that is found in target genes, such
as those encoding ETV1 and NDE1 [41]. In contrast to the above-described situation in colon cancer
cells, SRSF3 is reduced or mislocalized in hepatocellular carcinoma. SRSF3 affects the alternative splicing
of genes related to metabolism (HNF1a, ERN1, HMGCS1, DHCR7, and SCAP) or EMT (LIFR, Epb4.1l5,
Myo1b, CTNND1, GIT2, and SLK) [42,43]. In colorectal cancer (CRC), the SRSP (splicing regulatory
small protein) encoded by the lncRNA Loc90024 interacts with SRSF3 and promotes its binding to SP4.
SRSF3-SRSP mediates the alternative splicing of SP4 and generates cancerous SP4 isoforms, leading to
tumorigenesis and metastasis [44]. SRSF6 (formerly SRp55) is upregulated in a subset of tumors and is
critical for tumor growth, initiation, and maintenance [45]. SRSF6 has been shown to regulate the splicing
of one oncogene (INSR) and tumor suppressor genes (DLG1 and MKNK2), modulating their oncogenic
and tumor-suppressive isoforms [45]. SPF45, also known as RBM17, is a component of the spliceosome
and associates with the lncRNA Saf. In erythroleukemia and cervical carcinoma cells, SPF45-Saf binds to
the Fas pre-mRNA and modulates alternative splicing of Fas; this increases soluble Fas, which eventually
interacts with Fas ligand to protect cells from apoptosis [46].

hnRNP A/B family members, such as hnRNP A1 and hnRNP A2/B1, regulate alternative splicing by
acting as antagonists of the SR proteins [47]. hnRNP A1 has two RBP domains and one arginine-glycine-rich
(RGG) domain, and recognizes the UAGGG(A/U) sequence. hnRNP A2/B1 has a structure similar to that
of hnRNP A1, and binds to (UUAGGG)N [47]. hnRNP A1 and hnRNP A2/B1 regulate the alternative
splicing of the glycolytic enzyme, PKM2, and increase the PKM2/PKM1 ratio in cancer cells [48,49].
hnRNP A1 is overexpressed in hepatocellular carcinoma (HCC); this increases the level of CD44v6,
which promotes invasiveness in HCC and is associated with a poor prognosis for HCC patients [50].
In glioblastoma, hnRNP A2/B1 functions as a proto-oncogene. This hnRNP affects alternative splicing
and increases the expression of oncogenic isoforms of genes related to tumor suppressors (BIN1 and
WWOX), anti-apoptotic proteins (CFLAR and CASP9), and a proto-oncogene (MST1R) [51]. hnRNP M
controls isoform switching from CD44 variable (CD44v) to CD44 standard (CD44s) [52]. Upregulated
hnRNP H generates a constitutively active isoform of the tyrosine kinase receptor, MST1R [53].

Polypyrimidine tract-binding protein (PTB, also known as hnRNP I) plays a role as a splicing
repressor and preferentially interacts with pyrimidine-rich sequences and modulates cancer-relevant
alternative splicing events, leading to exon skipping or inclusion [54]. In glioblastoma, PTB binds
to the ISS element in the intron upstream of the FGFR-1α exon; it mediates skipping of the α exon
to produce the FGFR-1β isoform [55]. The switch from FGFR-1α to FGFR-1β contributes to the
malignant progression of astrocytic tumors [56]. USP5 is subjected to PTB-mediated alternative
splicing. High-level expression of PTB generates USP5 isoform 2 and inhibits the production of USP5
isoform 1 [57]. In addition, PTB and hnRNP A1/A2 cooperate to regulate an alternative splicing event
of PKM2; they bind to the ISS element of PKM and thereby increase the level of PKM2 [48,49].

Epithelial splicing regulatory protein 1 (ESRP1) and ESRP2 (also known as RBM35 and RBM35B,
respectively) are splicing factors that have closely related structures and are specifically expressed
in epithelial cells [58]. ESRP1 and ESRP2 regulate alternative splicing switching in FGFR2, CD44,
CTNND1, and ENAH. Moreover, ESRP1 and ESRP2 promote the splicing of numerous genes related to
cytoskeletal dynamics, cell motility, cell-cell junctions, and EMT [58–60].

RBM3, which is known as a proto-oncogene, is a member of the glycine-rich RBP family [61].
In HCC, upregulated RBM3 induces biogenesis of SCD-circRNA, leading to cell proliferation [62].

Src-associated in mitosis of 68 kDa (SAM68) is a member of the signal transduction and activation
of RNA (STAR) protein family [63]. SAM68 is primarily localized in the nucleus and regulates
alternative splicing. SAM68 is a target of ERK and its serine-threonine is phosphorylated in response
to RAS/ERK signaling. Phosphorylated SAM68 induces the inclusion of the v5 exon of CD44 in
a protein modification-dependent fashion [64]. In prostate cancer, the phosphorylation of SAM68



Cancers 2020, 12, 2699 5 of 33

by signal transduction pathways increases its binding affinity to the proximal region of Cyclin D1
intron 4. SAM68 enhances alternative splicing of Cyclin D1 and inhibits the recruitment of U1-70K
to its target genes, generating Cyclin D1b [65]. Meanwhile, SAM68 phosphorylated through Src-like
kinases alters the splicing of Bcl-x, which encodes two splicing variants, anti-apoptotic Bcl-xL and
pro-apoptotic Bcl-xS [66]. Importantly, SAM68 is involved in cancer-relevant splicing in a protein
modification-dependent manner [64–66].

Quaking (QKI), a member of the STAR family, is involved in the biogenesis of circRNAs. During
EMT, QKI binds to the intron of pre-mRNAs and promotes the formation of circRNAs, such as
SMARCAS5, POLE2, OXNAD1, SHPRH, SMAD2, ATXN2, DOCK1, and GNB1. These EMT-associated
circRNAs may regulate the migration, invasion, and metastasis of cancer cells [67].

2.3. Alternative Polyadenylation

Alternative polyadenylation is a critical process to generate mature RNA transcripts. Alternative
polyadenylation occurs within the 3′-UTR of mRNAs and generates different length 3′-UTRs by 3′-end
cleavage and polyadenylation (CPA). CPA is carried out by multimeric protein complexes, such as the
cleavage and polyadenylation specificity factors (CPSFs), the cleavage stimulation factors (CSTF), and the
mammalian cleavage factor complexes and II (CFIm and CFIIm). The 3′-UTR of an mRNA is critical for its
maturation, stability, nucleo-cytoplasmic localization, and translation [68]. RBPs can also regulate the CPA
of target mRNAs by either recruiting or competing with the polyadenylation machinery proteins [68].

The cytoplasmic polyadenylation element binding proteins (CPEBs), CPEB1-4, regulate the poly(A)
tail length of mRNAs with a cytoplasmic polyadenylation element (CPE) by recruiting the translational
repression or cytoplasmic polyadenylation factors. The CPEB-family proteins have C-terminal regions
containing two RRMs and two zinc-finger-like motifs, and a variable N-terminal region [69]. CPEB1 can
alter the gene expression profile by shortening or lengthening the 3′-UTRs of target mRNAs. The loss of
CPEB1 results in poly(A) tail lengthening and increased translation of the mRNA for MMP9 in breast
cancer cells [70]. CPEB1 and CPEB2 mediate the polyadenylation of the HIF-1αmRNA by binding to its
3′-UTR. Increased HIF-1αpolyadenylation affects its protein levels [71]. CPEB2 and CPEB3 are less well
studied in terms of their roles in cancer, and future work is needed. In pancreatic ductal adenocarcinoma
(PDA), overexpression of CPEB4 promotes poly(A) elongation and translational activation for the mRNA
encoding tPA, which is a key regulator of PDA malignancy. tPA with a longer 3′-UTR has a higher
translation efficiency, leading to high-level expression in PDA [72]. CPEB4 is highly expressed in the
early stage of melanoma progression; it can control the polyadenylation of the melanoma drivers, MITF
and RAB7A, through binding to their 3′-UTRs. Depletion of CPEB4 decreases the protein levels of
MIFT and RAB7A through the shortening of their poly (A) tails [73]. CPEB1 and CPEB4 regulate the
length and polyadenylation of the VEGF 3′-UTR in the nucleus and cytoplasm, respectively. The VEGF
3′-UTR harbors several CPE elements and alternative polyadenylation sites (PASs). In the nucleus,
CPEB1 promotes alternative 3′-UTR processing of VEGF and increases the level of VEGF mRNAs
with shorter 3′-UTRs that lack translation inhibitory elements, such as AU-rich elements (AREs) and
miRNA-binding sites, and thus are less prone to degradation. CPEB1 also upregulates CPEB4 expression
through alternative processing of the pre-mRNA. Activated CPEB4 contributes to positively regulating
cytoplasmic VEGF expression through polyadenylation of its mRNAs [74].

2.4. RNA Localization

The subcellular localization of an mRNA or lncRNA is an important factor in the regulation of its
stability and translation, and cancer-related RBPs often bind to RNAs to coordinate where they are
localized and translated [75,76].

Among the CPEB family members, CPEB1 regulates the localization of ZO-1 mRNA, which
encodes a critical tight junction component. The apical co-localization of CPEB1 with the ZO-1 mRNA
is consistent with its role in RNA localization. When CPEB1 is depleted, the ZO-1 mRNA is randomly
distributed and central cavity formation is disrupted, resulting in loss of epithelial cell polarity [77].
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This impairment of cell polarity is linked to the metastatic potential, and CPEB1 depletion leads to
alterations in EMT-related genes [70].

IGF2BP1 (also called IMP1/ZBP1) controls the subcellular localizations of the mRNAs encoding
β-actin, E-cadherin, α-actinin, and Arp-16 (a component of the Arp 2/3 complex) [78,79]. IGF2BP1 binds to
the zip-code of the β-actin mRNA via its COOH-terminal KH domains and localizes the β-actin mRNA
to the cell periphery [78]. In breast carcinoma cells, IGF2BP1 promotes the localization of E-cadherin,
α-actinin, and Arp-16 at cell–cell contacts. IGF2BP1 also regulates the localizations of mRNAs related
to cell motility and focal adhesions to impact cancer invasion and metastasis [78,79]. IGF2BP2 (also
called IMP2) binds to oxidative phosphorylation (OXPHOS)-related mRNAs, such as NDUFS3 and
COX7b, and facilitates their localization to mitochondrial polysomes. The delivery of these mRNAs to
mitochondria induces their translation and insertion into mitochondrial membranes, contributing to
the assembly of complexes I and IV [80].

HuR and GRSF1 regulate the shuttling of the lncRNA RMRP from the nucleus to mitochondria.
HuR, which is predominantly localized in the nucleus, promotes the nuclear export of lncRNA RMRP
in a CRM1-dependent manner. After lncRNA RMRP is transported into mitochondria, GRSF1 is
involved in the retention of lncRNA RMRP [81].

Another RBP, hnRNP K, can directly associate with the lncRNA MALAT1 and regulates its nuclear
retention. hnRNP K binds to a sequence derived from Alu repeats and short interspersed nuclear
element (SINEB1), and increases the distribution of MALAT1 at the nucleus [82,83].

2.5. RNA Stability

The stability of an RNA is determined by its 5′ -terminal 7-methylguanosine (m7G) cap and 3′ poly(A)
tail. These two stability determinants protect mRNAs from decay and promote translational initiation [84].
mRNA decay is mediated through several pathways, including deadenylation of the poly(A) tail, removal
of the 5′ -terminal m7G cap (decapping), 5′→3′ exonucleolytic decay, and exosome-mediated 3′→5′

degradation. mRNAs targeted for decay are shuttled to cytoplasmic foci, such as processing bodies
(P-bodies) or stress granules [84]. RBPs, such as AUF1, HuR, TTP, IGF2BP family proteins, and Wig1,
can stabilize or destabilize specific target mRNAs and lncRNAs in cancer [85].

AU-rich element RNA-binding protein 1 (AUF1; also known as heterogeneous nuclear
ribonucleoprotein D, or hnRNP D) comprises four proteins: p37AUF1, p40AUF1, p42AUF1, and p45AUF1.
AUF1 binds to the AREs of mRNAs and primarily promotes mRNA decay via ARE-mediated decay
(AMD) [86]. In NSCLC cells, p45AUF1 is increased by the chemotherapeutic agent, prostaglandin A2,
and this induction increases Cyclin D1 mRNA turnover by binding the Cyclin D1 3′-UTR [87]. AUF1 also
negatively affects the stability of p21 and Cyclin D1 by directly binding to their 3′-UTRs. Knockdown
of AUF1 was found to increase the stabilities and expression levels of p21 and Cyclin D1 [88]. AUF1
promotes the destabilization and decay of the p16 mRNA by binding to a stem-loop structure localized
within its 3′-UTR [89]. AUF1 and HuR share the Cyclin D1, p21, and p16 mRNAs as common targets. They
co-occupy the p21 and Cyclin D1 mRNAs at non-overlapping sites or competitively bind these mRNAs at
common sites [88]. For decay of the p16 mRNA, meanwhile, AUF1 can function as a co-factor of HuR;
the co-factors interdependently interact with a secondary structure within the p16 3′-UTR to destabilize
the p16 mRNA [89]. Other cell cycle-regulatory proteins, such as p27 and pRB, are targets of AUF1, which
negatively regulates their mRNA stabilities [90]. AUF1 also mediates the destabilization of apoptosis
regulators (Bax, Bcl-2, Gadd45a, and CASP2), metastasis regulators (MMP9 and FGF9), inflammatory
factors (GM-CSF, IL-6, and NOS), and DNA repair, replication, and replication regulators (Fos, TYMS,
and JunD) [91]. Moreover, AUF1 interacts with and destabilizes the cancer-associated lncRNA NEAT1 [92].

HuR, a member of the Hu family of RNA-binding proteins, governs the stability of target
mRNAs by binding to AREs in their 3′-UTRs. HuR-mediated mRNA stabilization depends on the
subcellular localization of HuR, which is translocated into the cytoplasm in response to different
stresses and stimuli, including DNA damage, oxidative stress, and chemical compound treatment.
The increased cytoplasmic HuR binds to the 3′-UTRs of mRNAs related to oncogenes, cell cycle
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regulators, inflammation, and apoptosis. For example, HuR stabilizes the mRNAs for Cyclins (A, B1,
D1, and E), IL-8, MMP9, HIF-1α, VEGF, SIRT1, and Snail, thereby elevating their proteins levels.
In contrast, mRNA levels of c-Myc, Wnt5a, and p27 are downregulated by HuR [93]. Moreover, HuR
cooperates with RBPs or miRNAs to regulate mRNA stability. In CRC, HuR interferes with the
binding of miR-16 to the COX-2 mRNA, thereby increasing COX-2 expression [94]. HuR is involved
in stabilizing various lncRNAs, such as NEAT1, lncRNA-HGBC, and OIP5-AS1 [95–97]. In ovarian
cancer, HuR stabilizes NEAT1 by inhibiting its binding with miR-124-3p, and upregulation of NEAT1 in
ovarian cancer induces cancer cell proliferation and invasion [95]. In gallbladder cancer, lncRNA-HGBC
stability is increased by HuR. Stabilized lncRNA-HGCB functions as an miRNA sponge to prevent
miR-502-3p from binding to the target gene SET. This leads to activation of the SET-AKT pathway,
which supports cancer cell proliferation and metastasis [96]. HuR also interacts with and stabilizes
the lncRNA OIP5-AS1. This interaction prevents the binding of HuR to target mRNAs, such as
Cyclin A2, Cyclin D1, SIRT1, VHL, TP53, and WEE1, and thereby inhibits the proliferation of cervical
carcinoma cells [97]. In contrast, HuR associates with the lncRNAs LincRNA-p21 and HOTAIR to
facilitate let-7/Ago2-mediated decay of those lncRNAs [98,99].

Tristetraprolin (TTP) is a cysteine-cysteine-cysteine-histidine (CCCH) zinc-finger protein that
recognizes AREs in the 3′-UTRs of target mRNAs. The binding of TTP to the 3′-UTR of an mRNA
promotes its decay by shortening its poly (A) tail [100]. In the cytoplasm, TTP associates with the
Ccr4-Not1 complex and recruits Caf1 deadenylase, leading to hydrolysis of the poly(A) tail of target
mRNAs [101]. TTP also mediates decapping of target mRNAs by interacting with decapping complex,
which includes Hedls, mRNA-decapping enzyme (Dcp) 1, Dcp2, enhancer of mRNA-decapping protein
3 (Edc3), and the RNA helicase Rck/p54 [102]. TTP mainly functions as a tumor suppressor by targeting
mRNAs encoding proteins related to the cell cycle (Cyclin B1 and D1), cell death and proliferation
(Bcl-2 and cIAP), angiogenesis (VEGF), and EMT (Snail, Twist1, ZEB1, SOX9, MACC1, MMP2, MMP9,
and IL-6) [103]. Recent studies revealed that PD-L1 is a novel target of TTP in several types of cancer
cell. In gastric cancer cells, overexpressed TTP negatively regulates the mRNA stability of PD-L1 and
thereby contributes to the induction of anti-tumor immunity [104].

IGF2BP 1, 2, and 3 (also known as IMP, CRD-BP, VICKZ, ZBP, Vg1RBP/Vera, or KOC) represent a
conserved RNA-binding protein family whose members have two N-terminal RRMs and four C-terminal
KH domains. The IGF2BP family proteins are primarily localized in the cytoplasm; they promote target
mRNA stability by interfering with endonuclease cleavage or miRNA binding [105–110]. IGF2BP1
associates with the coding region determinant (CRD) and 3′-UTR of the β-TrCP1and c-Myc mRNAs,
and shields these mRNAs from endonucleolytic cleavage to prevent their degradation [105–107]. IGF2BP1
stabilizes the CD44 mRNA through binding to its 3′-UTR, and thereby contributes to cellular adhesion and
invasion during cancer development and formation [107]. IGF2BP1 also binds to and stabilizes the β-TrCP1
mRNA by interfering with its miR-183-dependent interaction with Ago2 [108]. In contrast, IGF2BP1
mediates the destabilization of the liver cancer-associated lncRNA HULC by recruiting the Ccr4-Not1
complex in HCC [111]. IGF2BP2 shields the RAF1 mRNA from miR-195-mediated degradation [109].
IGF2BP3 protects HMGA2 from let-7a-directed mRNA decay [110]. Recent studies revealed that IGF2BPs
are readers of N6-methyladenosine (m6A, methylation of adenosine at position 6); they recognize the
consensus GG(m6A)C sequence and promote target mRNA stability [112]. In cancer cells, IGF2BP
increases the stability and storage of the Myc mRNA [112].

Wig1 (also called ZMAT3) is a p53-target gene and can interact with double-stranded RNAs
through its zinc-finger domains [113]. Wig1 regulates the stabilities of the p53, p21, and ACOT7 mRNAs
by interacting with other proteins, such as hnRNP A2/B1 and Ago2 [114–117]. Wig1 binds to the ARE in
the p53 3′-UTR and thereby protects the mRNA from deadenylation by hnRNP A2/B1 [114,115]. Wig1
mediates miRNA-mediated mRNA decay through an association with Ago2, which is a fundamental
component of RNA-induced silencing complex (RISC). Wig1 preferentially binds to a stem-loop
structure in the 3′-UTRs of the p21 and ACOT7 mRNAs; this facilitates the recruitment of Ago2,
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increasing the ability of RISC to access the p21 and ACOT7 mRNAs. The Wig1- and Ago2-containing
RISC thus triggers the miRNA-mediated decay of the p21 and ACOT7 mRNAs [116,117].

2.6. Translational Regulation

Translational control is a critical means by which gene expression is tuned and regulated in cancer.
RBPs, which form the dynamic component of the ribonucleoprotein (RNP) complex, are involved
in diverse steps of translation, such as initiation, elongation, and termination. Most of the involved
RBPs bind to the 5′-or 3′-UTR with different RBP-binding capacities, leading to different translation
efficiencies [118].

Eukaryotic translation initiation factor 4E (eIF4E) is a component of the eIF4F translation initiation
complex. eIF4E interacts with eIF4A (an RNA helicase) and eIF4G (a scaffolding molecule), and binds
to the 5′ -terminal m7G cap of mRNAs. After mRNAs are unwound, ribosomes are recruited to
mRNAs and translation is initiated. eIF4E is overexpressed in cancer and exerts oncogenic potential
by regulating mRNAs related to proliferation (c-Myc, CDK2, and Cyclin D1), metastasis (MMP9 and
heparanase), loss of apoptosis (Mcl-1, Bcl-2, and survivin), and angiogenesis (VEGF and FGF2) [119].

HuR regulates the translation of target mRNAs containing ARE in their 3′-UTRs. HuR enhances
the translation of the transcripts encoding ProTα, p53, and MSI1 by binding to their 3′-UTRs in an
miRNA-independent fashion [120,121]. HuR increases the cytoplasmic abundance and translation of
the ProTαmRNA by binding to its 3′-UTR, and an increased level of cytoplasmic ProTαmRNA has been
correlated with anti-apoptotic effects in cancer cells [88]. An interaction between HuR and the p53
3′-UTR has been identified in ultraviolet C (UVC)-treated colon cancer cells. After UVC irradiation,
the association of HuR with the p53 3′-UTR is increased, as is the translation of p53 [120]. HuR positively
regulates the MSI1 mRNA and its translation in glioblastoma [121]. HuR and PTB (also known as
hnRNP I) associate with the HIF-1α5′ - and 3′-UTRs, respectively. These RBPs cooperatively increase
HIF-1αtranslation in hypoxia [122]. In addition, HuR can negatively regulate mRNA translation in
an miRNA-dependent manner. For example, HuR recruits miR-19 to the RhoB 3′-UTR, and thereby
represses RhoB translation [123].

Musashi (MSI) proteins (MSI1 and MSI2) are members of the class A/B heterogeneous nuclear
ribonucleoprotein (hnRNP) family. All MSI proteins have two RRMs (RRM1 and RRM2) for interacting
with RNA. MSI1 and MSI2 can positively or negatively regulate mRNA translation in cancer. In breast
and brain cancers, MSI1 binds to and represses the mRNA of NF-YA, which is a transcription factor
that directs the expression of proteasome subunits. The decreased NF-YA protein level leads to
downregulation of 26S proteasome subunit expressions [124]. MSI2 induces the translation of the
HOXA9, Myc, and IKZF2 mRNAs, but represses that of the p27 mRNA [125,126]. In pancreatic
adenocarcinoma, MSI1 and MSI2 positively regulate the translation of BRD4, c-Met, and HMGA2 [127].
Meanwhile, both MSI proteins suppress the translation of p21 and NUMB [126,127].

RBPs can contribute to translational control by recognizing structural RNA elements, such as the
internal ribosome entry site (IRES) and TGF-β-activated-translation (BAT) element [128–131]. The IRES
is a structural RNA element in the mRNA 5′-UTR that promote selective mRNA translation in a
cap-independent manner. For example, HuR binds to the IRES of the XIAP mRNA and enhances its
translation by increasing its recruitment into the polysome. The HuR-mediated induction of XIAP
contributes to cytoprotection against apoptosis-inducing agents [128]. The BAT element is a stem-loop
region with an asymmetrical bulge; it is located in the mRNA 3′-UTR. hnRNP E1 forms an RNP
complex with eukaryotic elongation factor-1 A1 (eEF1A1) by binding to a 33-nucleotide BAT element
in the 3′-UTR of the mRNAs encoding Dab2 and ILEI. hnRNP E1 blocks the release of eEF1A1 from
the ribosomal A site, which inhibits the translational elongation of Dab2 and ILEI. This translational
silencing regulates EMT in tumorigenesis and metastatic progression [129,130]. PDCD4 acts as a
translational repressor by inhibiting the helicase activity of eIF4A. However, in eIF4A-independent
manner, PDCD4 mediates translational repression by binding to a secondary structure in the coding
region of target mRNAs. PDCD4 recognizes a secondary structure in the coding region of the A-Myb
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proto-oncogene, and inhibits its translational elongation [131]. Wig1 also interacts with a secondary
structure of the ACOT7 mRNA and represses its translation. Wig1 bound to the ACOT7 mRNA forms
a complex with RISC components (Ago2 and GW182) and the translation initiation factor, eIF5B,
to inhibit translation of the ACOT7 mRNA [117].

Herein, we describe the mechanistic roles of RBPs in cancer. Schematic diagrams of representative
RBPs are shown in Figure 1.

Figure 1. Mechanistic roles of RBPs in the posttranscriptional regulation of gene expression in cancer.
RBPs are key regulators of gene expression at the post-transcriptional level. They can determine the
fate of an RNA by regulating various events, including their miRNA-mediated processing, alternative
splicing, alternative polyadenylation, subcellular localization, stability, and translation. Schematic
diagrams of the functions of RBPs in these mechanisms are shown.
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3. Implications of RBPs in Cancer Phenotypes

Cancer has common features, including abnormal cell growth and division. There are many causes
of cancer development, including genetic and environmental factors [132,133]. Among the various
causes, cancer development can be triggered by genetic alterations of RBPs [3]. RBPs can regulate the
expression levels of proto-oncogenes or tumor suppressors, and that many types of RBPs can participate
in cancer development [7]. Aberrant expression of these RBPs can affect every step of tumorigenesis,
including proliferation, apoptosis, angiogenesis, senescence, and EMT/invasion/metastasis (Figure 2).

Figure 2. Functions of RBPs in cancer traits. RBPs play pivotal roles in the embodiment of various
cancer traits, such as proliferation, apoptosis, angiogenesis, senescence, and EMT/invasion/metastasis.
Representative RBPs of cancer traits are listed in the schematic diagram.

3.1. Proliferation

Excessive and unregulated cell proliferation can lead to the development of a tumor cell population
that gradually becomes malignant. Therefore, it is very important that a potential therapy be able to
restrict and inhibit the uncontrolled growth of cancer cells. Recent research has established that RBPs
can be regarded as potential drivers of cancer progression, and most of the relevant RBPs modulate
tumor cell proliferation [134].

IGF2BP1 and 3 have been considered as oncogenes due to their targeting of some cancer-related
mRNAs [112]. IGF2BP1 promotes proliferation via regulating their mRNA targets, such as c-Myc,
Ki67 and β-TrCP1 [105,135]. IGF2BP3 also regulates target mRNAs, including cell cycle regulators
(TRIM25, Cyclin D1, D3, and G1), eIF4E-BP2, and Myc; these targets are downregulated by miRNAs or
ribonucleases, which bind to their 3′-UTRs, leading to accelerated cell proliferation [136–139].

CPEB1 regulates translation by shortening the 3′-UTR of a target mRNA, and these changes in
translation affect cell proliferation [140]. CPEB4 is overexpressed in pancreatic ductal adenocarcinoma
and melanoma [72,73]. The cancer-related upregulation of CPEB4 can affect the expression levels of its
target mRNAs, which include tPA, MITF, and RAB27A, thereby altering tumor growth [72,73].

hnRNP A1, hnRNP A2, and hnRNP I (also known as PTBP1) are highly expressed in glioblastoma
and regulate the alternative splicing of PKM to promote tumor cell proliferation [48,49]. hnRNP I is
upregulated in liver cancer and increases tumor growth through a pathway that requires miR-194/hnRNP
I/Cyclin D3 signal transduction [141]. hnRNP D, also known as AUF1, binds AREs within the 3′-UTR of
the Myc mRNA to compete with TIAR-1 and affect cell proliferation [142]. hnRNP F is upregulated in
bladder cancer, where it interacts with the TPX2 protein to alter the expression levels of cell cycle-related
genes, such as Cyclin D1 and p21, and thereby affect cell proliferation [143].
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HuR contributes to tumor proliferation by modulating mRNAs of cell cycle-related genes, such as
those for Cyclin A, Cyclin B1, and Cyclin E1 [144,145].

The La-related protein (also known as LARP3) activates the IRES of the Cyclin D1 mRNA to
increase the Cyclin D1 protein level, and this promotes cell proliferation [146]. LARP1 is ubiquitously
expressed and modulates mTORC1-regulated proliferation by effectively regulating the translation of
mRNAs having a 5′ terminal oligopyrimidine (TOP) [147].

RBM3, 5, 6, and 10 are generally mutated in various types of cancer, and are regarded as putative
regulators of tumor progression [62,148]. These four RBMs can promote cell growth in liver and lung
cancer by interacting with SCD-circRNA [62] or modulating alternative splicing of their target mRNAs,
such as the Notch pathway regulator, NUMB [148].

LIN28A and LIN28B, which negatively regulate members of the let-7 miRNA family, promote cell
proliferation in cancers derived from various origins. LIN28A and LIN28B regulate proliferation by
directly or indirectly binding to and affecting the expression levels of cancer growth-related genes,
including HER2 and HMGA1, in both let-7-dependent and -independent manners in breast cancer [149].

SAM68 binds intron 4 of Cyclin D1 and triggers its alternative splicing by interfering with the
binding of splicing-related factors. The alternatively spliced Cyclin D1b variant has higher oncogenic
potential than Cyclin D1a [65]. The binding affinity of SAM68 to a target mRNA is enhanced by
its acetylation, which occurs through inhibition of the deacetylase, HDAC, or activation of the
acetyltransferase, CBP, and plays a role in tumor proliferation [150].

QKI exhibits little or no expression in colon cancers due to irregular hypermethylation. Induction
of QKI expression promotes the accumulation of p27 and membrane localization of β-catenin, leading
to decreases in proliferation and tumorigenesis [151].

MSI1 downregulation reduces cell proliferation by triggering cell cycle arrest at G0/G1 phase.
MSI1 also binds to the 3′-UTRs of p21 and p27, and reduces their expression [126]. In addition, loss of
MSI1/2 affects the growth of pancreatic cancer from patient-derived tumors in mouse, reducing the
expression of proto-oncogenes such as c-Met, Fos, and Fyn [127].

3.2. Apoptosis

Cancer cells not only have the ability to continually divide and grow; they are also able to avoid
cell death. Apoptosis is an essential process by which normal cells decide to die under a harmful
condition. However, cancer cells ubiquitously escape apoptosis to promote tumor progression. Various
RBPs participate in this escape by regulating target apoptosis-related mRNAs, such as those for p53,
Bcl, Fas, PARP, Caspases, and so on [152].

HuR regulates the stabilities of the mRNAs for MSI1, SIRT1, Bcl-2, Mcl-1, and ProTα to affect
apoptosis [121,153,154]. HuR modulates the expression of PDCD4 through a competitive interaction
with the RBP, T cell intracellular antigen-1 (TIA-1) [155]. TIA-1 promotes apoptosis by enhancing
the alternative splicing of the Fas mRNA or stabilizing PDCD4 [155,156]. eIF4E is involved in
regulating the expression levels of Bcl-2 and Bcl-xL, and thereby affects cell survival [157]. LARP
family proteins contribute to suppressing cell growth by promoting apoptosis through regulation
of Bax, Bcl-2, Bik, Mdm2, and XIAP [158,159]. CELF1 is upregulated in oral squamous cancer cell
(OSCC), and its depletion in OSCC cells induced apoptosis by regulating the pro-apoptotic genes Bad,
Bax, and JunD [160]. Enhanced expression of dead-end 1 (DND1) is detected in breast cancer cells
and is correlated with prolonged survival in patients. Mechanistically, DND1 promotes apoptosis by
enhancing the mRNA expression of BIM via a competitive interaction with miR-221 [161]. Reduction
of MSI1 diminishes cancer cell proliferation and activates Caspase 3-mediated apoptosis in colon
adenocarcinoma xenografted mouse models [162]. In breast cancer, KIN17 is associated with apoptosis.
Depletion of KIN17 was associated with reduced cell proliferation and increased activity of Caspase
3/7, which promotes apoptosis [163]. The RBM family member, RBM10, is associated with apoptosis
through its ability to regulate the levels of p53 and cleaved PARP [164].
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3.3. Angiogenesis

Angiogenesis is the physiological process through which new blood vessels and capillaries
are formed from preexisted vessels. Cancer proliferation, survival, and metastasis require oxygen
and nutrients; thus, cancer needs access to blood vessels. Early observations revealed that rapidly
developing tumors are highly vascularized compared to dormant tumors, suggesting that angiogenesis
is required for cancer progression. Angiogenesis is promoted by angiogenic activators, such as VEGF,
FGF2, and TNF-α [165]. RBPs can modulate the expression of angiogenic factors to play important
roles in cancer progression.

HuR expression correlates with the grade of brain tumor [166]. High-level HuR expression is
observed in rapidly growing and high-grade brain tumors, such as glioblastoma and medulloblastoma,
whereas only weak HuR expression is detected in low-grade brain tumors. In perinecrotic regions
of glioblastoma, significant HuR expression is detected and is linked to the expression of angiogenic
growth factors. HuR has high binding affinities for the 3′-UTRs of angiogenic factors (VEGF, COX-2,
IL-8), an immunomodulating factor (IL-6), TGF-β, and TNF-α, and thus plays important roles in
regulating tumor proliferation and angiogenesis in the central nervous system [166]. Alternative
splicing of TIA-1 in exon 5 generates a shortened TIA-1 (sTIA-1) isoform. Compared to normal tissues,
sTIA-1 is elevated in colorectal cancer and is positively correlated with the tumor stage. VEGF-A is
subject to sTIA-1-mediated alternative splicing. Depletion of sTIA-1 or overexpression of full-length
TIA-1 (flTIA-1) increases the generation of the anti-angiogenic isoform, VEGF-A165b, leading to
decreased tumor formation and vascularization in colon cancer xenografted mice, compared to those
overexpressing sTIA-1 [167]. eIF4E affects angiogenesis by regulating the translation of its target
mRNAs, VEGF, Cyclin D1, and FGF2 [168,169]. TTP functions as a tumor suppressor in colon cancer.
In this disease, TTP is downregulated, whereas VEGF is highly expressed. In a human colon cancer
xenograft mouse model, overexpression of TTP enhances degradation of the VEGF mRNA, resulting
in the inhibition of tumor growth and angiogenesis [170]. LARP6 expression is elevated in breast
cancers; such cancers show especially aggressive phenotypes due to the upregulations of MMP9 and
VEGF [171].

3.4. Senescence

Cellular senescence is a multi-pronged biological process that leads to permanent cell-cycle arrest.
Numerous intrinsic and extrinsic triggers, such as telomere length, genetic alterations, Reactive oxygen
species (ROS) production, and chemo- or radio-therapy, can induce cellular senescence in both normal
and cancer cells. Senescent cells usually share common characteristics, such as activation of the p53/p21
stress response and/or RB/p16 tumor suppressor pathways, positive staining of senescence-associated
β-galactosidase (SA-β-gal), and the senescence-associated secretory phenotype (SASP) [172,173]. RBPs
contribute to numerous alterations of gene expression during senescence, and can modulate tumor
cell senescence.

HuR modulates cellular senescence by destabilizing the TIN2 mRNA and reducing its translation.
Depletion of HuR leads to the mitochondrial localization of TIN2, and the resulting increase in the
ROS level induces cellular senescence [174].

Wig1 decreases the p21 mRNA level through binding to the p21 3′-UTR stem-loop structure near
the miRNA-recognition site and facilitating p21 mRNA decay through the recruitment of Ago2 to
the target site of p21 mRNA. Knockdown of Wig1 increases p21 expression and results in premature
senescence. Moreover, the mRNA expression level of Wig1 affects p21 mRNA level in a human lung
cancer xenografted mouse model [116].

Fragile X-related protein 1 (FXR1) is upregulated in oral squamous cancer cells. Its depletion
induces cellular senescence by inactivating the phosphatidylinositol 3-kinase/Akt signaling pathway
and triggering the expressions of senescence-related genes, such as p53, PTEN, p21, and p27.
Overexpressed FXR1 regulates the noncoding RNA, TERC, to avoid cellular senescence in oral
squamous cancer cells [175].
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AUF1 knockout mice exhibit increased cellular senescence in various normal and tumor tissues due
to enhanced levels of senescence-related genes, such as p16, p19, and p21, and inactivated transcription
of mTERT [176].

TTP controls the levels of p53 and hTERT by promoting the rapid mRNA decay of cellular
ubiquitin ligase E6-associated protein (E6-AP). The TTP protein, which is downregulated in cervical
cancer compared to normal cervix, functions as a tumor suppressor by inducing senescence through
the regulation of p53 protein stability [177].

SRSF1 is an oncogenic splicing factor that is upregulated in various cancers. It interacts
with the RPL-MDM2 complex and increases p53 protein expression and activity by blocking the
proteasome-mediated degradation of p53, leading to oncogene-induced senescence [178].

3.5. EMT, Invasion, and Metastasis

EMT occurs in normal tissues during embryonic development, tissue regeneration, and wound
healing, as well as in tumors undergoing progression and metastatic expansion. Epithelial cells
can transform to a mesenchymal cell phenotype via several biological processes. When EMT
occurs, cell-to-cell adhesion and cell polarity is inhibited; this facilitates invasion and metastasis
in cancer. Transcriptional and post-transcriptional alterations of gene expression regulate EMT and
the downstream alterations in cell morphology and function. RBPs can manage these processes by
modulating the alternative splicing, stability, translation, and polyadenylation of mRNAs during
EMT [179].

ESRP1 and/or ESRP2 further contribute to EMT by regulating the alternative splicing of FGFR2,
Exo70, and CD44. Gain- and loss-of function studies showed that ESRP1 and 2 are required for the
cell to modulate the expression of epithelial FGFR2 exon IIIb or the mesenchymal FGFR2 exon IIIc
variant in various normal and cancer tissues [58]. This conversion of FGFR2 splicing yields a less
aggressive phenotype and suppresses metastasis in pancreatic cancer [180]. ESRP1 also regulates the
alternative splicing of Exo70, a component of the exocyst complex that tethers secretory Golgi vesicles
to the plasma membrane prior to fusion. The epithelial Exo70 variant can affect the expression levels of
EMT-related genes, such as those encoding Snail and ZEB2, inducing the epithelial phenotype and
inhibiting tumor metastasis in breast cancers; in contrast, the mesenchymal Exo70 variant cooperates
with the Arp2/3 complex to enhance tumor invasion by inducing actin polymerization [181]. In breast
cancer, reduction of ESRP1 changes the variant expression from CD44v to CD44s and inhibits metastasis
to the lung. Mechanistically, the ESRP1-mediated alternative splicing of the CD44 mRNA stimulates
the cystine transporter (x-CT), which is involved in cysteine uptake and the accumulation of reductive
glutathione (GSH); this decreases ROS and thereby prevents cancer cell metastasis [60]. hnRNP M can
enhance breast cancer metastasis by stimulating the expression of mesenchymal specific CD44v via a
competitive interaction with ESRP1 [52].

hnRNP family members play various roles in EMT and cancer metastasis. A loss-of-function study
showed that hnRNP A2/B1 expression is specifically associated with intermediate and mesenchymal
cell lines (A549 and H1703). The reduced expression level of hnRNP A2/B1 is related to an increase in
E-cadherin and decreases in Twist1 and Snail1 (an inhibitor of E-cadherin), indicating that hnRNP A2/B1
may be correlated with lung metastasis [182]. hnRNP A2 activates invasion by modulating splicing of
TP53INP2 mRNA [183]. hnRNP E1 can regulate TGFβ-mediated EMT mechanisms by binding within
the 5′ or 3′-UTR of its target mRNAs, such as those for Dab2, ILEI, or phosphatase of regenerating
liver (PRL)-3, which will lead to activation or repression of these targets [130,184]. hnRNP E1 also
inhibits the translation of Inhibin βA by binding to its target mRNA. The translational level of Inhibin
βA is elevated after the knockdown of hnRNP E1, and this increased Inhibin βA expression promotes
metastasis [185]. The expression of hnRNP R may also influence metastasis and tumor aggressiveness
by increasing the mRNA stability of its target, Cyclin B1 and CENPF [186].

KHSRP is significantly expressed in highly metastatic non-small-cell lung carcinoma cells, and its
depletion decreases tumorigenic phenotypes, including growth and metastasis, both in vitro and
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in vivo. KHSRP interacts with hnRNP C and then stimulates the IFN-α/JAK/STAT pathway to promote
lung metastasis. Sustained KHSRP expression inhibits TGFβ-mediated EMT by activating miR192-5p to
reduce EMT-related factors. In cooperation with hnRNP A1, KHSRP can facilitate alternative splicing
to produce the epithelial-specific and EMT-related variants of ENAH, CD44, and FGFR2 [19].

CPEB1 has an inverse correlation with metastasis of breast cancer. Reduction of CPEB1 in
TGFβ-mediated EMT results in metastasis via MMP9 mRNA polyadenylation and translation [70].

eIF4E is highly upregulated in colorectal cancer patients with metastatic tissues in liver. Reduction
of eIF4E in colorectal cancer cells suppresses the invasion and migration by modulating the expression
of MMPs and VEGF [187].

IGF2BP1 is specifically decreased in metastatic breast cancer due to its highly methylated
promoter; it affects the migration and proliferation of metastatic cells [188]. IGF2BP2 and 3, contribute
to the progression of metastatic breast cancer by modulating the formation of invadopodia, which
are actin-rich protrusions of metastatic tumors that act to degrade the extracellular matrix (ECM).
In triple-negative breast cancer, IGF2BP2 and 3 cooperate to promote cell migration and invasion by
destabilizing the PR mRNA through recruitment of the CNOT1 deadenylase complex [189].

The La protein can promote the translation of the laminin B1 (LamB1) mRNA by binding within
its IRES, and thereby contributes to invasion and metastasis in hepatocellular carcinoma [190].
LARP7 is expressed at a low level in breast cancer and interacts with the transcription elongation
factors, 7 SK snRNP and P-TEFb. Depletion of LARP7 can promote the escape of P-TEFb from the
7 SK snRNP-harboring complex; the released P-TEFb can encourage transcription elongation by
phosphorylating the two negative elongation factors and promoting the activity of PolII, which leads
to EMT and enhances invasion and metastasis [191].

The overexpression of LIN28A and/or LIN28B is related to enhanced tumorigenesis and invasive
progression in a murine model of invasive colorectal cancer, in association the colonic stem cell markers,
LGR5 and PROM1 [192].

SAM68-knockout mice have uterine defects and SAM68-heterozygous mice generated by mating
with MMTV-PyMT transgenic mice, in which rapid tumor growth is induced by expression of an
oncogene, exhibit delayed tumorigenesis, decreased metastasis, and induction of tyrosine kinase-related
signaling [193]. SAM68 also cooperates with scaffold/matrix-associated region-binding protein 1
(SMAR1); phosphorylation of SMAR1 by ERK-1/2 kinase or downregulation of SMAR1 itself lead to
increased acetylation of SAM68, which in turn affects the alternative splicing of the CD44 mRNA and
thereby modulates cancer metastasis [194].

RBM47 inhibits tumor progression and metastasis by increasing the DKK1 [195].
SRSF1 generates the ∆Ron variant, and enhances EMT and cell motility in breast and colon

cancers [32].

4. RBPs as Therapeutic Targets in Cancer

As described in detail above, RBPs can affect the overall progression of various cancer types,
including aspects such as cancer cell proliferation, survival, angiogenesis, metastasis, and senescence,
by regulating the expression, localization, and post-translational modification of target mRNAs (Table 1).
Accordingly, researchers are constantly seeking to develop drugs that can target RBPs to treat cancer
patients [196]. Here, we will review a number of candidate therapeutics, including small-molecule
drugs, inhibitors, therapeutic small peptides, and antisense oligonucleotides (ASOs), that are currently
being developed and applied in clinical trials (Table 2).
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Table 1. Roles of RNA binding proteins (RBPs) in cancer.

RBP Cancer Types Expression Mechanisms Targets Cancer Traits References

LIN28A/B
Brain, breast, colon, cervical

esophageal, head and neck, liver, lung,
lymphoma, renal, prostate, ovary

Upregulated miRNA processing let-7a Proliferation, invasion,
metastasis, angiogenesis [9–15,149,192]

SMAD Colon Upregulated miRNA processing miR-21, miR-199a Invasion, metastasis [25,26]

SRSF1
(SF2/ASF)

Lung, colon, kidney, liver, pancreas,
breast, prostate Upregulated Alternative splicing

Ron, BIN1, MKN2, S6K1, Bcl-x, Mcl-1, CASP2,
CASP9, ICAD,

BIM, TEAD1, VEGF, RPL-MDM2

Senescence, EMT, invasion,
metastasis, proliferation,

angiogenesis
[32–38,178]

SRSF3
(SRp20)

Lung, breast, stomach, skin, bladder,
colon, thyroid, kidney, brain Upregulated Alternative splicing

FoxM2, HIPK2, ETV1, NDE1, HNF1a, ERN1,
HMGCS1, DHCR7, SCAP, LIFR, Epb4.1l5, Myo1b,

CTNND1, GIT2, SLK, SP4

Proliferation, apoptosis, EMT,
metastasis [39–44]

SRSF6
(SRp55) Lung, colon Upregulated Alternative splicing INSR, DLG1, MKNK2 Proliferation [45]

SPF45 (RBM17) Leukemia, cervical Upregulated Alternative splicing Fas Apoptosis [46]

RBM3 Liver Upregulated circRNA biogenesis SCD-circRNA Proliferation [61,62]

RBM5, 6, 10 Liver, lung Upregulated or
downregulated Alternative splicing NUMB, p53, C-PARP Proliferation, apoptosis [148,164]

RBM47 Breast, lung Downregulated mRNA stability DKK1 Metastasis [195]

KHSRP Brain, breast, esophageal, liver, lung,
renal, testis, thyroid

Upregulated or
downregulated miRNA processing miR-26a/b, let-7a, miR-23a, miR-192-5p, miR-21,

miR-130b, miR-301 EMT, invasion, metastasis [16–21]

hnRNPA1 Brain, breast, colon,
liver, lung, pancreas, cervical, gastric Upregulated miRNA processing miR-18a, let-7a Proliferation [19,22,24,47–50]

hnRNPA2/B1 Brain, lung Upregulated Alternative splicing BIN1, WWOX, CFLAR, CASP9, CD44, TP53IP2,
E-cadherin, Twist, Snail1 Proliferation, EMT, metastasis [47–49,51,182,183]

hnRNP D
(AUF1)

Breast, colon, gastric,
liver, lung, pancreas,

renal, sarcoma, thyroid
Upregulated mRNA stability

Cyclin D1, p21, p16, Bax, Bcl-2, Gadd45a, CASP2,
MMP9, FGF9, Fos, TYMS, JunD, Myc,

lncRNA NEAT1

Proliferation,
Senescence [86–92,142,176]

hnRNP E1/2
(PCBP1/2) Breast, lung, colon, pancreas Upregulated or

downregulated
mRNA stability,

translation Dab2, ILEI, PRL-3, Inhibin βA, p73, GLS2 Senescence, EMT, invasion,
metastasis [129,130,184,185]

hnRNP F Bladder Upregulated mRNA stability TPX2 Proliferation [143]

hnRNP M Breast Upregulated Alternative splicing CD44 EMT, invasion, metastasis [52]

hnRNP H Brain Upregulated Alternative splicing Ron, MST1R Invasion, migration [53]

hnRNP I
(PTB) Breast, ovarian, brain, colon Upregulated Alternative splicing FGFR-1, USP5, PKM, Cyclin D3 Proliferation [48,49,55–57,122,141]

hnRNP K Breast Upregulated Subcellular
localization lncRNA MALAT1 Metastasis [82,83]

hnRNP R Gastric Upregulated mRNA stability Cyclin B1, CENPF EMT, invasion, metastasis [186]

CELF1 Oral Upregulated mRNA stability Bad, Bax, JunD Apoptosis [160]
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Table 1. Cont.

RBP Cancer Types Expression Mechanisms Targets Cancer Traits References

DND1 Breast Downregulated mRNA stability BIM Apoptosis [161]

FXR1 Oral Upregulated mRNA stability PI3K/AKT, p53, PTEN, p21, p27, TERC Senescence [175]

ESRP 1/2 Breast, colon, head and neck, lung,
pancreas, renal, melanoma Upregulated Alternative splicing FGFR2, CD44, CTNND1, ENAH, Snail EMT, invasion, metastasis [52,58–60,180,181]

SAM68 Prostate, renal, breast, colon, cervical Upregulated Alternative splicing CD44, Cyclin D1, Bcl-x Proliferation, EMT, invasion,
metastasis [63–66,150,193,194]

CPEB1 Breast, liver Upregulated

Alternative
polyadenylation MMP9, VEGF, HIF-1α Proliferation, angiogenesis,

EMT, invasion, metastasis
[70,71,74,77,140]

Subcellular
localization ZO-1 EMT

CPEB2 Breast Upregulated
Alternative

polyadenylation HIF-1α Metastasis [71]

CPEB4 Breast, liver, melanoma, pancreas Upregulated Alternative
polyadenylation MIFT, RAB7A, VEGF, tPA Proliferation, angiogenesis [72–74]

IGF2BP1
(IMP1/ZBP1)

Breast, colon, lung, melanoma, ovary,
skin, liver

Upregulated
Subcellular
localization β-actin, E-cadherin, α-actinin, Arp-16 Proliferation, EMT, invasion,

metastasis
[78,79,105–108,111,112,

135,188]
mRNA stability β-TrCP1, CD44, lncRNA HULC

IGFBP2
(IMP2)

Brain, breast, leukemia, lung, colon Upregulated
Subcellular
localization NDUFS3, COX7b EMT, invasion, metastasis [80,109,112,189]

mRNA stability RAF1, PR

IGF2BP3
(IMP3)

Breast, colon, leukemia, lung, ovary,
pancreas, renal, liver Upregulated mRNA stability HMGA2, LIN28, Myc, PR Proliferation, EMT, invasion,

metastasis [110,112,136–139,189]

HuR
Brain, breast, cervical, colon, gastric,

liver, leukemia, prostate, ovary,
gallbladder

Upregulated in
most cancers

mRNA stability

Cyclin (A, B1, D1, and E), IL-1β, IL-2, TNF-α, IL-8,
MMP9, HIF-1α, VEGF, SIRT1, Snail, c-Myc,

Wnt5a, COX-2, c-fos, p21, p16, p27, TIN2, MSI1,
Bcl-2, Bcl-xL, Mcl-1, ProTα , lncRNA NEAT1,

lncRNA-HGBC, OIP5-AS1, LincRNA-p21,
HOTAIR

Proliferation, apoptosis,
angiogenesis, senescence,

invasion, metastasis

[93–99,120–123,128,144,
145,153–155,166,174]

mRNA translation ProTα, p53, MSI1, HIF-1α, XIAP

eIF4E B-cell Lymphoma, breast, colon,
lymphoma, melanoma Upregulated Translation Bcl-2, Bcl-xL, VEGF, FGF2, MMP2, MMP9 Apoptosis, angiogenesis,

EMT, invasion, metastasis [119,157,168,169,187]

KIN17 Breast, cervical Upregulated mRNA translation Caspase 3/7 Apoptosis [163]

La Cervical, liver Upregulated Translation Cyclin D1, LamB1 Proliferation [146,190]

LARP 1 Cervical, lung Upregulated mRNA stability,
translation Bax, Bcl-2, Bik, Mdm2, XIAP, 5′ TOP mRNAs Proliferation, apoptosis [147,158,159]

LARP6 Breast Upregulated Translation MMP9, VEGF Angiogenesis [171]
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Table 1. Cont.

RBP Cancer Types Expression Mechanisms Targets Cancer Traits References

LARP 7 Breast Downregulated Stability P-TEFb, 7 SK snRNP EMT, invasion, metastasis [191]

MSI 1/2 Bone, Liver Upregulated mRNA translation BRD4, c-Met, HMGA2, NUMB, Fos, Fyn, p21, p27,
Caspase 3

Proliferation, apoptosis, EMT,
invasion, metastasis [124–127,162]

QKI Breast, colon Upregulated circRNA biogenesis SMARCAS5, POLE2, OXNAD1, SHPRH,
SMAD2, ATXN2, DOCK1, GNB1 Invasion, metastasis [67]

Downregulated mRNA translation p27, β-catenin Proliferation [151]

PDCD4 Leukemia, breast, colon Downregulated mRNA translation A-Myb Proliferation [131]

TIA-1 Breast, colon, cervical Upregulated
Alternative splicing,

mRNA stability,
Translation

Fas, VEGF, PDCD4, GADD45A Apoptosis,
angiogenesis [155,156,167]

TTP Brain, breast, colon, leukemia, liver,
melanoma, pancreas, prostate

Upregulated or
downregulated mRNA stability

Cyclin B1, Cyclin D1, Bcl-2, cIAP, VEGF, Snail,
Twist1, ZEB1, SOX9, MACC1, MMP2, MMP9,

IL-6, PD-L1
Angiogenesis, senescence [100–104,170,177]

Wig1
(ZMAT3)

Breast, lung, osteosarcoma Downregulated
mRNA stability p53, p21, ACOT7

Senescence [113–117]
Translation ACOT7
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Table 2. Therapeutic strategies of RNA binding proteins (RBPs) in cancer.

RBP Therapeutic Types Compounds Functions Cancer Types References

eIF4E

Small molecule
inhibitor

Ribavirin Mimic of 5′ 7-methyl guanosine cap-structure. Interacts with eIF4E and inhibits
eIF4E-mediated translation of oncogenes

Human squamous cell
carcinoma (HSCC), acute
myeloid leukemia (AML)

[197]

4Ei-1 Converts to 7Bn-GMP. Antagonizes eIF4E cap binding and induces eIF4E
proteasomal degradation, inhibiting translation initiation

Breast, lung,
mesothelioma [198]

4EGI-1, 4E1RCat, 4E2RCat,
Ouabain, Perillyl alcohol,

Rapamycin, Torin1, AZD8055
Interferes with association of eIF4E and eIF4G, inhibiting translation initiation

Lung, melanoma,
lymphoma, colon, liver,

breast, prostate
[199–202]

MnK inhibitors Inhibits phosphorylation of eIF4E Melanoma, lymphoma,
colon, lung [203]

Therapeutic
peptides

GnRH-4EBP Binds to eIF4E and disrupts eIF4E interacting with eIF4G Ovary [204,205]
Pep8 Interrupts RBM38-eIF4E and increases p53 translation Colon, breast

ASO
ISIS 183750 Synergetic effect with chemical drugs, such as irinotecan Colon [206,207]
LY2275796 Combination therapy with chemical drugs or radiation Prostate, lung

siRNA Stimulates the cytotoxic effects of cisplatin Breast [208]

HuR

Small molecule
inhibitor

MS-444, okicenone,
dehydromutactin, DHTS, AZA-9 Targets RRM1 and 2 of HuR, and inhibits RNA-binding activities of HuR Pancreas, colon,

melanoma, brain, breast [209–212]

CMLD-2 Downregulates the expression of HuR Competitively interacts with HuR and
inhibits its interaction with target mRNAs Lung, thyroid [213,214]

siRNA Enhances the efficiency with chemo-biologic combinatorial drug delivery system Lung [215,216]

MSI

Small molecule
inhibitor

Oleic acid Binds to RRM1 of MSI and induces conformational change of MSI1, inhibiting
the interaction between MSI and target RNAs Brain (CNS) [217]

(-)-gossypol Interacts with RRM1 of MSI1 and block MSI1 RNA binding Colon [218]

Ro 80-2750 (Ro) Selectively binds to RRM1 of MSI2 and disrupts MSI2 interacting with RNA AML [219]

ASO Targets MSI with undruggable approaches Ovary, pancreas [127,220]

siRNA Targets MSI with liposomal preparation Colon [127,220]

LIN28 Small molecule
inhibitor

Compound 1632 Inhibits the interaction of LIN28/pre-let-7 and induces the maturation of let-7 Prostate, liver [221]

Compound 1, KCB3602, LI71 Binds to cold shock domain (CSD) of LIN28 and inactivates LIN28 binding
against let-7 Ovary [222]

TPEN Binds to and destabilize zinc-knuckle domain (ZKD) of LIN28. TPEN binding
disrupts LIN28-mediated oligouridylation and elevates the level of let-7 Ovary, placenta [222]
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Small-molecule drugs can target RBP functions in various human diseases, including cancer,
and are already being clinically tested and reported for their anti-cancer effects. For example, eukaryotic
translation initiator factor 4F (eIF4F) is an important protein complex that recruits the small ribosomal
subunit (40S) to the 5′ cap of mRNAs during cap-dependent translation initiation; this complex
comprises the three proteins, eIF4E, eIF4A, and eIF4G [119]. eIF4E is a 5′ cap-dependent translation
initiation factor that is reportedly overexpressed in multiple cancers, where it is associated with
aggressive phenotypes. Ribavirin is an antiviral guanosine analog that is able to physically imitate the
5′ -terminal m7G cap-structure, and thereby interacts with the 5′ cap of the eIF4E mRNA. This blocks
the transport and translation of eIF4E-regulated oncogenes, such as Cyclin D1, to reduce tumorigenesis
in vitro and in vivo [197]. N-7 benzyl guanosine monophosphate tryptamine phosphoramidate
prodrug (4Ei-1) prevents eIF4E cap binding and triggers proteasomal degradation of eIF4E, thereby
chemosensitizing breast and lung cancer to gemcitabine [198]. 4EGI-1, 4E1RCat, and 4E2RCat disrupt
the cooperation of eIF4E with eIF4G and eIF4A to inhibit cap-dependent translation and promote
pro-apoptotic effects in vitro and in vivo [199,200]. Ouabain, perillyl alcohol, and mTOR inhibitors
(e.g., rapamycin, Torin1, and AZD8055) also interrupt the interactions of eIF4E and eIF4G in various
cancer cells [201,202].

When MnK inhibitors were applied to in vitro and in vivo models of melanoma, lymphoma, colon
cancer, and lung cancer, blocking the phosphorylation of eIF4E was found to inhibit cell proliferation
and metastasis [203].

HuR shows aberrant expression and localization in various types of cancer. MS-444, okicenone,
dehydromutactin, DHTS, and AZA-9 are nanomolar inhibitors of HuR that block its RNA-binding
activities by targeting the RRM1 and RRM2 of HuR. In the presence of these molecules, HuR does
not bind the AREs of target RNAs, such as IL-2, IL-1β, TNF-α, and COX-2, and c-fos; this reduces their
HuR-mediated mRNA stabilization. These nanomolar inhibitors of HuR show anti-cancer effects in
in vitro and in vivo models of colorectal cancer [209–212]. CMLD-2, another small-molecule inhibitor,
inactivates HuR-mediated RNA stabilization. In non-small-cell lung carcinoma and thyroid cancer
cells, CMLD-2 treatment decreases the mRNA expression of HuR or competitively binds to HuR,
and thereby downregulates target mRNAs, such as Bax, Bcl-xL, and Mad2. CMLD-2 treatment therefore
increases apoptosis and decreases tumor aggressiveness [213,214].

High-throughput analysis to identify potential inhibitors of MSI proteins was employed for cancer
therapy. From among 30,000 candidate compounds, oleic acid was found to bind the RRM1 motif in
MSI and inhibit its interaction with target mRNAs by promoting conformational changes. MSI can also
modulate Stearoyl-CoA desaturase-1 which is required for fatty acid synthesis, eventually affecting
cell division [217]. In another screening assay used to search for an inhibitor of MSI, (−)-gossypol,
a natural compound known to have an anti-tumor effects in various cancers, was found to cooperate
with MSI and inhibit tumor growth by enhancing apoptosis and autophagy in a mouse xenograft
model [218]. Ro 08-2750 (Ro) is a novel small molecule that selectively inhibits MSI2 activity. It binds
to RRM1 of MSI2 to disrupt its interaction with RNA. The Ro-mediated inactivation of MSI2 reduces
the expression of target mRNAs, including those for TGF-βR1, c-Myc, Smad3, and HOXA9. In addition,
Ro can inhibit leukemogenesis in both in vitro and in vivo models [219].

Overexpression of LIN28 in cancer inhibits the maturation of let-7 to promote tumor growth. Using
a protein/RNA FRET assay, researchers identified compound 1632 as an inhibitor of LIN28. Compound
1632 inhibits the interaction of LIN28 with pre-let-7 and induces the maturation of let-7, resulting in
disruption of tumorigenesis in vitro and in vivo in xenograft mice [221]. High-throughput screening
identified a number of other LIN28 inhibitors, including compound 1, KCB3602, LI71, and TPEN.
Compound 1, KCB3602, and LI71 interact with the CSD of LIN28 to block its interaction with let-7.
TPEN destabilizes the ZKD of LIN28. These inhibitors disrupt LIN28-mediated oligouridylation to
restore the level of let-7 in cancer and embryonic stem cells [222].

Therapeutic peptides comprise 55 or fewer amino acids; compared to antibodies, they are easier
to synthesize and exhibit higher cell penetration and lower immunogenicity [223]. In ovarian cancer,
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4EBP-based therapeutic peptides can bind eIF4E to prevent its cap-dependent translation, thereby
disrupting tumor growth. This eIF4E-targeting peptide was further merged with an analogue of
gonadotropin-releasing hormone (GnRH), which is expressed in the majority of ovarian cancer patients
and is known for its anti-cancer effects. The GnRH-4EBP fusion peptide was reported to inhibit tumor
growth without inducing any cytotoxicity in a xenograft model of epithelial ovarian cancer [204].
Synthetic peptides have also been used to interrupt the RBM38-eIF4E interaction, with the goal of
suppressing translation of the p53 mRNA. Using this strategy, p53 levels were upregulated and tumor
growth was inhibited in vitro and in vivo [205].

ASOs and small-interfering RNAs (siRNAs) are commonly utilized to regulate gene expression and
have been applied to many diseases as nucleic acid drugs. Both oligonucleotides can bind their target
RNAs by Watson-Crick base pairing to modulate splicing, target miRNAs, and inhibit translation [224].
Several FDA-approved or clinically tested drugs take advantage of these characteristics to engage in
gene-specific silencing for the treatment of human diseases, including neurological diseases and viral
infections [225]. Although no such drug has yet been approved for cancer treatment, many researchers
are conducting relevant clinical and nonclinical studies, especially in the context of targeting RBPs.
For example, ISIS 183750, which is an ASO drug against eIF4E, disrupts the proliferation of colorectal
cancer cells and shows a synergetic effect with the chemical drug, irinotecan. Combination therapy with
ISIS 183750 and irinotecan has been tested in phase I/II clinical trials among patients with advanced
solid tumors and irinotecan-refractory colorectal cancer [206]. Another ASO, LY2275796, advanced to
preclinical studies in mice, where it dose-dependently reduced eIF4E protein and tumors. In humans,
a phase I clinical trial has been completed in patients with advanced tumors, and combination therapies
with chemical drugs are currently in phase II trials [207]. siRNAs against eIF4E can inhibit tumor
growth and stimulate the cytotoxic effects of cisplatin in human breast cancer in vitro and in vivo [208].
HuR can also be targeted with siRNAs, and a chemo-biologic combinatorial drug delivery system can
be used to actively target the desired cells or tissues. A siRNA against HuR was loaded into a folic
acid (FA)-conjugated polyamidoamine dendrimer (Den)-based nanoparticle, and this formulation was
found to effectively decrease HuR expression and cell proliferation in lung cancer cells. In combination
with cis-diamine platinum (CDDP), this nanoparticle exhibited synergistically improved anti-tumor
effects with reduced cytotoxicity [215]. Similarly, when a siRNA against HuR was loaded to a transferrin
receptor-targeted liposomal nanoparticle delivery system, HuR expression was disrupted and tumor
growth was inhibited in a mouse lung cancer model [216]. Additionally, ASOs and siRNAs against
MSI could inhibit the tumor growth of pancreatic and ovarian cancers in vitro and in vivo [127,220].

RBPs also have potential as a diagnostic and prognostic markers for different types of cancers due
to their abnormal expression and functions for mRNA regulation. For example, IGF2BP3 is mostly
upregulated and related with invasive phenotypes or poor prognosis in a variety of cancers [226,227].
In addition, cytoplasmic HuR expression is connected with more aggressive phenotypes and poor
survival rates in ductal breast cancer from patients [228]. Upregulation of hnRNP C in gastric
cancer induces chemoresistance, which is negatively associated with overall survival in patients [229].
Furthermore, research is ongoing to discover RBPs for using a diagnostic and prognostic markers
that show cancer-specific expression using advanced bioinformatic tools such as microarray or newly
analyzing RNA-seq data based on the Cancer Genome Atlas (TCGA) data [230,231].

5. Conclusions

Considerable evidence indicates that dysregulation of RBPs occurs in various human cancer
types and affects every step of cancer development. RBPs can modulate gene expression at the
post-transcriptional and translational levels to induce or reduce cancer-related genes. A number of RBPs
have been found to simultaneously regulate numerous genes related to cancer development, resulting
in diverse changes in cancer progression and suggesting targets for new therapeutic approaches.
With the development of deep-running technologies, such as single-cell analysis and crosslinking
and immunoprecipitation (CLIP), many new RBPs and their partners have been discovered and
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subjected to functional studies. Based on the results of these studies, researchers have attempted to
target RBPs and/or their partners in clinical and non-clinical studies using siRNAs, ASOs, and small
molecules. Some of these strategies have been found to prevent cancer development and growth,
thereby yielding a therapeutic effect. However, there are still some limitations that must be overcome.
More research should be conducted to elucidate the detailed functions of the discovered RBPs and to
develop specific methods for targeting them in cancer treatment without affecting neighboring normal
cells. In addition, it would be useful to improve the target specificity of drug delivery systems with the
goal of further enhancing the effects of the developed drugs [232]. In conclusion, we need to develop a
more comprehensive knowledge of RBPs in cancer, as they hold great promise as therapeutic targets
for the treatment of cancer in the near future.
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