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Diabetes mellitus (DM) is gradually attacking the health and life of people all over the world.
Diabetic kidney disease (DKD) is one of the most common chronic microvascular
complications of DM, whose mechanism is complex and still lacks research. Sirtuin
family is a class III histone deacetylase with highly conserved NAD+ binding domain and
catalytic functional domain, while different N-terminal and C-terminal structures enable
them to bind different deacetylated substrates to participate in the cellular NAD+

metabolism. The kidney is an organ rich in NAD+ and database exploration of literature
shows that the Sirtuin family has different expression localization in renal, cellular, and
subcellular structures. With the progress of modern technology, a variety of animal models
and reagents for the Sirtuin family and DKD emerged. Machine learning in the literature
shows that the Sirtuin family can regulate pathophysiological injury mainly in the glomerular
filtration membrane, renal tubular absorption, and immune inflammation through various
mechanisms such as epigenetics, multiple signaling pathways, and mitochondrial
function. These mechanisms are the key nodes participating in DKD. Thus, it is of great
significance for target therapy to study biological functions of the Sirtuin family and DKD
regulation mechanism in-depth.

Keywords: Sirtuin (SIRT), diabetes, kidney, NAD+, diabetic kidney disease
1 INTRODUCTION

Diabetes mellitus (DM) is a metabolic disease characterized by high blood glucose due to insulin
secretion deficiency or biological function impairment (1). According to the International Diabetes
Federation (IDF) data, the global adult DM population is over 537 million, 10.5% of the total
population and shows a younger trend (2, 3), indicating that DM is gradually attacking the health
and life of people all over the world. Therefore, studying the pathogenesis of complications in DM is
still an urgent problem to be solved.

Diabetic kidney disease (DKD), also known as diabetic nephropathy (DN) (4) and is one of the
most common chronic microvascular complications of DMwith a 10%~40% DKD incidence in DM
(5–7). The pathological changes are characterized by the continuous and slow development of
proteinuria involving a complex pathological process of the glomerulus, renal tubules, microvessels,
and other renal structures (8). It is of great significance to understand the pathogenesis of DKD and
explore the targeting drugs related to DKD.

Silent information regulator 2-related enzymes (Sirtuin or SIRT) are the first discovered class III
histone deacetylases (HDAC) of which NAD+-Sirtuin pathway is core in the energy metabolism for
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Bian and Ren Sirtuins and Diabetic Kidney Disease
aging, cancer, cardiovascular, and cerebrovascular diseases as
well as metabolic diseases (9, 10). Recent studies have shown that
the Sirtuin family plays an important role in the biological
mechanism and pathophysiological changes of DKD.

Thus, the aim of this review is to summarize the role of the
Sirtuin family in DKD via displaying renal histological
expressions, specific mechanisms, and renal injury of the
Sirtuin family in different study models and reagents.
2 PATHOPHYSIOLOGY OF DIABETIC
KIDNEY DISEASE

The pathological changes of DKD start from basement
membrane thickening in the early stage and gradually spread
to the area of the glomerulus, microvessels, and renal tubules
with characteristic changes of glomerular hyaline degeneration
appearing in the late stage (11). Healthy nephron structures
include endothelial cells, basement membrane, parietal cells,
mesangial cells, glomerular capillaries, foot processes,
podocytes, and renal tubular epithelial cells (12, 13). The
pathological changes of DKD are mainly manifested as early
glomerular basement membrane thickening, mesangial cell
hypertrophy, abnormal hyperplasia, podocyte loss, hypertrophy,
foot process disappearance with the later pathological
manifestations of tubular epithelial atrophy, collagen deposition,
activation of myofibroblasts and stroma, inflammatory cell influx,
capillary thinning, and finally, arteriole hyaline degeneration (14–
16). These pathological changes lead to persistent and slowly
progressing proteinuria, eventually leading to end-stage renal
disease (ESRD), which harms people’s health. The specific
structure and pathological process are shown in Figure 1. The
pathogenesis of DKD is a complex result of multiple factors with
great significance to explore the pathogenesis of DKD for clinical
Frontiers in Endocrinology | www.frontiersin.org 2
diagnosis and treatment. Thus, it is of great significance to study the
pathophysiological roles of DKD in different renal structures.
3 SIRTUIN FAMILY AND THEIR
BIOLOGICAL FUNCTIONS

Sirtuin family is the first discovered class III HDAC with the
recognized family members SIRT1-7, which have different
subcellular localizations. SIRT1, SIRT6, and SIRT7 are mainly
distributed in the nucleus, while SIRT3, SIRT4, and SIRT5 are
mainly located in the mitochondria and SIRT2 is mainly located
in the cytoplasm (Table 1 and Figure 2) (17). All of them have
highly conserved nicotinamide adenine dinucleotide+ (NAD+)
binding domain and catalytic functional domain, while different
N-terminal and C-terminal structures enable them to bind
different substrates (18). SIRT1-SIRT3 have strong deacetylase
activity, SIRT4-SIRT7 are considered to be weak or even difficult
to detect deacetylase activity and SIRT4 mainly has adenosine
diphosphate (ADP)-ribosyltransferase activity (Table 1) (19, 20).
Different enzymatic activities may be related to their different
pathophysiological functions.

In mammals, NAD+ can be composed of four different
biological precursors including two forms of niacin (NA),
tryptophan, Vitamin B3, nicotinamide (NAM), and
nicotinamide nucleoside (NR) (21) synthesized from the daily
diet (including milk, meat, nuts, etc.) through three biological
ways. The specific mechanism is shown in Figure 2. The
enzymatic activity of the Sirtuin family is mainly deacetylase
and ADP-ribosyltransferase to remove the acetyl group from the
target protein with NAD+ transferred into NAM and acetyl-
ADP-ribose (22). The main synthetic pathway of NAD+ is the
Salvage pathway, in which NA, NAM, and NR, as the precursor,
are converted to the intermediate nicotinamide mononucleotide
FIGURE 1 | Physiological structure of nephron and pathologic process of diabetic kidney diseases. Left: whole kidney structure; middle: healthy nephron structure;
right: the pathological changes of DKD.
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(NMN), by the rate- l imiting enzyme nicot inamide
phosphoribose transferase (NAMPT). The intermediate, NMN
can be converted into NAD+ by nicotinamide mononucleotide
adenylate transferase (NMNAT). NAD+ produced by this
pathway is consumed by a variety of enzymes including
Sirtuins to regulate energy metabolism, mitochondrial
function, and a variety of cellular responses to produce NAM
and reuse it again via the Salvage pathway (23, 24). In the Preiss-
Handler pathway, NA obtained from the daily diet can be
transformed into mononucleotide nicotinate (NAMN) and
nicotinamide adenine dinucleotide (NAAD) by key enzymes
such as nicotinate phosphoribosyltransferase (NAPRT) and
NMN adenylate transferase (NMNAT) and then further
produce NAD+. In addition to these pathways, the De Novo
pathway is another major source of NAD+ in the kidney.
Tryptophan can be converted into NAMN by the quinoline
phosphoribosyltransferase (QPRT) and then to NAD+ by the
Preiss-Handler pathway. Supplementation of rate-regulating
enzymes, precursors, and intermediates in these pathways
could be used as potential treatments for metabolism-related
diseases, including DM and obesity (9, 10, 25). Through the
above-noted pathways, the Sirtuin family participates in the
process of energy metabolism as deacetylase and ADP
ribosyltransferase of NAD+.

Sirtuins active with the increase of NAD+ levels during
moderate fasting and caloric restriction and decrease with the
decrease of NAD+ levels for aging, cancer, cardiovascular and
cerebrovascular diseases as well as metabolic diseases such as
insulin resistance (9, 10, 25–30). Sirtuins mediate cell survival
activation and other caloric restriction effects by regulating
NAD+ enzymes, adenosine 5’-monophosphate (AMP)-
activated protein kinase (AMPK), and mammalian target of
rapamycin (mTOR) pathways (31, 32), and also promote
oxidative phosphorylation, deacetylation of transcription
factors, anti-inflammatory responses, and DNA repair, as well
as inhibit glycolysis to combat oxidative stress (33, 34). Among
Frontiers in Endocrinology | www.frontiersin.org 3
them, SIRT1, as a star molecule in the family for its most wide
studies, is involved in metabolism, immune response, aging
regulation, and other various mechanisms. SIRT2 regulates cell
division during DNA damage, SIRT3, SIRT4, and SIRT5 are the
major regulators of mitochondrial energy metabolism and affect
mitochondrial respiratory function via cytochrome C (CytC)
(35), while SIRT6 and SIRT7 are strongly related to chromatin
repair and transcription activation (36). The different biological
functions of the Sirtuin family members may represent their
different regulatory effects on DKD.
4 LOCALIZATION OF THE SIRTUIN
FAMILY IN KIDNEY

Sirtuins only make action in the presence of coenzyme NAD+ in
all living cells (23). Based on that, an increasing number of
studies suggest that the maintenance of NAD+ levels and the
corresponding decrease in Sirtuins activity can contribute to
normal aging (37, 38). Expression levels of NAD+ may be closely
related to the localization and expression of the Sirtuin family in
renal tissues (21). According to existing studies, SIRT1 is widely
expressed in renal tubular cells and podocytes (39), SIRT2 is
mainly expressed in proximal epithelial renal tubular cells (40),
SIRT3 has been described as a key regulator of mitochondrial
dynamics in proximal epithelial tubular cells (41), little is known
about the role of SIRT4 in the kidney (21), SIRT5 is highly
expressed in proximal epithelial tubular cells (42), SIRT6 plays
an important role of injury and fibrosis in podocytes and
proximal epithelial tubular cells (43–45), while SIRT7 is
expressed in proximal tubules and collecting tubules (46).

To further systematically explore the localization of the
Sirtuin family in kidneys, we conducted localization
exploration through the Human Protein Atlas database.
GraphPad Prism Version 8.0.0 for macOS Mojave 10.14.4 was
used for both analyses with data collation and visual presentation
TABLE 1 | The subcellular localization, substrates and enzyme function of Sirtuin family.

Sirtuin family
member

Subcellular Substrates Enzyme
functionlocalization

SIRT1 Nuclear, cytoplasmic LKB1, p53, NFkB, PGC1a, HIF1a, HIF2a, CTIP2, Tat, p300, LXR, FXR, histone H1, histone H3, histone
H4, eNOS, MEF2, Notch1, Ku70, WRN, NBS1, LKB1, hMOF, AceCS1, c-Myc, androgen receptor,
cortactin, RARP1

Deacetylation
Decrotonylase

SIRT2 Nuclear, cytoplasmic LKB1, histone H3, histone H4, tubulin, p300, p65, PERCK1, FOXO1, FOXO3A, beta-secretase 1, p53,
Par-3, CDK9, G6PD, PGAM, HIF1a, ALDH1A1, TUG, BubR1

Deacetylation
Demyristoylase
Decrotonylase

SIRT3 Mitochondrial AceCS2, HMGCS2, ATP synthase F1, LCAD, SDH, Ku70, SOD2, FOXO3, aconitase 2, GDH, LKB1,
MRPL10, LCAD, cyclophilin D, PDH, ALDH, Skp2, OGG1, Hsp10, GOT2, MDH

Deacetylation
Decrotonylase

SIRT4 Mitochondrial GDH, MCD, PDH, Hsp60, stress-70 Deacetylation
ADP-ribosylation
Lipoamidase

SIRT5 Mitochondrial Cytochrome, CPS1, SOD1, urate oxidase, PML, VLCAD, Prx-1, HMGCS2, Hsp70, MCAD Deacetylation
Demalonylation
Desuccinylation
Deglutarylation

SIRT6 Nuclear TNFa, histone H3, p70, Kup86, GCN5, KAP1, CtlP, Parp1, GEN1 Deacetylation
ADP-ribosylation

SIRT7 Nuclear Histone H3, PAF53, DNA-PK, GABPb1, p53 Deacetylation
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(Figures 3, 4). Figure 3 indicated that SIRT1 had a similar
expression with biomarkers in mesangial and proximal tubular
cells, while SIRT2-5 showed a similar distribution similar to
biomarkers in proximal tubular cells. SIRT6 and SIRT7 were
similar to biomarkers in endothelial cells, while SIRT6 and
biomarkers in proximal tubular cells also showed certain
Frontiers in Endocrinology | www.frontiersin.org 4
similarities. Figure 4 showed that the whole family members
had a low correlation to podocyte biomarkers in the filtration
membrane system. In the renal tubules, SIRT4 had a higher
correlation with proximal tubular cell biomarkers, while SIRT1
and SIRT6 had a lower correlation. The Sirtuin family expression
was highly correlated in the thick segment of ascending limb.
FIGURE 2 | Cellular NAD+ metabolism induced by Sirtuin family. The enzymatic activity of the Sirtuin family is mainly to remove the acetyl group from the target
protein. Firstly, NAD+ is cut into NAM and ADP-ribose, and the acetyl group on the target protein is transferred to ADP-ribose to form acetyl-ADP-ribose. Therefore,
some members of the Sirtuin family can also play a role in ADP ribosyltransferase. The increase of NAD+ levels is closely related to the activation of the Sirtuin family
members during moderate fasting and caloric restriction. On the contrary, aging, cancer, cardiovascular and cerebrovascular diseases as well as metabolic diseases
such as insulin resistance lead to a decrease in NAD+ levels, which is related to the decrease in Sirtuin family activity. Mammalian cells can produce NAD+ from
Tryptophan via the Kynurenine pathway or from NA, one of the forms of vitamin B3, via the Preiss-Handler pathway, while most NAD+ is recovered from NAM and
NR via the Salvage pathway. NAD+ can be reduced to NADH during glycolysis, fatty acid oxidation, and the TCA cycle. NAD+ also acts as a substrate for enzymes
such as Sirtuins, producing NAM as a byproduct, and affects metabolism, genomic stability, gene expression, inflammation, circadian rhythm, and stress resistance.
This response pattern of the Sirtuin family is extensive. SIRT1, SIRT6, and SIRT7 exist in the nucleus, SIRT2 exists in the cytoplasm, while SIRT3, SIRT4, and SIRT5
exist in the mitochondrion. Abbreviations: Ac, acetylation; eNAMPT, extracellular nicotinamide phosphoribosyltransferase; ETC, electron transport chain; iNAMPT,
intracellular nicotinamide phosphoribosyltransferase; MNAM, N1-methylnicotinamide; NA, nicotinic acid; NAD+, nicotinamide adenine dinucleotide; NADH,
nicotinamide adenine dinucleotide; NADK, NAD+ kinase; NADP/NADPH, nicotinamide adenine dinucleotide phosphate; NAM, nicotinamide; NAMN, nicotinamide
mononucleotide; NAPRT, nicotinic acid phosphoribosyltransferase; NMN, nicotinamide mononucleotide; NMNAT, nicotinamide mononucleotide adenylyltransferases;
NR, nicotinamide riboside; NRK1&2, nicotinamide riboside kinases 1 and 2; TCA, tricarboxylic acid.
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The high correlation of SIRT1-5 and low correlation of SIRT6-7
appeared in intercalated cells of the collecting duct and may be
due to their different transporters and transport functions.
Except for SIRT4, other family members were highly correlated
with endothelial cells, fibroblasts, T cells, and macrophages,
suggesting the involvement of renal interstitial fibrosis and
inflammatory response. Furthermore, other members of the
Sirtuin family, except SIRT4, are strongly correlated with
plasma biomarkers. Our previous study found that serum
SIRT6 decreased with different urinary albumin groups in
patients with type 2 DM, which was correlated with urinary
albumin excretion rate (47), also confirming their potential as
biomarkers in circulation. This database research can partially
supplement the defects of previous studies, however, it also has
certain contradictions that need further exploration.

The expression of the Sirtuin family in kidneys shown in
literature and databases is still contradictory. The reason may be
due to the fact that most of Sirtuins’ studies have focused only on
Frontiers in Endocrinology | www.frontiersin.org 5
a single region of the kidney and have not conducted whole
family comparisons at the same level. It is necessary to study the
changes of the Sirtuin family in DKD by the spatiotemporal
transcriptome sequencing in the whole renal tissues.
5 ROLE OF THE SIRTUIN FAMILY IN
DIABETIC KIDNEY DISEASE

To explore the role of the Sirtuin family in DKD, previous studies
have established different diabetes models, Sirtuin targeting
animal models and a series of Sirtuin family targeting reagents.
Studies have shown that the Sirtuin family regulates mesangial
cell proliferation and hypertrophy, podocytes apoptosis,
proximal tubular glucose metabolism, and renal tubular injury
under DKD conditions and regulates podocytes mediated renal
tubular, endothelial cells, and macrophages crosstalk via
epigenetics of deacetylation and dephosphorylation, NAD+
FIGURE 3 | Heatmap of human Sirtuin family genes with different cell type markers. Single cell transcriptomics data for kidney tissues and peripheral blood
mononuclear cells were analyzed. These datasets were respectively retrieved from the Single Cell Expression Atlas (https://www.ebi.ac.uk/gxa/sc/home), the Human
Cell Atlas (https://www.humancellatlas.org/), the Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/), the Allen Brain Map (https://portal.brain-map.org/),
and the European Genome-phenome Archive (https://www.ebi.ac.uk/ega/).
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involved mitochondrial function and multiple signaling
pathway targets.

5.1 Study Models and Specific Reagents
Previous studies have established streptozotocin (STZ) induction,
Otsuka-Long-Evans-Tokushima-Fatty (OLETF) rats, Akita mice,
OVE26 mice, BTBR ob/ob mice, and endothelial nitric oxide
synthase (eNOS)-/- mice as different diabetes models and Sirt1
global, podocyte-specific, and proximal tubule-specific
overexpression and knockout mice as Sirtuin targeting animal
models, and constructed a series of Sirtuin family targeting reagents
represented by Resveratrol, and achieved some results as follows.

The mechanism of the Sirtuin family and DKD is still at the
superficial stage and further mechanism exploration is needed.
The research results of other pre-renal metabolic diseases
(insulin resistance, obesity, non-alcoholic fatty liver disease,
hyperuricemia, metabolic syndrome, etc.), renal injury diseases
(acute kidney injury, chronic kidney diseases, or acute-chronic
Frontiers in Endocrinology | www.frontiersin.org 6
process), and post-renal obstructive diseases may have some
enlightenment with the research on DKD. Moreover, the adverse
pharmacokinetic and/or pharmacodynamic characteristics and
uncertain effects may limit clinical application of Sirtuin
reagents, which should be treated with caution. It is hoped that
DKD therapeutic targets in different kidney tissues can be
explored by combining different DKD and specific Sirtuin
expressed animal models as well as reagents in the future.

5.1.1 Diabetic Models
The most widely used model for DKD is STZ, which can enter
islet cells through glucose transporter 2 (GLUT2) with a toxic
effect on insulin, and induce insulin-secreting cells apoptosis. It is
a typical model of type 1 or type 2 DM with or without a high-fat
diet in rats and mice (48–50). It has a high modeling rate and
mild pathological changes in DKD studies but with certain renal
toxicity and multiple interventions with low doses. The effect of
the Sirtuin family regulating STZ-induced DKD is mostly non-
FIGURE 4 | Correlation of human Sirtuin family transcriptome in renal tissues. The analysis was performed on data from RNA-seq of unfractionated tissue samples,
which contained a mixed cell population. Across the respective sample sets the reference transcripts within each cell type panel correlated highly with each other,
but not with those in the other panels. An integrative co-expression analysis was performed to determine the expression profile of each gene; genes highly correlated
with all transcripts in only one reference panel were classified as enriched in that cell type.
June 2022 | Volume 13 | Article 901066
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metabolic damage, mainly manifested as renal damage caused by
mitochondrial dysfunction, oxidative stress, and inflammatory
reaction, which may be associated with renal toxicity of STZ to
some extent (Table 2). The expression of SIRT1, SIRT3, and
SIRT6 were all decreased in the STZ-induced DKDmodel. SIRT1
mainly alleviated renal injury caused by mitochondrial oxidative
stress and cellular inflammation through FoxO1, TGFb1, and
NFkB (58, 60, 69). SIRT3 maintained mitochondrial redox
balance and regulated the glycolysis in renal tubular epithelial
cells through PGC1a and TGFb1 (101, 106). SIRT6 reduced
proteinuria and damage in podocytes and mesangial cells by
regulating H3K9ac and H3K56ac epigenetics, affecting nuclear
translocation of FoxO1, and stabilizing inflammatory mediators
(108, 110, 112, 113).

Anothermodel commonly used to study the Sirtuin family is db/
db mice, which are homozygous mutant mice of leptin receptor
gene encoded by db genes, with spontaneous hyperglycemia and
insulinresistance, and theoccurrenceofDKDcomplications at8-12
weeks and general life of about 10 months. The db/db mice are
widely used in obesity and type 2DM research and are idealmodels
for studying early DKD lesions. The Sirtuin family’s regulation of
db/db mice induced DKD model is mostly metabolic changes,
mainly manifested as pre-renal glucolipid metabolism disorders
caused by glucotoxicity and lipid peroxidation (shown in Table 2).
SIRT1, SIRT3, and SIRT6 were all decreased in this model
consistent with STZ-induced DKD. However, SIRT1 can improve
glycolipid toxicity and oxidative stress via SREBP1 and GLUT2,
thus reducing proteinuria and improving kidney injury (59, 68, 75,
92). SIRT3 reduced oxidative stress and apoptosis of renal tubules
by inhibiting BNIP3 (103). SIRT6 regulated renal tubular damage
andprotected renal function throughSmad3deacetylation (111). In
addition, there are no studies on histones regulation by the Sirtuin
family in db/db mice, which is worthy of further exploration.

Only a few other models have focused on OLETF rats, Akita
mice, OVE26 mice, BTBR ob/ob mice, and eNOS-/- mice. OLETF
rats are animals of high appetence induced by loss of rat
cholecystokinin A receptor genes. It is similar to the DKD
model of human type 2 DM with mild pathological changes,
which can better study the whole duration of DKD (114). Studies
have shown that inhibition of miRNAs can reduce EMT and
renal fibrosis in HK-2 cells of diabetic OLETF rats, and SIRT1 is
identified as the target of these two miRNAs (77), speculating
that SIRT1 has a regulatory effect on OLETF rates DKD model.
Akita mice are islets b apoptosis model affecting the normal
folding of insulin protein induced by dominant missense
mutations of Ins2 genes with the A7 position of insulin
changed from cysteine to tyrosine. Its renal lesions are mild
and survival is difficult with better usage of early DKD filtration
membrane study (115, 116). The study on SIRT3 mentioned
Akita mice with DKD development (117), but there was no
specific study on Sirtuin family members (101). OVE26 mice are
FVB line early-onset type 1 diabetic mice with calmodulin
overexpression in islet b cells leading to islet defect. Mice have
the characteristics of DKD at 4-6 months, with the irreversible
disappearance of podocytes in the later stage and high mortality
(118). Studies have shown that both Sirt1 overexpression and
Frontiers in Endocrinology | www.frontiersin.org 7
exogenous activation reduced podocyte loss and oxidative stress
in OVE26 mice (73). BTBR has the characteristics of natural
insulin resistance, while ob/ob mice leptin mutant genes lead to
loss of satiety and spontaneous obesity in mice. The combination
of the two models can establish the DKDmodel from early to late
but with a high price (119, 120). Studies have shown that SIRT3
decreased in BTBR ob/ob mice renal tissues and SIRT3 reduced
proteinuria improved glomerular and podocyte damage and had
retrograde changes in renal tubular and glomerular (104). The
eNOS-/- mice model accelerates renal injury through vascular
endothelial dysfunction and hypertension. Its combination with
STZ and db/db mice is an ideal model for studying the late stage
of DKD but it is difficult for feeding (121, 122). Puerarin
treatment increased SIRT1 mRNA and protein in podocytes
and significantly alleviated albuminuria and diabetic kidney
injury in diabetic eNOS-/- mice (72), thus speculating the
relationship between SIRT1 and eNOS-/- mice. These studies of
the Sirtuin family are only preliminary and further exploration of
pathological changes in different stages of DKD caused by
different models is still needed.

5.1.2 Sirtuin Gene Editing Models
The Sirtuin-specific model constructed by gene-editing
technology is a supplement to DKD model research (Table 2).
Sirt1 overexpression in transgenic mice attenuated ET-1, TGF-
b1, microalbuminuria, glucose-induced cell damage markers,
and fibronectin in diabetic renal tissues (66). Podocyte-specific
overexpression attenuated the progression of diabetic
glomerulopathy and proteinuria (73). Proximal tubule-specific
Sirt1 transgenic and knockout mice suggested the occurrence of
diabetic glomerular pathological prevention and aggravation,
while non-diabetic knockout mice showed proteinuria,
suggesting that SIRT1 in proximal tubules affected glomerular
function (61). Sirt1 podocyte-specific knockout db/db mice had
more proteinuria, renal injury, and acetylation of p65 and
STAT3 (63). Sirt6 podocyte-specific knockout intensified
podocyte damage and proteinuria (44).

5.1.3 Sirtuin Reagents
In addition, newly developed Sirtuin-related activators and
antagonists also have certain applications in DKD research.
The SIRT1 activator, Resveratrol, has been widely used in
DKD studies (Table 2). In vivo administration of SIRT1
inhibitor, EX-527, for 10 weeks significantly reduced blood
glucose and kidney weight in high-fat diet-induced Zucker
rats, decreased blood urea nitrogen, serum creatinine,
microa lbumin, ur ine excret ion , and inhibi ted the
histopathological expansion of the extracellular mesangial
matrix and glomerulosclerosis (98). Mechanically, EX-527
regulated the accumulation of extracellular matrix in mesangial
cells via the AMPK-PGC1a pathway (94) eliminated the
protective effect of Na2S4 in DKD renal tubular cells (93) and
inhibited autophagy (86). SIRT1 agonist, BF175, increased
PGC1a activation and protected podocyte mitochondria injury
induced by high glucose. In vivo BF175 treatment for 6 weeks
significantly reduced albuminuria and glomerular injury (73).
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TABLE 2 | Role of Sirtuin family in diabetic kidney diseases.

Sirtuin
family

Animal model Cell model Sirtuin related
Reagent

Molecular biology Pathophysiology References

SIRT1 — SV40 MES13 — Smad7 deacetylation attenuate mesangial cell apoptosis (51)
SIRT1 STZ-induced Sprague–

Dawley rats
— SIRT1 activator,

resveratrol
change histone H3 phosphorylation,
MAP kinase p38, SIR2 and p53
expression

— (52)

SIRT1 — HK-2 — activate FoxO3a and catalase release renal tubular cell apoptosis (53)
SIRT1 db/db mice mouse PTC SIRT1 activator,

resveratrol
regulate MnSOD activity ameliorate oxidative stress in

proximal tubules
(54)

SIRT1 db/db C57BLKS mice mouse CIP — FoxO4 deacetylation prevent podocyte apoptosis (55)
SIRT1 diabetic Wistar fatty

and lean rats
— — NFkB deacetylation improve mitochondrial morphology

and autophagosomes
(56)

SIRT1 aldosterone-induced
mitochondrial
dysfunction C57BL/6J
mice

MPC5 SIRT1 activator,
resveratrol

regulate PGC1a reduce aldosterone-induced
mitochondrial dysfunction and
podocyte injury

(57)

SIRT1 STZ-induced Sprague-
Dawley rats

— SIRT1 activator,
resveratrol

activate FoxO1 regulate oxidative stress and
fibrosis

(58)

SIRT1 db/db C57BLKS/J
mice

rat MC SIRT1 activator,
resveratrol

activate PGC1a, ERR1a, and
SREBP1, decrease PI3K, Akt,
FoxO3a

ameliorate glomerular matrix
expansion and inflammation

(59)

SIRT1 STZ-induced Sprague-
Dawley rats

rat MC SIRT1 activator,
resveratrol

activate Nrf2/ARE, reduce
fibronectin and TGFb1, increase
HO1

reduce mesangial cell oxidative
stress

(60)

SIRT1 kidney- and proximal
tubules-specific Sirt1
knockout, STZ-,
FK866-, 5/6
Nephrectomy-induced
nephrectomized and
db/db mice

mouse CIP, HK-2 — epigenetically suppress Claudin1 participate in crosstalk between
podocytes and renal tubules:
SIRT1 in proximal tubules protects
against albuminuria by maintaining
NMN around glomerulus, thus
influencing podocyte function

(61)

SIRT1 STZ-induced Sprague-
Dawley rats

mouse CIP, mouse
GEC

SIRT1 activator,
resveratrol

down-regulate VEGF and VEGFR2 regulate angiogenesis in podocyte
and endothelial cells

(62)

SIRT1 db/db, podocyte-
specific Sirt1 knockout
mice

human CIP — NFkB and STAT3 deacetylation attenuate proteinuria and podocyte
injury

(63)

SIRT1 STZ-induced Sprague–
Dawley rats

— — increase HO1, loss FoxO1 suppress oxidative stress and
extracellular matrix deposition

(64)

SIRT1 STZ-induced diabetic
spontaneously
hypertensive rats

human MC — decrease NOX4 and TGFb1,
maintaining PARP1, intracellular
NAD+/NADH ratio, AMP/ATP ratio,
Smad3 deacetylation

ameliorate mesangial cell
extracellular matrix accumulation

(65)

SIRT1 STZ-induced, Sirt1
transgenic C57BL/6J
mice

HEK293A — regulate p300, ET1 and TGFb1 protect from renal injury (66)

SIRT1 — rat MC SIRT1 activator,
resveratrol

inhibit HIF1a inhibit mesangial cell inflammation
and fibrosis

(67)

SIRT1 db/db C57BLKS/J
mice

human GEC SIRT1 activator,
resveratrol

decrease FoxO1, FoxO3a, and
SREBP1, increase PPARg, PGC1a,
ERR1a, and pACC

ameliorate lipotoxicity, oxidative
stress, apoptosis and endothelial
cell dysfunction

(68)

SIRT1 STZ-induced Wistar
rats

— SIRT1 activator,
resveratrol

normalize TGFb1, fibronectin, NFkB,
Nrf2, and FoxO1

protect renal oxidative damage (69)

SIRT1 STZ-induced Wistar
rats

HK-2 SIRT1 activator,
resveratrol

p53 deacetylation ameliorate renal tubular injury (70)

SIRT1 STZ-induced Wistar
albino rats

— — inhibit NFkB alleviate renal oxidative stress (71)

SIRT1 STZ-induced eNOS−/−

mice
mouse CIP — down-regulate NOX4, increase

NFkB deacetylation
attenuates podocytes injury (72)

SIRT1 OVE26 mice,
podocyte-specific Sirt1
overexpression mice

human CIP SIRT1 agonist,
BF175

activate PGC1a attenuate podocyte loss and
glomerular oxidative stress

(73)

SIRT1 db/db C57BL/KsJ
mice

mouse MC — regulate HIF1a alleviate mesangial cell proliferation
and renal fibrosis

(74)

(Continued)
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TABLE 2 | Continued

Sirtuin
family

Animal model Cell model Sirtuin related
Reagent

Molecular biology Pathophysiology References

SIRT1 db/db C57BL/6 mice LLC-PK1 porcine
renal epithelial cells

— up-regulate GLUT2, down-regulate
SGLT2

high basolateral glucose in renal
tubules increases SGLT2 and
decreases SIRT1 and GLUT2

(75)

SIRT1 — HK-2 — regulate LC3II, ATG5 and ATG7 regulate autophagy and fibrosis in
renal proximal tubules

(76)

SIRT1 OLETF rats HK-2, HEK293T — regulate TGFb1 attenuate EMT and proximal tubule
cell fibrosis

(77)

SIRT1 STZ-induced diabetic
CD-1 mice

mouse CIP SIRT1 activator,
resveratrol

regulate PGC1a, increased MnSOD,
inhibit ROS

attenuation of mitochondrial
oxidative stress, inhibit podocyte
and renal tubular epithelial cell
apoptosis

(78)

SIRT1 STZ-induced Sprague–
Dawley rats

— — up-regulate Nrf2/HO1 renal tubules dysfunction and
oxidative stress

(79)

SIRT1 STZ-induced C57BL/
6J mice

— — regulate PGC1a improve kidney fibrosis and
mitochondrial biogenesis

(80)

SIRT1 — HEK293 — down-regulate phosphorylate mTOR prevent kidney cell damage (81)
SIRT1 STZ-induced C57BL/

6J mice with HFD
— — activate AMPK/PGC1a improve renal fibrosis,

inflammation, and oxidative stress
(82)

SIRT1 STZ-induced C57BL/6
mice

human CIP, rat
GEC, rat MC

— PGC1a and FoxO1 deacetylation balance mitochondrial dysfunction,
biogenesis, and mitophagy,
regulate podocyte injury and
proteinuria

(83)

SIRT1 STZ-induced Sprague–
Dawley rats

rat MC — regulate FoxO1 alleviate abnormal mesangial cells
proliferation

(84)

SIRT1 STZ-induced C57BL/6
mice

mouse MC — regulate PGC1a, Nrf1, mtTFA,
mtDNA copy, and ATP

affect mitochondrial biogenesis and
function in mesangial cells

(85)

SIRT1 STZ-induced Sprague–
Dawley rats with HFD

— SIRT1 inhibitor,
EX527

regulate FoxO1 alleviate oxidative stress and
structural changes of glomerulus,
inhibit extracellular matrix

(86)

SIRT1 STZ-induced CD1
mice, db/db C57BLKS/
J mice

human CIP SIRT1 activator,
resveratrol; SIRT1
inhibitor, EX527

phosphorylation SIRT1 S47 to S47A
decrease ROS and cytochrome c
release, increase ATP

regulate podocyte mitochondrial
function

(87)

SIRT1 STZ- induced C57BL/
6J mice with HFD

mouse CIP — inhibit NFkB inhibit podocyte oxide stress and
inflammation

(88)

SIRT1 STZ-induced Sprague–
Dawley rats

— — inhibit NLRP3, IL1b, TNFa and
NFkB

regulate renal oxidant-antioxidant
balance, dampen inflammation,
attenuate collagen accumulation

(89)

SIRT1 STZ-induced Sprague–
Dawley rats with HFD

mouse CIP — activate phosphorylate AMPK and
inhibit phosphorylate NFkB

block podocyte oxidative stress
and inflammatory responses

(90)

SIRT1 STZ induced Wistar
rats

— — inhibit phosphorylate FoxO3a,
Claudin1

suppress renal oxidative stress (91)

SIRT1 db/db C57BL/6J mice MPC5, rat MC,
GEC, HK-2, NRK-
52E, RAW 264.7

— activate AMPK-SREBP1 participate in podocyte lipid
metabolism

(92)

SIRT1 STZ-induced C57BL/6
mice

HK-2 SIRT1 inhibitor, EX-
527

induce NFkB and STAT3
dephosphorylation and deacetylation

reduce tubular epithelial cell
oxidative stress, apoptosis,
inflammation response, and EMT

(93)

SIRT1 db/db C57BLKs/J
mice

SV40 MES13 SIRT1 inhibitor,
EX527

compete with PARP1 for NAD+,
activate AMPK/PGC1a

ameliorate mesangial cell
extracellular matrix accumulation

(94)

SIRT1 STZ-induced C57BL/6
mice with HFD

— — upregulate PGC1a upregulate in diabetic mice kidney (95)

SIRT2 caloric restriction
C57BL/6 mice

HEK293, HEK293T — FoxO3a deacetylation, increase
FoxO DNA binding, Kip1, MnSOD,
and Bim

oxidative stress increases SIRT2 in
kidney cells

(96)

SIRT1
and
SIRT3

— rat MC — maintaining intracellular NAD+/NADH
ratio, blocked Akt, augmented
AMPK, prevent mTOR

inhibit mesangial cell hypertrophy (97)

SIRT1
and
SIRT3

Zucker Diabetic Fatty
Rats with HFD

— SIRT1 inhibitor,
EX527

regulate Claudin1 revealed expansion of the
extracellular mesangial matrix and
suppression of glomerulosclerosis

(98)

SIRT3 — HK-2 — regulate Akt/FoxO1 and FoxO3a
activity

antagonize tubular epithelial cell
apoptosis

(99)

(Continued)
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SIRT3 inhibitor, 3-TYP, inhibited mitochondrial function,
apoptosis, and reactive oxygen species (ROS) production in
proximal tubular cells under high glucose conditions (103).
The research and development, as well as the DKD application
of these gene-editing model animals and reagents, play an
effective role in the study of the Sirtuin family in DKD.

Sirtuin family targeting reagents, especially Resveratrol, are
considered to have high potential in clinical molecular targeted
therapy for DKD (123). It is found that its antioxidant and anti-
inflammatory properties are associated with diabetes, obesity,
cardiovascular diseases, and cancer in related clinical trials (124),
however, the adverse pharmacokinetic and/or pharmacodynamic
Frontiers in Endocrinology | www.frontiersin.org 10
characteristics, such as poor bioavailability, may limit its wide
clinical application (125), and even some studies have shown no
significant effect on renal function (126). Therefore, these results
should be treated with caution before the clinical transformation.

5.2 Renal Injury
Early changes of DKD are focused on the glomerular filtration
membrane, while renal tubules and other renal areas for the later
changes. The Sirtuin family has been widely studied for early
filtration membrane injury, including mesangial matrix
thickening, abnormal mesangial cell proliferation, and
podocytes damage. NAD+ is concentrated in renal tubules,
TABLE 2 | Continued

Sirtuin
family

Animal model Cell model Sirtuin related
Reagent

Molecular biology Pathophysiology References

SIRT3 Zucker Lean Rats and
Zucker Diabetic Fatty
Rats

HK-2 — IDH2 deacetylation, decrease SOD2,
CD38, increase NAD+/NADH ratio

decrease tubular cell damage,
mitochondrial oxidative stress and
morphologic alterations

(100)

SIRT3 STZ-induced CD-1 and
C57Bl6 KsJ mice, Akita
mice

HK-2 — inhibit TGFb1/Smad3, HIF1a, and
PKM2 dimer formation

abnormal glycolysis and EMT in
tubular epithelial cells

(101)

SIRT3 — HK-2 — increase phosphorylated Akt and
FoxO3a

protect tubular epithelial cells
against oxidative stress and
apoptosis

(102)

SIRT3 db/db C57BL/6J mice mouse PTC SIRT3 inhibitor, 3-
TYP

inhibit BNIP3 ameliorates oxidative stress and
cell apoptosis in proximal tubular
cells

(103)

SIRT3 BTBR ob/ob mice — — activate SOD2, restore PGC1a attenuate albuminuria, ameliorate
glomerular damage, reduce
podocyte injury, tubule-glomerulus
retrograde interplay

(104)

SIRT3 Zucker Lean Rats and
Zucker Diabetic Fatty
Rats

HK-2 — restore intracellular NAD +/NADH
ratio

reduce tubulointerstitial fibrosis and
tubular cell damage

(105)

SIRT3 STZ-induced Wistar
rats with HFD

— — activate PGC1a and SOD2 maintaining mitochondrial redox
equilibrium

(106)

SIRT4 — mouse CIP — down-regulate NOX1, Bax and
phosphorylated p38, up-regulate
Bcl2, attenuate TNFa, IL1b and IL6

inhibit podocyte apoptosis (107)

SIRT6 podocyte-specific Sirt6
knockout, STZ-induced
diabetic, adriamycin-
induced nephropathy,
db/db C57BL/6 mice

rat MC, rat GEC,
HK-2, human CIP

— histone H3K9 deacetylation, inhibit
Notch1 and Notch4 transcription

exacerbate podocyte injury and
proteinuria

(44)

SIRT6 STZ-induced C57BL/6
mice

human CIP — increase H3K9ac and H3K56ac suppress mitochondrial dysfunction
and apoptosis in podocytes

(108)

SIRT6 STZ-induced C57BL/
6J mice

HK-2 — regulate TIMP1 regulate tubular basement
membrane thickening, collagen
deposition, and albuminuria

(109)

SIRT6 STZ-induced diabetic
rats

THP-1, MPC5 — upregulate Bcl2 and CD206,
decrease Bax and CD86

activate M2 macrophages
regulating immune response,
protect podocyte injury

(110)

SIRT6 db/db mice HK-2 — Smad3 deacetylation regulate tubular injury and renal
function loss

(111)

SIRT6 STZ-induced Kunming
mice

Rat MC — regulate IL6, IL1b, TNFa and MPO regulate proliferation, migration,
fibrosis and inflammatory response
in mesangial cells

(112)

SIRT6 STZ-induced diabetic
rats

mouse PTC — affect nuclear translocation of FoxO1 reverse the glucose reabsorption
and gluconeogenesis effect

(113)
June 2022 | Volume 13 | A
GEC, Glomerular endothelial cells; VSMC, vascular smooth muscle cells; CIP, conditionally immortalized podocytes; MC, mesangial cells; PTC, proximal tubular cells. Specific cell lines:
HUVEC, human umbilical vein endothelial cells; MPC5, mouse podocyte cells; SV40 MES13, mouse mesangial cell line; NRK-52E, rat renal tubular epithelial cells; HK-2, human tubular
epithelial cells; HEK293, HEK293A, HEK293T, human embryonic kidney cells; THP-1, human peripheral blood monocyte; RAW 264.7, mouse macrophage-like cell line. Special treatment:
streptozotocin (STZ), high-fat diet (HFD), OLETF rats, OVE26 mice, db/db mice, BTBR ob/ob mice and Akita mice were seen in the main body of text.
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thus, Sirtuin is also closely related to renal tubular injury as well
as crosstalk between podocytes and other renal cells.

5.2.1 Glomerular Filtration Membrane
Early changes of DKD are mesangial matrix thickening,
abnormal proliferation of mesangial cells, and podocytes
changes. The cause of continuous urinary protein changes is
mainly focused on abnormal changes in the filtration membrane
(11). SIRT1 decreased in renal tubules and glomerulus of diabetic
nephropathy patients (127, 128). SIRT6 was detected to decrease
in renal biopsy samples of patients with diseases in podocytes
including DKD and its expression was correlated with
glomerular filtration rates (44). Studies have shown that high
glucose reduced SIRT1, SIRT3, SIRT4, and SIRT6 levels in
podocytes (83), suggesting that the Sirtuin family can regulate
DKD filtration membrane changes.

Abnormal changes in the DKD filtration membrane mainly
focus on the structural and functional changes of mesangial cells
in the early stage. Our previous studies explored the protective
effect of SIRT1 deacetylase modification on DKD mesangial cell
injury (84, 129). SIRT1 regulated hypertrophy and proliferation
of mesangial cells (74, 84), mesangial matrix deposition (59, 65,
94), oxidative stress (60, 73) and fibrosis (67, 74) in diabetic
model. SIRT1 also regulated mesangial cell matrix deposition
(97) and mesangial hypertrophy (98) together with SIRT3.
Additionally, SIRT6 had an effect on the proliferation,
migration, fibrosis, and inflammation in mesangial cells (112).

Major changes in the late stage of DKD are the filtration
membrane changes caused by podocytes. Among them, SIRT1
mainly regulated oxidative stress and inflammation in podocytes
under high glucose conditions (88, 90) and then slowed down the
apoptosis process (55, 78). SIRT1 was also involved in the lipid
metabolism of podocytes (92). In addition, SIRT4 and SIRT6
affected proteinuria production by regulating podocyte apoptosis
(44, 107, 108). Studying the changes in the filtration membrane is
helpful to prove the mechanism of the Sirtuin family regulating
proteinuria production through the DKD filtration membrane
system (Figure 5).

5.2.2 Renal Tubules
NAD+ metabolism is enriched in the proximal tubular area (21),
which may be closely related to the localization and expression of
the Sirtuin family in renal t issues. Therefore, the
pathophysiological role of renal tubules in DKD should not be
ignored (130). The main function of diabetic renal tubules is
glucose reabsorption and metabolism. Sodium-glucose
cotransporter 2 (SGLT2) transports glucose from proximal
tubular lumen into proximal tubular cells through active
transport in the apical membrane (131, 132). Then glucose
easily diffuses into the blood along the concentration gradient
through glucose transporter 1/2 (GLUT1/2) after reaching the
basement membrane to complete the glucose reabsorption
process (133). It was found that high glucose increased SGLT2
in the basement membrane of renal tubules and decreased SIRT1
and GLUT2 (75). SIRT3 in diabetic kidneys was inhibited,
showing fibrotic reprogramming related to abnormal renal
glycolysis (101). SIRT6 reversed the glucose reabsorption and
Frontiers in Endocrinology | www.frontiersin.org 11
gluconeogenesis effect (113). These Sirtuin family changes in
renal glucose metabolism are of great significance for renal blood
glucose regulation.

Except for renal glucose metabolism, late renal changes of
DKD mainly include renal tubular epithelial atrophy, collagen
deposition, activation of myofibroblast and matrix, inflammatory
cell influx, and epithelial-mesenchymal transition (EMT) (134,
135). Studies showed that SIRT1 mainly regulated cell apoptosis
induced by renal tubular oxidative stress (54, 78, 79, 93), fibrosis
(76, 77) and EMT (77, 93). SIRT3 was mainly related to renal
tubular oxidative stress (100, 102, 103). SIRT6 affected basement
membrane thickening in renal tubules and collagen deposition
(109). These above-noted studies all indicate that the Sirtuin
family regulates late DKD pathological changes of oxidative
stress, fibrosis, and EMT in renal tubules (Figure 5).

5.2.3 Intercellular Crosstalk
More interestingly, the Sirtuin family is closely related to the
regulation of podocytes-mediated renal cell crosstalk in DKD
studies. It was found that SIRT1 reduced mitochondrial oxidative
stress in DKD renal tissues and inhibited cell apoptosis in
podocytes and tubular epithelial cells (78). Proximal tubular
SIRT1 affects podocyte function by maintaining periglomerular
NMN concentration (61). The protective effect of SIRT3 on DKD
proteinuria and glomerular changes may be due to retrograde
tubule-glomerular interaction. Upregulation of SIRT3 and
NAMPT in renal tubules can provide NMN required by
diabetic podocytes and other glomerular cells and ultimately
provide glomerular NAD+ to further increase SIRT3 activity,
forming a virtuous cycle (104). The Sirtuin family interaction in
podocyte-tubules provides NAD+ as energy for various regions
of renal tissues and participates in maintaining normal cell
metabolism. SIRT1 in podocytes and endothelial cells was also
linked, which regulated both podocytes and endothelial
angiogenesis (62). In addition, the Sirtuin family also regulated
podocyte-macrophage crosstalk. High glucose promoted M1
macrophages transformation, podocyte apoptosis, and
decreased SIRT6. SIRT6-overexpressed macrophages could
transform into M2 macrophages and protect podocytes from
high glucose damage (110). It suggests that podocytes-
macrophages crosstalk of the Sirtuin family provides a
theoretical basis for protecting against DKD injury (Figure 5).

5.3 Specific Mechanism
Sirtuin is the first discovered class III HDAC with different
epigenetic enzyme effects in DKD. Intracellular NAD+/NADH
ratios maintain the activity of the Sirtuin family for
mitochondrial biogenesis. Multiple Sirtuin-related targets
found through literature learning and bioinformatics are of
great significance to explore the pathogenesis of DKD.

5.3.1 Epigenetics
Epigenetics mainly involves DNA methylation, histone
modification, and chromosomal remodeling, among which
histone covalent modification includes methylation,
acetylation, phosphorylation, and ubiquitination (136–138).
Acetylation modifications mainly include “Reader” for specific
June 2022 | Volume 13 | Article 901066
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recognition of protein lysine, “Writer” as acetyltransferase, and
“Eraser” as deacetylation HDACs (139, 140), while Sirtuin is the
first discovered class III HDAC. In DKD studies, SIRT1 was
involved in the phosphorylation of histone H3 (52) and the
acetylation of H3K9 (44, 108). Moreover, SIRT1 has a variety of
deacetylase effects. Sirtuin studies on DKD has reported target
proteins including Nuclear factor kappa B (NFkB) (56, 63, 72,
93), Smad3 (65), Smad7 (51), Forkhead Box Protein O1 (FoxO1)
(83), Forkhead Box Protein O4 (FoxO4) (55), signal transducer
and activator of transcription 3 (STAT3) (63, 93), Peroxsome
proliferator-activated receptor-g coactlvator-1a (PGC1a) (83),
p53 (70), and Claudin1 (61). Meanwhile, SIRT1 could make
actions for dephosphorylating NFkB and STAT3 (93). In studies
of other Sirtuin family members with DKD models, SIRT2 can
deacetylate Forkhead Box Protein O3a (FoxO3a) (96), SIRT3 can
deacetylate isocitrate dehydrogenase 2 (IDH2) (100), and SIRT6
can deacetylate Smad3 (111). Polydeacetylation and
Frontiers in Endocrinology | www.frontiersin.org 12
dephosphorylation targets researches of the Sirtuin family are
of great significance for DKD function regulation (Figure 5).

5.3.2 Mitochondrial Function
The Sirtuin family participates in various deacetylation for
mitochondrial biogenesis, oxidative stress, inflammatory cell
apoptosis, and autophagy through cellular NAD+ usage. The
imbalance of NAD+ and NADH is a marker of DM and its
chronic complications (141). In the diabetic state, the glycolysis
pathway and tricarboxylic acid cycle are activated, NAD+ is
reduced to NADH, leads to NADH overload and ROS
increase, and further leads to oxidative stress. NAD+ decrease
also results in acetylation of proteins such as PGC1a involved in
oxidative stress and mitochondrial biogenesis, ultimately leading
to DKD progression (142, 143).

In the mitochondrial function changes, poly ADP-ribose
polymerase 1 (PARP1) is a DNA repair and protein
FIGURE 5 | Schematic diagram of Sirtuin family. The Sirtuin family is a deacetylase with an NAD+ binding domain that consumes NAD+ to regulate energy
metabolism. Sirtuin family regulates mesangial cell proliferation and hypertrophy, podocytes apoptosis, glucose metabolism in proximal tubules, and renal tubular
injury in DKD pathophysiological changes through epigenetics of acetylation and dephosphorylation, NAD+ induced mitochondrial function, and multiple signaling
pathway targets. It also participates in podocytes mediated renal tubular cells, endothelial cells, and macrophages crosstalk. (A) renal injury of Sirtuin family in DKD;
(B) specific mechanism of Sirtuin family in DKD.
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modification enzyme that competes with NAD+ to cause
mitochondrial dysfunction (144). Manganese superoxide
dismutase (MnSOD) is a key antioxidant enzyme in
mitochondria (145). Mitochondrial transcription factor A
(mtTFA) is a key regulator for mitochondrial DNA (mtDNA)
transcription and replication, maintaining the normal function of
mitochondria and preventing mitochondrial damage (146). It was
found that NAD+ maintained intracellular NAD+/NADH ratio as
well as SIRT1 and SIRT3 activities (65, 97). SIRT1 phosphorylation
mutations from S47 to S47A can regulate podocyte mitochondrial
function by reducing ROS and CytC release and increasing ATP
(87). SIRT1 can compete with poly ADP-ribose polymerase 1
(PARP1) for NAD+ (94) and maintain PARP1, intracellular
NAD+/NADH ratio, AMP/ATP ratio (65), MnSOD activity (54),
mtTFA and mtDNA copy number (85). SIRT2 can increase
MnSOD activity (96), while SIRT3 can restore intracellular
NAD+/NADH ratios (100, 105). In conclusion, SIRT1-3 reduces
oxidative stress by improving energy metabolism and plays an
important role in regulating mitochondrial function in
DKD (Figure 5).

5.3.3 Signaling Pathway
Moreover, we conducted machine learning for all the literature
on the Sirtuin family and the wordle of the Sirtuin family
signaling pathway in DKD was visualized (Figure 5). The
wordcounts with the top highest frequency were PGC1a,
NFkB, FoxO1, FoxO3a, transforming growth factor-b1
(TGFb1), and AMPK, suggesting a close relationship of Sirtuin
family and these pathway factors.

PGC1a plays a role in energy metabolism processes including
adaptive thermogenesis, mitochondrial biosynthesis, liver
glycogenesis, and fatty acid b oxidation. Therefore, changes of
PGC1a occur the most in the DKD process of the Sirtuin family,
which is closely related tomitochondrial oxidative stress and energy
metabolism (57, 68, 73, 78, 80, 82, 83, 85, 94, 104, 106). PGC1a can
regulate the non-ligand-dependent orphan nuclear receptor,
estrogen-related receptor a (ERRa), and regulation of the Sirtuin
family in DKD is also accompanied by changes of ERRa (59, 68).
Meanwhile, the regulation of PGC1a by the Sirtuin family is also
accompanied by the changes of FoxO transcription factors (59, 68,
83) due to the same mitochondrial energy regulation.

NFkB is involved in the immune and inflammatory response
to external stimuli. It mainly plays a role in mitochondrial
oxidative stress in DKD regulation of Sirtuin family (56, 69,
71, 72, 88–90) and STAT3-mediated inflammatory regulation
(63, 88–90, 93).

FoxO transcription factor family plays an important role in
aging and longevity. They mainly involved in the regulation of
Sirtuin family in the oxidative stress response in various regions
of DKD kidney (53, 58, 64, 68, 69, 86, 91, 96, 102). Our previous
studies have found that SIRT1 alleviated oxidative stress and
enhanced autophagy in renal tissues of diabetic rats by regulating
FoxO1 phosphorylation, which also confirms the main role of
Sirtuin (84). The Akt signaling pathway can regulate the changes
of the FoxO transcription factor, thus the regulation of SIRT1/3-
FoxOs in DKD always involves the Akt participation (59, 99,
102). In addition, changes of PGC1a often happen in the
Frontiers in Endocrinology | www.frontiersin.org 13
regulation of Sirtuin-FoxOs in DKD, which may be related to
their common energy regulation function (59, 68, 83).

TGFb1 is a key molecule of renal fibrosis. SIRT1 induces
glomerular extracellular matrix proliferation and changes of
Collagen type IV (ET-1), Collagen 1a, and non-collagenous
glycoprotein, Fibronectin, via TGFb1/Smad pathway in early
DKD (65, 66, 69, 77). Endogenous antioxidant stress results in
renal fibrosis and changes of nuclear factor erythroid 2-related
factor 2 (Nrf2)- antioxidant responsive element (ARE)pathway (60,
69).Our previous research also indicates that SIRT1 regulatesDKD
oxidative stress and fibrosis in diabetic rats through HIF1a and
TGFb1/Smad3 signaling pathway (129). Additionally, SIRT3 in the
DKD model was associated with TGFb1-mediated renal fibrosis
(101).Therefore, regulationof theSirtuin family inDKDviaTGFb1
is mainly related to extracellular matrix accumulation at the early
stage leading to renal fibrosis.

AMPK is a key molecule in the regulation of biological energy
metabolism. Our previous research found that SIRT6 regulated
sterol regulatory element-binding protein 1c mediated glucolipid
metabolism in the liver and pancreas through AMPKa-
mTORC1 (147). In the DKD study, SIRT1 regulated podocyte
fatty acid synthesis via AMPK-SREBP1 (92), podocyte
inflammation by AMPK-NFkB (90), glucolipid metabolism,
and mitochondrial function by AMPK-PGC1a (82),
fibronectin in mesangial matrix deposition (94), and protein
synthesis and mesangial cell hypertrophy through AMPK-
mTOR (97). In addition, we found that SIRT1 activated by
metformin could regulate DKD progression in mesangial cells
(84). All the above suggests that SIRT1-AMPK induced
glucolipid metabolism of the Sirtuin family plays a key role in
DKD mesangial cells and podocytes.
6 CONCLUSION

The Sirtuin family is a deacetylase with NAD+ binding domains.
SIRT1-7, as members of the Sirtuin family, have different
subcellular localization and catalytic enzyme activities, which
consume NAD+ to regulate energy metabolism, mitochondrial
function, redox, and other cellular reactions. Studies have shown
that the Sirtuin family regulates mesangial cell proliferation and
hypertrophy, podocytes apoptosis, proximal tubular glucose
metabolism, and renal tubular injury under DKD conditions.
Meanwhile, the Sirtuin family is closely related to the regulation
of podocytes mediated renal tubular, endothelial cells, and
macrophages crosstalk. These pathophysiological changes are
regulated by epigenetics of deacetylation and dephosphorylation,
NAD+ involved mitochondrial function changes and multiple
signaling pathway targets. However, literature and databases still
show contradictories in the renal expression of the Sirtuin family,
which needs further exploration. The mechanism of the Sirtuin
family and DKD is still at the superficial stage. The research
results of other pre-renal metabolic diseases, renal injury
diseases, and post-renal obstructive diseases may have some
enlightenment with the research on DKD. With the rapid
development of modern science and technology, different
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gene-specific expression animals and DKD models, as well as
reagents, have been discovered. The Sirtuin family is expected to
become an important therapeutic target of DKD by regulating
different regions of renal tissues.
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