
Application Note

Random distributed logistic regression
framework for predicting potential
lncRNA–disease association

Predicting potential lncRNA–disease as-
sociation pairs is an important issue in
the field of biomedicine. Traditional
lncRNA–disease association prediction
algorithms are mainly based on biologi-
cal network models. For instance,
RWRlncD is developed for predicting the
potential lncRNA–disease association by
performing random walk with restart on
lncRNA functionally similar networks
(Sun et al., 2014). However, biological
graph network algorithms often have cer-
tain limitations and low accuracy. With
the development of machine learning,
new ideas have been brought to the con-
struction of the association prediction al-
gorithm (Liu et al., 2016, 2019a, b; Wan
et al., 2019). Recently simboost algorithm
based on matrix decomposition is devel-
oped for predicting drug–target and
miRNA–disease potential associations
(He et al., 2017; Chen et al., 2019).
Previous studies have shown that sim-
boost can extract relevant features from
known association pairs and use machine
learning algorithms to evaluate the possi-
bility of association pairs with unknown
labels. We propose that this algorithm
framework can be improved and applied
to lncRNA–disease association prediction.

The proposed algorithm that combines
simboost feature extraction and logistic
regression is named as random distrib-
uted logistic regression framework
(RDLRF). The flow chart of the algorithm

is shown in Figure 1A. To test the
feasibility of RDLRF, we apply it to a
dataset with 656 lncRNAs and 119 dis-
eases. Based on known lncRNA–disease
associations downloaded from lncRNA–
disease database and lnc2cancer data-
base, we implement leave-one-out
cross-validation (LOOCV) to evaluate the
performance of RDLRF. Since receiver op-
erating characteristic (ROC) curves are
widely used to evaluate model perfor-
mance in previous literature of predict-
ing lncRNA–disease associations, it is
employed in this work to compare the
performance of several models. RDLRF
scores of lncRNA–disease pairs without
association evidences can be obtained
after implementing RDLRF. Area under
the ROC curve (AUC) is calculated to
quantitatively evaluate model perfor-
mance. Under the same data conditions
(i.e. the lncRNA similarity, disease
similarity, and the known association
between lncRNAs and diseases), we draw
ROC curves and calculate AUC values for
RDLRF algorithm, RDLRF algorithm with
removing topological similarity steps
(annotated with WTS, without topological
similarity), IRWRLDA algorithm (Chen
et al., 2016), HGLDA algorithm (Chen,
2015b), and KATZLDA algorithm (Chen,
2015a), respectively, based on the
LOOCV. As shown in Figure 1B, the ROC
curve of RDLRF algorithm almost contains
the curves of other algorithms, which
means that under the same conditions,
the discrimination performance of
RDLRF algorithm is optimal. From the per-
spective of AUC value, we can also see
that the AUC value of RDLRF algorithm
has reached 0.9429, far more than those

of other algorithms. In addition, we re-
move the step of integrating topological
similarity in the framework and calculate
the performance of the algorithm sepa-
rately, annotated with RDLRF (WTS), and
the AUC value slightly decreases, but it
still exceeds other algorithms. This shows
that the integration of topological similar-
ity steps can improve the performance of
this framework, but compared with other
classical algorithms, the biggest improve-
ment comes from feature engineering and
distributed logistic regression.

Since there is no definite conclusion
about lncRNA similarity, it is necessary to
discuss the parameter b of lncRNA inte-
gration similarity (see Supplementary
Methods and materials). We divide the
threshold from 0.1 to 0.9 in steps of
0.1 and then calculate the AUC values of
RDLRF framework under different thresh-
olds. The performance of RDLRF is not par-
ticularly sensitive to parameter changes,
i.e. AUC fluctuates in a small range, and
the best performance is achieved when
the value is 0.6 (Figure 1C).

To demonstrate the ability of RDLRF to
recover unknown lncRNA–disease associ-
ation pairs, we implement case studies.
We select the top 20 lncRNAs based on
RDLRF score predicted for each disease
and search the database for evidence
supporting that the lncRNA–disease asso-
ciation did exist based on PubMed data-
base (Supplementary Tables S1–S3).
Note that the known association pairs are
eliminated in this step. For breast cancer,
recent evidence supports that 12 of
the top 20 potential lncRNAs exist. In
particular, for the top 13 potential
lncRNAs, the evidence supports 76.9%
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Figure 1 RDLRF for predicting potential lncRNA–disease association. (A) The proposed algorithm framework can be roughly divided into
three parts. The first part is to calculate the similarity. The second part is feature engineering. The third part is integrated learning based
on logistic regression. (B) Performance comparisons between RDLRF, RDLRF (WTS), IRWRLDA, HGLDA, and KATZLDA. RDLRF obtains an AUC
value of 0.9429, ranking first among all selected algorithms. This shows that RDLRF has the best computing performance. (C) The effect of
parameter b on RDLRF is not great, and when b is equal to 0.6, RDLRF can obtain the best performance. (D) Heat map of top 50 potential
lncRNAs’ PubMed hits. The higher the potential lncRNA ranking, the darker the color, which means it is supported by more PubMed
literature. (E) The ROC curve of label randomization test. Contrary to the performance test, in the label randomization test, the ROC curve is
close to the linear function (or the value of AUC is close to 0.5), indicating that the algorithm is not suffered from overfitting.
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existing. Research by Tripathi et al. (2016)
shows overexpression of lnc-MTAP
(CDKN2B-AS1) and lnc-FAM (H19) in
breast cells, which suggests that these
lncRNAs may have significant roles to
play in breast cancer. The RDLRF scores
of CDKN2B-AS1 and H19 rank first and
fifth, respectively (Supplementary Table
S1). For lung cancer, 75% of the top 20

potential lncRNAs have been confirmed
base on PubMed. According to the re-
search of Loewen et al. (2014), lncRNA
HOX transcript antisense RNA (HOTAIR)
represses gene expression through re-
cruitment of chromatin modifiers. The ex-
pression of HOTAIR is elevated in lung
cancer and correlates with metastasis
and poor prognosis. Moreover, HOTAIR
promotes proliferation, survival, invasion,
metastasis, and drug resistance in lung
cancer cells. HOTAIR’s RDLRF score ranks
first among all potential lncRNAs associ-
ated with lung cancer (Supplementary
Table S2). Hepatocellular carcinoma is
one of the leading causes of cancer-
related death and the mechanism of its
progression remains poorly understood.
Research by Huang et al. (2015) confirms
that lncRNA ANRIL, as a growth regulator,
can be used as a new biomarker and a
therapeutic target for hepatocellular
carcinoma. ANRIL’s RDLRF score ranks
first among all potential lncRNAs associ-
ated with hepatocellular carcinoma
(Supplementary Table S3). In addition,
we draw a heat map of the top 50 poten-
tial lncRNAs with highest RDLRF scores
for three cancers (Figure 1D). If the color
is darker, it means the corresponding
lncRNA is supported by more PubMed
literature.

In order to test whether RDLRF suffers
from overfitting, we randomly mix ‘0’ and
‘1’ elements in the known association
matrix of lncRNA and disease. As shown
in Figure 1E, the AUC value is 0.5639 un-
der the verification of LOOCV, and the
curve displaying discrimination function
is close to the random state, which
shows that RDLRF effectively avoids
overfitting. Comparing the different
results of the original label and the

mixed label, we can conclude that RDLRF
is an effective tool to reveal more poten-
tial lncRNAs related to diseases.

Studying the key role of lncRNA in the
biological process based on priori infor-
mation is conducive to promoting the
study of disease pathogenesis and treat-
ment. We propose a computational
model, RDLRF, which uses machine
learning algorithms to rank the likeli-
hood of potential disease-related
lncRNAs while avoiding the limitations of
traditional graph models. Specifically, in
order to transform the association pre-
diction problem into a binary classifica-
tion problem that can be solved by
machine learning algorithms, this study
focuses on solving the two problems of
feature extraction and negative samples
missing. First of all, we define the new
lncRNA similarity and disease similarity
and introduce the restart random walk
algorithm to fully consider the topologi-
cal properties of each node in the net-
work. Relying on techniques such as
non-negative matrix factorization, we
then extract effective features from simi-
larity networks and known-related net-
works. Principal component analysis is
used to remove redundancy and noise in
high-dimensional features. Random
sampling is used to obtain negative
samples, the logistic regression is re-
peated multiple times to obtain the dis-
tribution formed by the probability of
each candidate lncRNA, and the expecta-
tion of the distribution is used as the
prediction result of RDLRF. Compared
with traditional graph-based algorithms,
RDLRF greatly improves its prediction
performance and is more compatible
with new lncRNAs or new diseases.
[Supplementary material is available at
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