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Aneuploidy, loss or gain of whole chromosomes, is a prominent feature of carcinomas,

and is generally considered to play an important role in the initiation and progression

of cancer. In high-grade serous ovarian cancer, the only common gene aberration is

the p53 point mutation, though extensive genomic perturbation is common due to

severe aneuploidy, which presents as a deviant karyotype. Several mechanisms for the

development of aneuploidy in cancer cells have been recognized, including chromosomal

non-disjunction during mitosis, centrosome amplification, and more recently, nuclear

envelope rupture at interphase. Many cancer types including ovarian cancer have lost

or reduced expression of Lamin A/C, a structural component of the lamina matrix that

underlies the nuclear envelope in differentiated cells. Several recent studies suggest

that a nuclear lamina defect caused by the loss or reduction of Lamin A/C leads

to failure in cytokinesis and formation of tetraploid cells, transient nuclear envelope

rupture, and formation of nuclear protrusions and micronuclei during the cell cycle gap

phase. Thus, loss and reduction of Lamin A/C underlies the two common features

of cancer—aberrations in nuclear morphology and aneuploidy. We discuss here and

emphasize the newly recognized mechanism of chromosomal instability due to the

rupture of a defective nuclear lamina, which may account for the rapid genomic changes

in carcinogenesis.

Keywords: nuclear envelope, nuclear lamina, nuclear deformation, nuclear morphology, nuclear budding, lamin

A/C, aneuploidy, ovarian cancer

INTRODUCTION

The Cancer Atlas Project (1) determined that TP53 is the only common genetic mutation (96%)
found in high-grade serous epithelial ovarian cancer (2, 3), the most common histological subtype
of the gynecological malignancy. Nevertheless, extensive study in culture cells andmodel organisms
indicate that TP53mutations alone are unlikely sufficient for ovarian carcinogenesis, and additional
factors and events are required. In studies using mouse models, merely inactivation of p53 by
gene deletion in ovarian epithelial cells is insufficient for epithelial tumorigenesis (4, 5), and
even following transplantation into wild type mice to allow an extended lifespan and thus longer
rearing time, granulosa rather than epithelial tumors develop in the p53 mutant ovaries (6). Thus,
the genetic changes required for the development of epithelial ovarian cancer, particularly the
high-grade serous type, are not yet satisfactorily understood.

Other common genomic changes in ovarian carcinomas revealed by the cancer genomic
study are extensive aneuploidy and gene copy number aberrations (1). Over 100 years ago,
Boveri first recognized the connection between an abnormal number of chromosomes and
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neoplasms (7, 8). Aneuploidy as a result of chromosomal
numerical instability is a prominent feature of carcinomas, and
is often assumed to play an important role in initiation and
progression of cancer (9–13). Although overwhelming evidence
is lacking, chromosomal instability and thus aneuploidy are
commonly thought to propel genomic evolution, and to shape
a genome that presents as a malignant phenotype (9–16).

A prevalent view is that chromosome instability and
aneuploidy provide wide phenotypic heterogeneities in cancer
cells and lead to rapid selection of clones with chromosomal
compositions that have growth and survival advantages (11,
17). Enabling cancer initiating cells with the plasticity of gene
copy number, aneuploidy/chromosomal instability likely plays
important roles in clonal selection during cancer initiation,
progression, and possibly resistance to therapeutic drugs. The
importance and urgency in understanding the mechanism(s) of
chromosomal instability and causes of aneuploidy are evident,
and are essential to uncover key factors and events in the
development of high grade serous ovarian carcinomas.

Generally, aneuploidy is thought to result from mitotic
errors and chromosomal non-disjunction during mitosis (18–
24). However, recent observations suggest that a nuclear
envelope defect may cause chromosomal numerical instability
and aneuploidy in cancer (25–28), and nuclear budding leading
to the loss of chromosomes at the cell cycle interphase may be a
major mechanism in the development of aneuploidy in ovarian
carcinogenesis (26). The current review will emphasize this
newly recognized mechanism in generating aneuploidy due to a
defective nuclear envelope, which may be an under-appreciated
pathway in carcinogenesis.

ANEUPLOIDY AND CHROMOSOMAL
NUMERICAL INSTABILITY IN CANCER
INITIATION AND PROGRESSION

Like many common solid tumor types, ovarian cancer of primary
tissues or derived cell lines is characterized by aneuploidy, or an
abnormal and unbalanced number of chromosomes compared to
normal diploid cells. Most human ovarian cancer cells possess a
hyperdiploid (>46) to subtetraploid (<96) chromosome number
(29). The increase in chromosome number over normal cells
accounts for the larger nuclear size of ovarian cancer (30).
To reach such a chromosomal number, one possibility is that
the diploid precursor cells progressively acquire chromosomes
in a shift up manner. Another route is the formation of
tetraploid intermediates following a progressive loss of individual
chromosome through formation of micronuclei (15, 16, 20, 31).
Additionally, centrosome amplification and multipolar mitotic
division of polyploidy cells may also produce aneuploid cancer
cells (32, 33). These proposed routes to a cancer karyotype have
been assessed and studied experimentally (26, 34–36).

The commonly accepted doctrine of a carcinogenic pathway
does not account for the prevalence of aneuploidy in human
cancer (37, 38). However, its prevalence in human cancer cells
suggests an important role for aneuploidy in the development of
human cancer (9–13).

Nevertheless, polyploidy and aneuploidy usually are
unfavorable for cell growth, and can be detrimental for cell
survival (39–44). Inactivation of TP53 seems to be able to
overcome the growth impairment of aneuploid cells (45–47),
and p53 is regarded as the guardian of chromosomal number
and genome (48–50). Thus, p53 mutation may not itself induce
aneuploidy, but rather allow survival and growth of aneuploid
cells. The hippo tumor suppressor pathway is also activated upon
genomic perturbation (51). Survivin is another survival factor of
aneuploid cells independent of p53 inactivation (52).

Laboratory experiments have attempted to assess the
importance of aneuploidy in carcinogenesis. Cultured cells can
be transformed in vitro to tumorigenic lines by mutations and
deletion of individual oncogenes, and tumor suppressor genes
without the need for chromosomal instability (53), and mouse
models based on engineered oncogenic mutations often develop
tumors of normal ploidy (54). In contrast, it was reported
that drug-induced cytokinesis failure generates tetraploids and
subsequent aneuploids that promote tumorigenesis in p53-null
mammary epithelial cells (34) and mouse ovarian epithelial
cells (26, 35). Aneuploid cells were identified in ovarian cysts,
suggesting the development of aneuploidy may be an early event
in carcinogenesis (55).

MECHANISMS FOR THE GENERATION OF
CHROMOSOMAL NUMERICAL
INSTABILITY AND ANEUPLOIDY IN
CARCINOGENESIS

Although a correlation between aneuploidy and malignancy has
been recognized and the significance speculated, the causes of
aneuploidy in cancer remain unsettled at a mechanistic level
(10, 12, 13).

Paralleling the model in which sequential and progressive
genetic changes in the form of gene mutations lead to
oncogenesis (37, 38), cells undergoing transformation may
also gradually gain chromosome numbers over multiple clonal
expansions to achieve a hyperdiploid (>46) to subtetraploid
(<96) state (Figure 1A). However, the usually complex
karyotypes of cancer cells (29) unlikely can be achieved simply by
one or multiple chromosomal unbalanced segregations. Rather,
the chromosome profiles appear to arise from a tetraploid
intermediate with additional multiple reductions of single
chromosomes during multiple rounds of mitotic events.

Based on genomic profiling of cancer, the complex karyotypes
in some cancers may be the result of a single (or a few)
catastrophic event (56, 57) (Figure 1B). Extensive changes in
chromosome number during nuclear budding in interphase may
achieve massive assembling of chromosomes in cancer cells that
have a defective nuclear envelope. Likely, mutations and gradual
clonal evolution, as well as massive chromosomal changes from
a single catastrophic event, contribute to the heterozygous and
complex genomic landscape of malignant cells (Figure 1C).

The development of aneuploidy by chromosome mis-
segregation is generally considered a main cause of chromosomal
instability in cancer (18–22). Centrosome amplification is
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FIGURE 1 | Models of genetic changes in carcinogenesis. (A) Clonal evolution

model: the traditional model of clonal evolution in cancer

development suggests that precursor cells gradually gain relevant genetic

mutations (gene point mutation, deletion, amplification, chromosomal gain and

loss, etc.) in tumor progression. The sequential addition of each

mutational event enhances clonal growth and selection, and the clone with the

most mutations expands into a tumor mass and presents the malignant

phenotype. (B) Catastrophic event model: a catastrophic genetic event

triggers massive chromosomal re-arrangement, or gain or loss of multiple

chromosomes. Most of cells with such catastrophic genetic changes likely will

be purged. However, rare clones may survive and be further selected and

expanded, and ultimately present a malignant phenotype. (C) Complex

evolution model: likely the mechanism in achieving the genetic changes in

cancer is much more complex, and one scenario is the combination of

multiple mechanisms. Considering a model combining accumulation of

mutation and catastrophic event, progenitor cells with a relevant point

mutation (such as TP53) are expanded to form a precursor lesion. A

catastrophic genetic event enables the generation of cells with a spectrum of

genomic variety. Ultimately, clones with an optimal chromosomal composition

and genetic changes expand and present a malignant phenotype.

observed in some cancer, and is another possible mechanism
for the development of aneuploidy (32, 33). Mitosis in the
presence of three or more centrosomes will certainly divide
the chromosomes into an aneuploid state. Tetraploid cells
are believed to form often following mitotic failure, and
aneuploid cells are produced from the tetraploid intermediates
in subsequent mitotic events (15, 16, 20, 31, 58).

The studies of chromosome segregation in mitosis have
yielded impressive understanding of the genes and mechanics
during cytokinesis. The naturally occurring intermittent errors

during cytokinesis result in chromosome non-disjunction and
subsequent unbalanced chromosomal distribution (18–22).
Mutation in genes involved in cytokinesis, such as Mad2, CenE,
etc., can cause an increased chromosomal segregation error
and result in predisposition to tumorigenesis (15). However,
mutations in these genes are not common in cancer (1).

In recent years, transient rupture of nuclear envelope of
cancer cells in interphase is observed (59, 60) and considered
an under-appreciated mechanism of chromosomal instability
(25–28). Indeed, some experiments from our lab support that
a structural defect in the nuclear envelope caused by the
loss of one or more nuclear envelope structural proteins may
be a major cause of chromosomal numerical instability and
aneuploidy in ovarian cancer cells (26). A defective nuclear
envelope in cancer progenitor cells as a result of loss or reduced
of nuclear lamina structural proteins Lamin A/C may lead
to the rapid chromosomal and karyotype changes (26). The
weakened nuclear envelope can undergo transient rupture in
interphase (59, 60), leading to rapid chromosomal changes
and deviant karyotypes as seen in human ovarian cancer
(25–28).

NUCLEAR ENVELOPE DEFECTS IN
CANCER CELLS

Enlarged and deformed nuclei are characteristics of cancer
cells, and the aberrant nuclear morphology universally correlates
with malignancy (30, 61–63). In the clinical setting, the shape
and size of nuclei are used as diagnostic and prognostic
indicators, referred to as “nuclear grade” (64, 65). Based
mainly on the nuclear morphology of cells sampled, the
PAP test (or PAP smear), developed by Dr. Papanicolaou
in the 1930s, distinguishes between benign and malignant
cells to make a pathology assessment of uterine and cervical
cancers (66).

In the last five decades, many investigators have attempted to
decipher the mechanisms responsible for deformed and enlarged
nuclei of cancer cells (47, 67–71). An early proposal was that the
altered cellular DNA and chromatin of a cell in a diseased state
might cause the changes in nuclear shape through the physical
contacts with the nuclear envelope (72, 73). Alternatively,
changes in the nuclear matrix and/or nuclear envelope proteins
have been postulated, and deformation of nuclear morphology
was shown to associate with oncogenic signaling (67, 69, 70),
but no definitive conclusions have been established regarding
the molecular basis of nuclear deformation in malignant cells
or its mechanistic link with the properties of malignancy
(63, 68).

The nuclear envelope structural proteins, Lamin A/C, are
absent in around 60% of ovarian carcinomas, and show
heterogeneous staining in about 30% of these, though as controls
the proteins are present in ovarian surface epithelia, surrounding
the nuclei (47). Based on high throughput analyses to identify
aberrantly expressed proteins, one study reported increased
Lamin A/C expression in ovarian cancer (74). However, the
proteomic study used normal ovarian tissues (mostly stromal
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instead of ovarian surface epithelia) for comparison, which
are not proper controls. In histochemical analysis, the ovarian
epithelial cells of the surface layer were found to be highly
positive, whereas the stromal cells were largely negative for Lamin
A/C (74). Thus, the correct interpretation of the result should
be that 39% of ovarian cancer cases are positive for Lamin A/C,
and Lamin A/C proteins are lost or greatly reduced in 61% of
ovarian cancers (74). Another report identified Lamin C to be
reduced/lost in malignant ovarian cancer but not in borderline
tumors, based on results from 2-dimensional gel electrophoresis
(75). Thus, the previous studies generally support the finding
that Lamin A/C proteins are lost in about 60% of ovarian cancer
(47).

Examined by immunofluorescence staining, all the primary
ovarian epithelial cells have strong expression of Lamin A/C
and show a smooth and oval-shaped nuclear morphology
(47). Lamin A/C is lost or greatly reduced in most ovarian
cancer cell lines, or the expression is heterogeneous in the cell
population. Results from Northern and qRT-PCR analyses found
that Lamin A/C mRNA is often present despite the loss of the
proteins (47). It is now known that increased AKT and cell
cycle-associated phosphorylation of Lamin A/C lead to protein
degradation (76–78). Although not yet explicitly investigated
and established, phosphorylation in interphase and subsequent
protein degradation is a likely main cause of low and lost Lamin
A/C proteins in ovarian cancer.

Suppression of Lamin A/C proteins with siRNA
oligonucleotides results in extensive aberrations in nuclear
morphology, from 30 to 60%, based on several experiments (47).
If the Lamin A/C-suppressed cells were followed by time-lapse
video microscopy, nearly all cells show nuclear deformation at
some point during a 6-h time course as the cells move around.
Thus, a low Lamin A/C protein level likely accounts for a
deformed nuclear morphology seen in ovarian cancer cells. The
loss of Emerin following the elimination of GATA6 in ovarian
cancer also accounts for the deformation of nuclear envelope
(71). Likely, defects or loss in additional nuclear envelope
structural proteins may account for some other cases of nuclear
deformation in cancer (79). Thus, loss or reduction of one or
more nuclear envelope proteins (including Lamin A/C, Emerin,
Nesprins) may account for a deformed nuclear morphology of
malignant cells.

BIOLOGY OF THE NUCLEAR LAMINA:
LAMIN A/C

Lamin A/C expression is minimal in embryonic stem
cells and early embryos, and is progressively increased in
nearly all tissues in later developmental stages (80, 81).
The initiation of Lamin A/C expression is associated with
cell differentiation, suggesting that Lamin A/C expression
may serve as a limit on the plasticity of cells for further
developmental events (82–84). Additionally, the cell types
that seem to lack Lamin A/C, such as embryonic carcinoma
cells and some cells of the spleen, thymus, bone marrow,

and intestine in the adult mouse may fall into the “stem cell”
category, but the general correlation will need to be carefully
tested.

Lamin A/C mutations cause several human diseases known
as laminopathies, including muscular dystrophy, lipodystrophy,
and progeria (85–90). Loss of Lamin A/C expression is often
found in both blood cancer cells (91, 92), and solid tumors
including those of breast (79, 93), colon (94, 95), gastric (96, 97),
lung (98), prostate (70), and ovarian (47).

The cell biology of the nuclear envelope has been well-studied
in human cells and model organisms (99–102). Lamin A/C,
but not Lamin B1, is critical for the maintenance of a smooth
and oval shaped nucleus (103). Mutations or loss-of-function
in several nuclear envelope structure proteins, including lamin,
emerin, Man1, and Baf in C. elegans, cause similar nuclear
and mitotic phenotypes such as an enlarged and deformed
nucleus, defective chromosome segregation, and the formation
of chromatin bridges between divided nuclei, suggesting a critical
role for lamin and other nuclear envelope proteins in cytokinesis
and mitosis (104–106).

Lamin A/C null mice die at 4–6 weeks of age due to
cardiac degeneration, a phenotypemirroringmuscular dystrophy
in humans (86). In cellular studies, Lamin A was found to
be required for the stability of the Rb protein (107) and to
regulate the MAPK pathway (108). Additionally, mutations in
Lamin A/C interfere with mitosis and cell cycle progression in
mammalian cells (89, 109). These findings are consistent with
roles for these nuclear envelope proteins in both maintaining
the nuclear structure and mediating cytokinesis/mitosis across
species. Furthermore, Lamin A plays roles in chromatin
organization (99, 110, 111). The roles of Lamin A/C in signaling,
mitosis, and chromatin regulation are suggested to account
for laminopathies, and also the cells with defective nuclear
envelope proteins are inclined to genomic instability due to
aberrant gene expression and chromosomal numerical instability
(87, 112, 113).

Unique recurrent de novo point mutations in LMNA gene
in human were discovered to be the cause of Hutchinson–
Gilford progeria, a servile premature aging syndrome (114).
The mutations lead to the production of an altered Lamin
A protein, known as progerin that lacks a protease cleavage
site and is not properly processed (115). Unable to remove
the farnesylated C terminal, progerin accumulates on nuclear
lamina, leading to nuclear envelope deformation, delayed
nuclear envelope disassembly in mitosis, cell cycle defect,
chromosomal instability, and premature senescence (88, 89, 109,
112, 115). Intervention with compounds and small molecule
inhibitors that increase proliferative and delayed senescence in
cells derived from LMNA mutant progeria patients associates
with rescue of nuclear blebbing and deformation (116),
suggesting a defective nuclear envelope in the causes of the
pathology.

The analyses in cells, invertebrates, and mammals all suggest
that Lamin or Lamin A/C plays important roles in cell
functions that can affect cell differentiation, proliferation, and
chromosomal instability (90, 102, 104, 106, 113).
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CONSERVED ROLES OF NUCLEAR
ENVELOPE AND LAMINA IN MITOSIS

In model organism C. elegans that has only one lamin gene,
loss of Lamin (104) as well as other nuclear envelope structural
proteins (MAN1 and emerin) leads to mitotic failure, polyploidy,
micronuclei, and chromatin bridges (105). For mammals, there
are three lamin genes (101), and unlike that in C. elegans,
mammalian lamin genes are not essential for cell division and
development (84, 86).

Nevertheless, in ovarian cancer cells as well as primary
human ovarian surface epithelial cells in which Lamin A/C
expression is suppressed, frequent mitotic failure, and regression
of mitotic furrows were observed (26). This observation is
consistent with a role of lamin in cytokinesis in worms and
flies in which the only lamin gene is essential for mitosis (104).
Lamin A/C is not required for cytokinesis in mammalian cells
but affects the cell cycle (86, 89, 109). A likely explanation
is that the redundancy of the three lamin genes in mammals
compensates for the requirement in mitosis when one lamin gene
is absent, but the cells lacking Lamin A/C may present a higher
frequency of mitotic failure and cell cycle defects. As Lamin
A/C plays a role in forming new nuclear envelopes to enclose
the chromosomes of the daughter cells, its absence may make
the process less efficient and increase the frequency of mitotic
failure. Indeed, an increased mitotic failure and the formation
of tetraploid nuclei were observed in Lamin A/C suppressed
cells (26, 47).

The Lamin A/C-suppressed cells also have higher frequency
of tripolar division, presumably from polyploid cells that have
more than two centrosomes (26, 47). The multipolar mitosis
of polyploidy cells presumably should result in aneuploid
cells. Aneuploid cells with unbalanced gene dosage are
growth retarded and undergo cell growth arrest or death
(40, 44, 117). A p53 mutation allows the aneuploid cells to
survive and undergo clonal selection (45, 47). Even with the
inactivation of TP53, most aneuploid cells generated from
transient loss of Lamin A/C likely perish afterward, but
ultimately, a population of cells with a unique chromosomal
composition and TP53 mutation is selected and expanded
to form cancer (26, 47). Thus, the experimental results
advocate a concept that a deformed nuclear envelope is the
main source of chromosomal instability of the cancer cells,
and is the cause rather than a consequence of neoplastic
transformation (26).

CONSEQUENCES OF LAMIN A/C LOSS IN
CANCER: MITOTIC FAILURE, TRANSIENT
NUCLEAR ENVELOPE RUPTURE, AND
NUCLEAR BUDDING

Studies and prior consideration overwhelmingly focus on the
development of aneuploidy from chromosome non-disjunction
during mitosis (18–22). The reduction of chromosome number
by the formation of micronuclei is largely considered a result

FIGURE 2 | Nuclear envelope defects responsible for the generation of aneuploid cells in carcinogenesis. We propose that a defective nuclear envelope structure as a

result of loss of a nuclear lamina component such as Lamin A/C is the main cause of chromosomal numerical instability and aneuploidy in cancer. Loss of Lamin A/C

expression is common in ovarian cancer, which results in a misshapen nucleus in malignant cells. Furthermore, Lamin A/C plays an important role in the formation of a

new nuclear envelope in daughter cells at the completion of mitosis. In the absence or reduction of Lamin A/C, the cells have higher failure in completing cytokinesis

and the dividing nuclei fuse back to form a tetraploid cell, a likely intermediate. Aberrant multipolar division from the tetraploid intermediates can generate aneuploidy

cells. Additionally, Lamin A/C deficient cells frequently undergo nuclear budding at interphase, and nuclear protrusions can break off to form micronuclei, which

undergoes collapse and in closed chromosome(s) is lost. As a result of catastrophic mitotic events and gradual chromosome losses, the cells with an optimal

chromosomal profile may gain growth advantage and be selected to expand into tumor mass.
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of lagging chromosome(s) during mitosis (18, 118). However,
the breaking off of nuclear materials by “nuclear budding” to
form micronuclei at the interphases has been also observed
(26, 119, 120), particularly by using time lapse imaging and
GFP-histone H2B to monitor nuclear content (121, 122).
Presumably, the breaking off of nuclear materials and subsequent
formation of micronuclei also lead to aneuploidy, though
the commonality of nuclear budding at gap phases is not
certain.

A recent publication detailed the observation of frequent
transient nuclear envelope rupture during interphase in human
cancer cells (59). In addition, it has also been shown that
micronuclei formed in cancer cells often undergo irreversible
splintering from the nucleus, resulting in the loss of one
or more chromosome(s) (60). Migrating cancer cells are
especially vulnerable to nuclear envelope rupture as a result
of physical force exerted on the nuclear envelope in the
process of moving the nucleus (123). Presumably such
events produce chromosomal instability and may be an
overlooked mechanism in cancer genomic instability (25, 27, 28).
Additionally, the formation of micronuclei may cause chromatin
breakage and clustered chromosomal rearrangements, a
phenomenon known as “chromothripsis” (124–126). Such
impacts on both chromosome number and structure may
explain the massive genomic changes found in ovarian
carcinomas.

Consistent with such observations, experiments demonstrated
that cells with suppressed Lamin A/C expression show frequent
nuclear budding (26). In the Lamin A/C-suppressed ovarian
epithelial cells, narrow protrusions/herniations of nuclear
materials monitored by GFP-histone H2B often break off
from the main nuclear body to form micronuclei, which
gradually fade away, leading to aneuploidy (26). The Lamin
A/C-suppressed cells are stunted in growth, presumably due
to aneuploidy, and cell proliferation can be restored by
the loss of p53 (47). In the experiments, the formation of
aneuploid cells was confirmed by karyotyping (26). Because
of the high prevalence of aneuploidy after Lamin A/C-
suppression, it has been suggested that a nuclear envelope
defect, resulting from loss or severe reduction of Lamin/C
proteins, underlies the main cause of aneuploidy in cancer
(26).

Thus, we propose that the formation ofmicronuclei by nuclear
budding because of a deformed and malleable nuclear envelope
may be the main mechanism in chromosomal instability and
the development of aneuploidy in cancer cells, especially
those have lost/reduced the nuclear lamina protein, Lamin
A/C (Figure 2). Possibly, chromosome DNA string breakage
during the budding of micronuclei contributes to chromosomal
structural alterations commonly observed in solid tumors, in
addition to aneuploidy (124, 125). In this model, we also
suggest that the loss/reduction of Lamin A/C leads to frequent
failure in mitosis, resulting the formation of tetraploid cells, a
likely intermediate to aneuploidy. The polyploidy cells undergo
increased frequency of nuclear budding and also undertake

frequent multipolar divisions to generate aneuploidy cells (26)
(Figure 2).

CONCLUSIONS AND REMARKS: A
NUCLEAR ENVELOPE DEFECT CAUSES
ANEUPLOIDY AND CANCER
DEVELOPMENT

Past studies on the mechanism of the generation of aneuploidy
mainly focused on chromosomal non-disjunction (127). The idea
that a nuclear envelope structural defect causes chromosomal
instability and aneuploidy in cancer has not been sufficiently
investigated, but recently this notion has been contemplated (25–
28). Based on many of these recent studies and commentaries, as
well as our preliminary findings, and we suggest that a nuclear
envelope structural defect, such as the loss or reduction of Lamin
A/C, a structural protein of the nuclear lamina, may lead to
aneuploidy by both mitotic failure and subsequent formation of
tetraploid intermediates, and the loss of chromosome(s) through
nuclear budding at interphase and the generation and consequent
rupture of micronuclei (Figure 2). We suggest that the loss of the
nuclear envelope structural proteins, Lamin A/C, may underlie
these two hallmarks of cancer: nuclear envelope defects and
chromosomal instability.

No doubt chromosomal non-disjunction during cytokinesis
contributes to aneuploidy of cancer cells. However, we suggest
that a nuclear defect (loss of Lamin A/C proteins) is the
common (more than 80% of cancers show nuclear deformation)
cause of chromosomal instability and aneuploidy. Defective
nuclear envelopes and lamina result in aneuploidy and epigenetic
dysregulation, leading to cell clonal evolution to generate
malignant cells. This may be a fundamental mechanism for the
development of ovarian cancer, and we postulate that loss of
Lamin A/C and TP53 mutation are synergistic and sufficient
for the development of aneuploid and malignant ovarian cancer
(26, 47). Although mainly based on the consideration of ovarian
cancer, the conclusion likely can be applied to solid tumors in
general, as neoplastic cells of many cancer types show both a
deformed nuclear morphology and aneuploidy.
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