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Abstract: Coronavirus, an important zoonotic disease, raises concerns of future pandemics. The bat
is considered a source of noticeable viruses resulting in human and livestock infections, especially
the coronavirus. Therefore, surveillance and genetic analysis of coronaviruses in bats are essential
in order to prevent the risk of future diseases. In this study, the genome of HCQD-2020, a novel
alphacoronavirus detected in a bat (Eptesicus serotinus), was assembled and described using next-
generation sequencing and bioinformatics analysis. The comparison of the whole-genome sequence
and the conserved amino acid sequence of replicated proteins revealed that the new strain was
distantly related with other known species in the Alphacoronavirus genus. Phylogenetic construction
indicated that this strain formed a separated branch with other species, suggesting a new species
of Alphacoronavirus. Additionally, in silico prediction also revealed the risk of cross-species infection
of this strain, especially in the order Artiodactyla. In summary, this study provided the genetic
characteristics of a possible new species belonging to Alphacoronavirus.

Keywords: Alphacoronavirus; novel species; bat; Korea

1. Introduction

Coronavirus, a group of enveloped, positive single-stranded RNA of approximately
30 kb in length, belongs to the subfamily Orthocoronavirinae, family Coronaviridae, and
is classified into four genera: Alphacoronavirus, Betacoronavirus, Gammacoronavirus, and
Deltacoronavirus [1]. Alphacoronavirus has been recognized as the causative agent of mild
respiratory syndromes in humans, such as the human coronavirus (HuCoV) NL63 and
HuCoV 229E, and serious respiratory diseases in livestock [2]. Transmissible gastroenteritis
coronavirus (TGEV), porcine epidemic diarrhea virus (PEDV), and recently, porcine enteric
alphacoronavirus (PEAV) are the major viruses responsible for most of the pandemics in
pigs, causing huge economic losses [3,4]. Betacoronavirus causes several deadly diseases
in humans such as severe acute respiratory syndrome (SARS), Middle East respiratory
syndrome (MERS), and Coronavirus Disease-19 (COVID-19) [2]. Most of these diseases
have originated from wild animals.
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Due to their large genome size, high mutation rates, and recombination between
homologous RNA regions, coronaviruses are considered as one of the most diversified
viruses [5]. The extreme diversity of coronaviruses has been observed in rodents and bats
worldwide [6–8]. In detail, almost all corona positive samples collected in Asia, Africa, and
North America were bats which account for 91/100 different taxonomic units [6]. Three
different coronavirus groups were observed in 16 rodent species belonging to seven differ-
ent genera. In addition to the two well-known reservoirs mentioned above, coronavirus
was also prevalent in rabbits and hedgehogs in France [7]. Although the study focused on
the highly conserved region of Rna-dependent RNA polymerase (RdRp) encoding genes,
many potentially new Coronavirus species have been detected in wild animals around
the world [9–11]. Recently, six novel species/variants were obtained in rodents [12] and
bats [11] in China. Bat species’ richness, for instance, was correlated with the diversity
of coronavirus [6]. The diversity of coronaviruses and high recombinant rates, on the
other hand, increased the risk of host switch and ecological niche adaptations [13]. The
sequence analysis of multiple complete genomes of camel coronavirus revealed a trace of
rabbit coronavirus and rodent coronavirus [14]. Additionally, viral quasispecies followed
by selection might have played an important role for coronavirus during the new host
adaptation [15].

Bats are unique mammals (with distinct characteristics such as a long lifespan, being
the only mammal capable of actually flying, and a gregarious nature), and they are widely
distributed worldwide. As a result, they come into easy contact with other animals. Bats
are important original reservoirs for a vast number of zoonotic viruses, which cause serious
infections in humans and livestock [16]. Several strains of Alphacoronavirus and Betacoron-
avirus detected in bats have been known to induce diseases such as COVID-19, responsible
for the current pandemic, as well as many serious infectious diseases in livestock [17,18]. In
fact, more than one-third of viruses detected in bats belong to the Coronaviridae family [19].
The prevalence of coronaviruses in bats was 15.2% in Korea [20] and 6.8% in China [11].
Corona infection rates of bats were estimated at 1.7% in Gabon [21] and 3.7% in Brazil [22].
Host restriction of the bat coronavirus is still under debate. Some studies suggest that the
coronavirus might be restricted to the bat genus or below level [23,24], . A genetic analysis
of Rdrp encoding fragments of bat coronavirus in Northern Germany indicated that closely
related coronavirus strains were more likely associated with the bat species than with the
location of the sampling sites [25]. On the other hand, others supported the wide host
range of coronavirus groups [5,9]. BatCoV HKU10 strains detected in different bat species
shared a highly similar sequence throughout the genome, except the genes encoding for
the spike protein, which contributed to the new host adaptation [26]. Similar phenomena
were also observed in the cases of SARS-CoV2 infections in humans and SARS detected
in bats [27].

Therefore, it is necessary to continue active surveillance and genetic analysis of newly
detected coronaviruses in bats. In Korea, previous studies based on partial RdRp indi-
cated that bats contained a diversity of alpha- and beta-coronaviruses [20,28]. However, a
genomic-based approach provides more in-depth analysis into the diversity of bat coro-
naviruses in terms of genetic variation. As a result, we describe the complete genomic
characteristics of HCQD-2020, a novel Alphacoronavirus species isolated from a Korean bat
species, Eptesicus serotinus.

2. Materials and Methods
2.1. Sampling, RNAExtraction and RT-PCR

From July to September 2020, six carcasses of different microbat species (Eptesicus
serotinus, Myotis petax, M. ikonnibovi, and Pipistrellus abramus) were collected from Kang-
won and Gyeongbuk provinces (Table S1). Samples were kept in ice packages and then
transferred to the College of Veterinary Medicine, Seoul National University. Organs of the
bat carcasses (lung, intestine, and liver) were homogenized in 1 ml of Dulbecco’s Modified
Eagle Medium (DMEM) followed by three cycles of freeze–thaw procedure. An amount of
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150 µL of this homogenized solution was used for RNA extraction using a DNA/RNA ex-
traction kit (Intron Biotech, Gyeonggi-do, Korea) according to the manufacturer’s protocol.
Previously published pancoronavirus primers [29] were applied for screening the presence
of coronavirus in the bat samples (Table S2). RT-PCR reactions using the TOPScript One-
step RT-PCR kit (Enzynomics, Daejeon, Korea) were performed under the condition of
initial heating of 50 ◦C for 30 min, 95 ◦C for 10 min; followed by 40 cycles of 95 ◦C for 30 s,
55 ◦C for 30 s and 72 ◦C for 30 s; and a final elongation step at 72 ◦C for 7 min. Corrected
bands were purified by gel extraction followed by directed DNA sequencing.

2.2. Whole-Genome Sequencing, Genome Assembly, and Annotation

To prepare RNA samples for next-generation sequencing (NGS), 0.5 mL of the homog-
enized solution was treated with 10 µL of RNase (4 mg/mL) (Biosesang, Gyeonggi-do,
Korea) and 10 µL of DNase (10 U/µL) (Promega, Madison, WI, USA) for 30 min. The
nuclease-treated solution was filtered through a 0.2 µm filter (Sartorius, Goettingen, Ger-
many). Finally, particle-associated RNA was extracted as described above. The RNA
sample was sent to Macrogen for NGS using a library of 346 bp in size.

Raw data of 101 bp pair-end sequencing was filtered to remove the low-quality base
calling by FastQC using the recommended parameters. Filtered reads were assembled de
novo using SPAdes software [30]. A scaffold related to coronavirus was detected by Blastn
by comparing with the coronavirus database. Next, the 3′-end sequencing was performed
as described elsewhere [31].

Whole genome sequence of the novel coronavirus was annotated by the Z-curve
tools [32]. Putative structural and non-structural proteins were validated by the Blastp
method. Functional domains of the proteins were analyzed by Interpro (https://www.ebi.
ac.uk/interpro/search/sequence-search accessed on 4 April 2021) [33] using the following
databases: CATH-gene3D, CDD, MobiDB, HAMAP, PANTHER, Pfam, PIRSF, PRINTS,
ProDom, PROSITE, SFLD, SMART, SUPERFAMILY, and TIGRFAMs. RNA structural
elements were scanned with the Rfam database (https://rfam.xfam.org/ accessed on 5
April 2021) [34].

2.3. Sequence Alignment and Phylogenetic Construction

Recombinant events were commonly detected and continuously played roles in the
evolution of coronaviruses [35,36]. For the purpose of classification with previously known,
well-defined viruses of Alphacoronavirus genus, this study did not perform recombination
analysis prior to phylogenetic reconstructions. All phylogenetic trees were inferred based
on the whole genome, structural and nonstructural protein-encoding genes rather than the
genomic fragment in between the predicted breakpoints.

The obtained genome, structural- and nonstructural- protein-encoding genes were
aligned with those of the representative species belonging to the Alphacoronavirus genus
(Supplement data) by MAFFT algorithm [37]. Phylogeny trees were constructed us-
ing Iqtree2 [38] using the best-fit substitution model, automatically selected by option
“-m MFP” [39]. Statistical support was obtained by performing ultrafast bootstrap ap-
proximation [40]. The constructed trees have been displayed by FigTree v1.4.4 (https:
//github.com/rambaut/figtree/ accessed on 9 April 2021).

2.4. Potential Host Prediction

In order to investigate the cross-infection of this strain, an online web tool (available
at http://host-predict.cvr.gla.ac.uk/ accessed on 2 May 2021) was used to predict the
potential reservoir host [41]. A model combining genomic biases and phylogenetic neigh-
borhood was applied in this study for greater accuracy. In detail, the coding sequence of all
putative genes and the whole genome of HCQD-2020 strain were used for prediction. The
results are represented as a box-plot graph displaying the min, 25th percentile, median,
75th percentile, and max probability scores of each group of reservoir hosts. The higher the
score, the more significant the probability that a group of hosts acted as a reservoir.

https://www.ebi.ac.uk/interpro/search/sequence-search
https://www.ebi.ac.uk/interpro/search/sequence-search
https://rfam.xfam.org/
https://github.com/rambaut/figtree/
https://github.com/rambaut/figtree/
http://host-predict.cvr.gla.ac.uk/
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3. Results
3.1. Coronavirus Detection in Bat Samples

To examine the presence of coronavirus in the bat samples collected in this study,
organ samples from each bat including the lungs, intestine, and liver were applied for RNA
extraction followed by RT-PCR using the pan-CoV primers. Of these, only the intestinal
sample from E. serotinus collected from Gyeongbuk exhibited a single band of 440 bp as
expected. All other samples were negative with coronavirus. Therefore, we extracted this
band for Sanger sequencing. A phylogenetic analysis indicated that this isolate belonged
to the Alphacoronavirus genus (Figure S1).

3.2. Whole-Genome Assembly and Annotation

Whole-genome sequencing using the Illumina platform was carried out to further
analyze the genomic characteristics of the isolate detected in this study. A total of 7.2 Gbps
with percentages of high-quality base calling of 98.74% and 96.46% for Q20 and Q30 was
obtained. A near complete genome (28,752 nucleotides excluding the poly-A tail with the
average depth of 30X) of the alphacoronavirus strain HCQD-2020 (GenBank accession
number: MW924112) was obtained and annotated. Sequence annotation showed that
this strain contains seven common open reading frames (ORFs) in the typical order 5′-
UTR-ORF1ab-S-ORF3-E-M-N-ORF7-3′-UTR (Figure 1). Hexanucleotide transcriptional
regulatory sequences (TRSs) required for the transcription of complete and subgenomic
RNA were also identified (Table 1). Additionally, the putative signal sequences, including a
partial 5′-UTR, a 3′-UTR, and a coronavirus frameshifting stimulation element, conserved
the slippery sequence (Table 2). The characteristics of putative nonstructural proteins (NSP)
1–16 are described in Table 3. The appearance of a small ORF (or ORFs), with unknown
function, (normally named as ORF7) downstream of the nucleocapsid encoding gene has
been reported in some other species belonging to this genus [42]. Nevertheless, in this
study, neither Blastn nor Blastp revealed homology sequences for the putative ORF7 of the
HCQD-2020 strain.
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Table 1. ORFs and TRS locations of novel coronavirus strain HCQD-2020.

ORFs Length (nt/aa) TRS Location TRS Sequence(s) (Distance to ATG) 1

ORF1ab 20,477/6824 36 CCCCTCAACTAAACGAA(215)ATG
S 4035/1344 20,731 GTTTCAACCAAATGAAAAA

ORF3 675/224 24,723 AGTCGAACTrAAACTCA(34)ATG
E 246/81 25,342 TATTGAACTAAGTGAC(61)ATG
M 678/225 25,658 TGTCTAACTAAATCAA(1)ATG
N 1155/384 26,530 TAATCAATTAAACAAA(4)ATG

ORF7 837/278 27,514 ACTCAACTAAACATG
1 The TRS sequences were highlighted as bold. The number indicated the distance in nucleotide from TRS to start codon. Initial codons
are underlined.

Table 2. Secondary structural genomic elements of novel alphacoronavirus strain HCQD-2020.

RNA Structural Elements Position Rfam Note

5′ UTR 1–289 RF03116

-1 frameshift element 12,762–12,768 Conservative
heptamer TTTAAAC

Frameshifting stimulation 12,770–12,848 RF00507
3′ UTR 28,408–28,753 RF03121

Table 3. Putative nonstructural proteins and the cleavage sites of polyproteins 1a and 1ab of the HCQD-2020 strain.

Nsp First–Last Amino Acid
Residues 1 Protein Size Cleavage Sequence Putative Functional Domains

Nsp1 M1-G282 282 GNVEAG|DVVFTS Unknown function, PFAM: PF19211
Nsp2 D283-G890 608 FKRGGG|VTFGGD Unknown function, PFAM: PF19212
Nsp3 V891–G2580 1690 IVQKSG|SGPQFP Papain-like protease, PFAM: PF08715

Nsp4 S2581–Q3058 478 SSLQ|AGLR Membrane spanning domain, PFAM:
PF16348

Nsp5 A3059-Q3360 302 VTLQ|GGRK 3C-like protease, PFAM: PF05409

Nsp6 G3361–Q36439 279 SSVQ|SKLT Membrane spanning protein, PFAM:
PF19213

Nsp7 S3640–Q3722 83 AMLQ|SIAS RNA replicate protein complex, PFAM:
PF08716

Nsp8 S3723–Q3917 195 VKLQ|NNEV Transferase activity, PFAM: PF08717

Nsp9 N3918–Q4026 109 IRLQ|AGKQ Single strain RNA binding protein,
PFAM: PF08710

Nsp10 A4027–Q4161 135 ANVQ|SFDQ Nucleic-binding protein, PFAM:
PF09401

Nsp11 A4162-D4178 17 - Short peptide in C-terminate of ORF1a

Nsp12 A4162-Q5062 901 TVLQ|ASGM RNA-depend RNA polymerase, PFAM:
PF06478

Nsp13 A5063–Q5659 597 TDLQ|ATEG Helicase, Interpro: IRP027351

Nsp14 A5660–Q6178 519 TKIQ|GLEN Exoribonuclease and Guanine-N7
methyltransferase, Interpro: IPR009466

Nsp15 G6179-Q6526 347 PQLQ|SAEW EndoU-like endoribonuclease, PFAM:
PF19215

Nsp16 S6526–K6825 300 - O-methyltransferase, PFAM: PF06460
1 Number indicated the position of amino acid in the nonstructural protein 1a or 1ab.

3.3. Phylogenetic Analysis Suggesting That HCQD-2020 Strain Might Be a Novel Species
Belonging to the Alphacoronavirus Genus

A whole-genome comparison indicated that our strain was mostly related to BatCoV
Anlong57 (KY770851) and SAX2011 (NC_028811) with percentage identity values of 56.1%
and 55.7%, respectively (Figure 2). Additionally, an amino acid comparison of seven
highly conserved regions in replicate proteins of HCQD-2020 with other members of
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Alphacoronavirus indicated that the most similar regions of HCQD-2020 with other known
species were in Nsp12, Nsp13, and Nsp14 (Figure 3B) atapproximately 80%, which is
far below the cutoff value of a new species at 90% amino acid identity according to the
International Committee on Taxonomy of Viruses (ICTV). In other regions, the amino
acid sequence’s similarity was under 75% (Figure 3A,B). More specifically, Nsp3 was the
most distantly related between HCQD-2020 and other strains, with amino acid identity
ranking from 27 to 52%; followed by Nsp5, with a rank of 40–67% (Figure 3A). On the other
hand, conserved regions located in ORF1b were more conserved between the present strain
and others, with differences of about 19–45% (Figure 3B). Phylogeny based on the whole-
genome sequence also indicated that our strain is distantly related to other known species
belonging to Alphacoronavirus (Figure 4, Figure S2). This result suggests that HCQD-2020
might be a new species belonging to Alphacoronavirus.
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Figure 2. Heatmaps represented whole-genome comparisons between HCQD-2020 and other known species of Alphacoron-
avirus and Betacoronavirus. The color scale represents the sequence identity in percentage of each sequence pair. It is clear
that the similarities between the HCQD-2020 strain and other strains were very low.
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Figure 3. Amino acid sequence comparisons of conserved domains in replicated polyproteins
between the HCQD-2020 strain and other alphacoronaviruses. The conserved regions of Nsp3 and
Nsp5 in ORF1A (A) ad Nsp12–Nsp16 in ORF1b (B) were compared between HCQD-2020 strains and
other reference strains.* For Nsp3: Only papain-like protease and ADP-ribose binding domains were
applied for comparison. The solid lines are used to highlight the low similarity of Nsp3 and Nsp5
compared with the remaining. Nsps.
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Figure 4. Phylogenetic tree representing the relationship among species and their hosts in the
Alphacorona genus constructed from the whole-genome sequence. SARS-CoV2 and GCCDC1-356
belonging to Betacoronavirus were used as out group. The present strain is highlighted in red. The
color of label represented the approximate bootstrap value in each node.

Further classifications were conducted based on the topology of phylogeny con-
structed on the basis of two main nonstructural protein-encoding genes, ORF1a and ORF1b,
and four main structural protein-encoding genes. Except for the highly similar topological
trees based on ORF1a and ORF1b (Figure 5A,B), the remaining phylogenetic trees revealed
the change in the position of the HCQD-2020 strain within the Alphacoronavirus genus
(Figure 5C–F). Even so, this strain was placed on a separate branch from the other known
species of Alphacoronavirus, further supporting that HCQD-2020 is likely a novel species.
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3.4. In Silico Cross-Species Infectious Ability Examination

Bat coronaviruses are mostly significant due to their risk of zoonotic diseases. In this
study, we applied an in silicoanalysis to predict the potential infection of this virus in
another host. The results indicated that, in addition to its natural reservoir of microbats
(Vespertilioniformes), this strain can also infect other hosts belonging to the order Artio-
dactyla (Figure 6) with equal probability. In detail, the q1, median, and q3 of the probability
scores of the Artiodactyla host group were 0.03, 0.13, and 0.43, respectively, while the
corresponding values for the Vespbat host group were 0.02, 0.1, and 0.44. These results
indicate the risk of cross-species infection of the HCQD-2020 strain.
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4. Discussion

The bat is considered to be a source of several viral pathogens transmissible to humans
and livestock. The first evidence of rabies virus transmission from bats was reported in
1921 [43]. After that, an increasing number of human and animal viral diseases such as
the Hendra virus [44], Nipah virus [45], and pteropine orthoreovirus [43] were detected
in bats. Since the development of sequencing technology, as well as the emergence of
the deadly pathogen SARS-CoV, studies related to the diversity of bat virome, including
members with risks of zoonotic infection belonging to Coronaviridae, Paramyxoviridae,
Reoviridae, Rhabdoviridae, and Filoviridae [19], have been elucidated. Climate change and
human activities result in close contact between wild animals and humans, consequentially
increasing the risk of host transmission of viruses. In brief, serological evidence revealed the
multi-infection of SARS-related coronavirus from bats to humans [46,47]. Therefore, active
vigilance against bat-borne viruses with added attention to the coronavirus is essential in
the prevention of other widespread zoonotic diseases.

In this study, several species belonging to genera Eptesicus, Myotis, and Pipistrellus
have been investigated for the presence of coronavirus. These species share their habitat
niches with other wild and/or livestock animals, thereby increasing the risk of cross-
contamination to humans involving any of the viruses they carry. Of these samples, a
distantly genetically related viral isolate belonging to Alphacoronavirus was detected in
E. serotinus. This result further contributed to the genetic diversity of bat coronavirus in
general and Alphacoronavirus in particular.

It is generally accepted that the Alphacoronavirus genus is extremely diverse. To date,
19 different species belonging to 14 sub-genera of Alphacoronavirus have been officially
accepted by ICTV. In this study, a whole-genome comparison indicated that the HCQD-2020



Viruses 2021, 13, 2041 11 of 14

strain was distantly related to other known species of Alphacoronavirus (Figure 2). Genome-
based and functionalgene-based phylogeny constructions also indicated that this strain
formed a separate branch in phylogenetic trees (Figures 4 and 5). Recent metagenomic
studies of bat virome revealed several potential novel species within Alphacoronavirus
detected in bats around the world [27,48–50]. This result, along with other up-to-date
studies, once again supported the genetic heterogeneity of this genus.

All members of this genus have similar genomic organization, containing ORF1ab–S–
ORF3–E–M–N [42]. Furthermore, additional ORFs located downstream of the nucleocapsid–
encoding gene were also observed in many species of this genus such as TGEV, BatCoV-
HKU2, BatCoV-512, and Shrew coronavirus [12]. In addition to the common ORFs found
in other Alphacoronavirus’s members, a putative ORF7 was found at the 3′ terminator of
HCQD-2020′s genome (Figure 1). Its sequence at the amino acid level was not homologous
with any of the known protein sequences. It should also be noted that this putative ORF
was likely the most distinct ORF of the currently known alphacoronavirus [12].

Alphacoronavirus contains several harmful viruses such as TGEV, PEDV, and PEAV that
cause serious economic losses in pig production [4]. The last two species were considered
to originate from bats [51,52]. Evidence of the host jumping of coronavirus from bat to
other species belonging to even-toed ungulate animals was characterized in the case of
PEAV, which shares high nucleotide identity (approximately 95% sequence similarity) with
bat-HKU2 strains [53]. In this study, an in silico analysis indicated that HCQD-2020, a
distantly related species belonging to Alphacoronavirus, can infect another host, especially
those in the order Artiodactyla, which include some species such as camels and pigs
(Figure 6). Camels were previously determined as the intermediate hosts of the MERS
virus [54,55]. Focusing on the genus Alphacoronavirus, strains that were closely related to
the human alphacorornavirus E229 were detected in domestic camels [56]. Recently, a
novel alphacoronavirus belonging to the species Alphacoronavirus I that is usually found in
pigs, dogs, and cats was detected in children with pneumonia in Malaysia [57]. Therefore,
it is important to investigate potential hosts besides bats for newly detected coronaviruses.

5. Conclusions

In summary, this study reported and described the nearly complete genome of an
Alphacoronavirus species originating from bats. Based on the low sequence identity, the pres-
ence of a putative ORF7 with no homology to any known genes in Genbank, and distant
relation to other representative species of Alphacoronavirus, the HCQD-2020 strain was pro-
posed as a novel strain of this genus. In silicoanalyses suggested that this newly identified
strain of coronavirus could infect other hosts, not limited to bats. Future studies should
focus on understanding the diversity of coronavirus and the probability of host jumping.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/v13102041/s1, Figure S1: Initial classification of HCQD-2020 strain within subfamily Coro-
navirinae using the conserved region of Rdrp encoding fragment, Figure S2: Phylogenetic tree
construction based on whole genome sequence analysis, Table S1: Information of bat samples
collected in this study, Table S2: List of primers using in this study.
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