
INTRODUCTION

As the resident innate immune cells of the central nervous 
system (CNS), microglia regulate inflammatory response and 
restore CNS homeostasis by removing pathogens and exog-
enous agents, such as lipopolysaccharide (LPS) (Park et al., 
2015). However, over-activation of microglia generates exces-
sive proinflammatory mediators and cytokines, which lead to 
neurotoxicity (Kang et al., 2013). For instance, neuroinflam-
mation contributes to the pathogenesis of neurodegenerative 
disorders such as Alzheimer’s disease, Parkinson’s disease, 
and multiple sclerosis (Villa et al., 2016; Ko et al., 2019a). 
Therefore, controlling microglial activation by suppressing 
the expression of proinflammatory factors such as nitric oxide 
(NO) and interleukin-6 (IL-6) might be a key therapeutic strat-
egy for neurodegenerative diseases.

In neurotoxicological and immunological research, BV2 

microglial cells have been widely used as a substitute for pri-
mary microglia (Li et al., 2016). LPS, a major cell wall com-
ponent of gram-negative bacteria, stimulates microglia and 
promotes reactive oxygen species (ROS) generation (Pandur 
et al., 2018). ROS modify the gene expression of proinflam-
matory mediators by altering mitogen-activated protein kinase 
(MAPK) cascades and activating nuclear factor kappa B (NF-
κB) transcription factors (Park et al., 2015). Activated NF-κB 
translocates to the nucleus and triggers inflammatory defense 
responses by modulating the release of inducible nitric oxide 
synthase (iNOS) and cyclooxygenase-2 (COX-2) as well as 
the activation of MAPK components including extracellular 
signal-regulated kinase 1/2 (ERK 1/2), p38 MAPK, and c-Jun 
NH2-terminal kinase (JNK) (Henn et al., 2009).

Soybean, which is commonly consumed in traditional Asian 
diets, has been widely studied for its beneficial effects on 
the prevention of breast cancer, heart disease, and demen-
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Neuroinflammation—a common pathological feature of neurodegenerative disorders such as Alzheimer’s disease—is mediated 
by microglial activation. Thus, inhibiting microglial activation is vital for treating various neurological disorders. 7,3’,4’-Trihydroxyi-
soflavone (THIF)—a secondary metabolite of the soybean compound daidzein—possesses antioxidant and anticancer properties. 
However, the effects of 7,3’,4’-THIF on microglial activation have not been explored. In this study, antineuroinflammatory effects 
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proinflammatory responses. Therefore, these antineuroinflammatory effects of 7,3’,4’-THIF suggest its potential as a therapeutic 
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tia (Lammersfeld et al., 2009; Miguez et al., 2012; Lu et al., 
2018). In particular, daidzein, which accounts for more than 
0.1% (w/w) of the dry weight of soybeans, is one of the best 
understood soy isoflavones. After consumption of a soy-rich 
diet in humans, daidzein is further metabolized by cytochrome 
P450 enzymes in the liver, forming several oxidative metabo-
lites of daidzein (Kulling et al., 2001). No attempt has been 
made to quantitate the oxidative metabolites in humans who 
ingested soy products, but the three major oxidative daidzein 
metabolites detected were 7,3’,4’-trihydroxyisoflavone (7,3’,4’-
THIF) (chemical structure shown in Fig. 1), 7,8,4’-THIF, and 
6,7,4’-THIF (Roh, 2014). Also, these metabolites could be 
isolated directly from fermented soybean foods, such as 
natto, soy sauces, and doenjang (Korean fermented soybean 
paste), or microbial fermentation broth feeding with soybean 
meal (Chang, 2014). These daidzein metabolites also show 
antioxidant and anticancer activities (Rufer and Kulling, 2006, 
Lim et al., 2017). Our previous studies have demonstrated in 
vitro antineurotoxic effects as well as in vivo memory-enhanc-
ing effects of 7,8,4’-THIF and 6,7,4’-THIF (Ko et al., 2018, 
2019a). These findings indicated that the daidzein metabolites 
may show neuroprotective abilities. Further research into the 
molecular mechanism underlying this activity is required to 
develop novel therapeutic targets for neurological disorders. 
In addition, a recent study of 7,8,4’-THIF has reported its an-
tineuroinflammatory properties in microglia through attenua-
tion of the Akt/NF-kB pathway (Wu et al., 2018). Especially, 
7,3’,4’-THIF known to exhibit antioxidant and anti-allergenic 
activity, which the ortho-dihydroxy groups in these compounds 
play a key role for this physiological activity (Klus and Barz, 
1995). However, the effects of 7,3’,4’-THIF, another daidzein 
metabolite, on inflammation in BV2 microglial cells have not 
been evaluated. We hypothesized that 7,3’,4’-THIF inhibits 
LPS-induced inflammatory responses.

This study aimed to identify the potential antineuroinflam-
matory effects of 7,3’,4’-THIF on LPS-induced microglial ac-
tivation and to explore the possible underlying mechanisms 
by measuring iNOS, COX-2, IL-6, and ROS production. Fur-
thermore, the antineuroinflammatory properties of 7,3’,4’-THIF 
were evaluated by assessing MAPK and GSK-3β signaling ac-
tivation.

MATERIALS AND METHODS

Chemicals and reagents
7,3’,4’-THIF was obtained from Indofine Chemical Com-

pany, Inc (San Mateo, CA, USA). The purity of 7,3’,4’-THIF 
was >98.1%. Dimethyl sulfoxide (DMSO), 3-(4,5-dimethyl 
thiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), and 
lipopolysaccharide (LPS) (Escherichia coli, 026:B6) were 
purchased from Sigma Chemical Co (St. Louis, MO, USA). 
Dulbecco’s modified Eagle’s medium (DMEM) was purchased 
from Hyclone (Logan, UT, USA). Fetal bovine serum (FBS), 

0.25% trypsin–EDTA, and penicillin/streptomycin were ob-
tained from GIBCO-BRL (Grand Island, NY, USA). Dulbecco’s 
phosphate-buffered saline (D-PBS) was obtained from Wel-
gene (Gyeongsan, Korea). Anti-β-actin antibodies were pur-
chased from Santa Cruz Biotechnology, Inc (Dallas, TX, USA). 
Other primary antibodies were purchased from Cell Signaling 
Technology (Boston, MA, USA). Secondary antibodies were 
purchased from Jackson ImmunoResearch Laboratories, Inc 
(West Grove, PA, USA). All other chemicals were of analytical 
grade and were purchased from Sigma Chemical Co.

Cell culture and treatment
BV-2 microglial cells (catalog number: CRL-2469) were 

obtained from ATCC (Manassas, VA, USA). BV-2 microglial 
cells were maintained in DMEM supplemented with 10% heat-
inactivated FBS (v/v) and 0.1% penicillin/streptomycin (v/v) 
in a humidified atmosphere of 5% CO2 and 95% air at 37°C. 
When the cells reached 80-90% confluency in 100-mm2 cell 
culture dishes, they were dissociated with trypsin-EDTA and 
sub-cultured in culture dishes. LPS was prepared immedi-
ately before use as a 100 μg/ml stock and diluted in PBS to 
the indicated final concentration. 7,3’,4’-THIF was dissolved 
in DMSO and the stock solutions were added directly to the 
culture medium. In all experiments, cells were treated with the 
indicated concentrations of 7,3’,4’-THIF in serum-free DMEM 
with or without LPS (100 ng/mL) and control cells were treated 
with DMSO alone. The final concentration of solvent was al-
ways <0.1% (v/v).

Cell viability assay
BV2 microglial cells (2.5×105 cells/well in 24-well plates) 

were treated with vehicle (0.1% v/v DMSO) or 7,3’,4’-THIF 
(10, 25, or 50 μM) with or without LPS (100 ng/mL) treatment 
and incubated at 37°C in a 5% CO2 incubator. Cell viability 
was determined 24 h later by treating with the MTT solution 
(5 mg/mL) for 2 h. Blue formazan crystals are formed due to 
the action of mitochondrial dehydrogenases in viable cells on 
MTT. The samples were dissolved in DMSO, and absorbance 
was measured at 540 nm using a microplate reader (Spectra-
Max 250, Molecular Device, Sunnyvale, CA, USA). Results 
are presented as the percentage of metabolized MTT relative 
to that of controls, as determined by absorbance measure-
ments.

Determination of NO production
BV2 microglial cells (2.5×105 cells/well in 24-well plates) 

were stimulated with vehicle (0.1% v/v DMSO) or 7,3’,4’-THIF 
(10, 25, or 50 μM) for 30 min before (pretreatment) or after 
(posttreatment) treatment with LPS (100 ng/mL). Culture su-
pernatant was collected 24 h later, and nitrite concentration 
was determined by mixing 100 μL of culture medium with 
an equal volume of Griess reagent [0.1% N-(1-naphthyl)-
ethylenediamine dihydrochloride and 1% sulfanilamide in 5% 
phosphoric acid] in a 96-well plate. Nitrite concentration was 
calculated using the standard solution of sodium nitrite diluted 
in cell culture medium. Absorbance of each well was mea-
sured at 540 nm using a microplate reader (SpectraMax M2, 
San Jose, CA, USA).

Enzyme-linked immunosorbent assay (ELISA) 
BV2 microglial cells were seeded at a density of 5×105 

cells/well in 6-well plates and incubated overnight. After pre-
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treatment with 7,3’,4’- THIF (10, 25, or 50 μM) or vehicle (0.1% 
v/v DMSO) for 30 min, the cells were incubated with LPS (100 
ng/mL) for 6 h. IL-6 concentration in the culture medium was 
determined using an IL-6 ELISA kit (Elabscience Biotechnol-
ogy Co., Ltd, Wuhan, China) according to the manufacturer’s 
instructions. 

Measurement of intracellular ROS production
Intracellular ROS production was assessed using the 

DCFH-DA kit (Abcam plc, Cambridge, UK) following the 
manufacturer’s protocol. In brief, BV2 microglial cells (2.5×104 
cells/well in 96-well black plates) were stained with the DCFH-
DA solution (20 μM) at 37°C for 45 min in the dark. The cells 
were rinsed with wash buffer. Vehicle (0.1% v/v DMSO) or 
7,3’,4’-THIF (10, 25, or 50 μM) was added 30 min before LPS 
activation. After a 6-h incubation at 37°C, absorbance of each 
well was determined at Ex/Em=485/535 nm in the end-point 
mode using a microplate reader (SpectraMax M2). DCFH-DA 
fluorescent images were captured with a fluorescence micro-
scope (20× magnification). 

Western blot analysis
Western blotting was performed as previously described 

(Ko et al., 2019b). BV2 microglial cells were seeded at a 
density of 5×105 cells/well in 6-well plates. After pretreat-
ment with 7,3’,4’-THIF for 30 min, the cells were incubated 
with LPS at 37°C for 1 or 24 h. The cells were harvested by 
scraping with 200 μL of ice-cold T-PER tissue protein extrac-
tion buffer (Thermo Scientific, Rockford, IL, USA) containing a 
phosphatase inhibitor and a protease inhibitor cocktail (Roche 
Diagnostics GmbH, Mannheim, Germany). After incubating 
on ice for 30 min, the cells were centrifuged at 10,000 ×g for 
15 min. The supernatant was isolated and stored at −70°C. 
Protein concentration was quantified using a protein assay 
kit (Thermo Scientific). The protein samples were separated 
by 8%-10% sodium dodecyl sulfate–polyacrylamide gel elec-
trophoresis and then transferred onto polyvinylidene difluo-
ride membranes (Merck KGaA, Darmstadt, Germany) using 
transfer buffer (25 mM Tri–HCl buffer, pH 7.4, containing 192 
mM glycine and 20% v/v methanol). The membranes were 
blocked with 5% non-fat milk in 0.5 mM Tris–HCl (pH 7.5) con-

taining 150 mM NaCl and 0.1% Tween 20 for 1 h at room 
temperature. Each membrane was incubated with the follow-
ing primary antibodies overnight at 4°C: anti-β-actin (1:1,000), 
anti-iNOS (1:1,000), anti-COX-2 (1:1,000), anti-phospho JNK 
(1:1,000), anti-JNK (Thr183/Tyr185) (1:1,000), anti-phospho 
ERK 1/2 (Thr202/Tyr204) (1:2,000), anti-ERK 1/2 (1:2,000), 
anti-phospho GSK-3β (1:1,000), anti-GSK-3β (1:1,000), anti-
phospho NF-kB (1:2,000), and anti-NF-kB (1:2,000). After 
washing with Tris-buffered saline with 0.1% Tween 20, the 
membranes were incubated in horseradish peroxidase-con-
jugated secondary antibodies (Jackson ImmunoResearch 
Laboratories, Inc) for 1 h at room temperature. Band density 
was determined using enhanced chemiluminescence by im-
mersing the probed membrane in a 1:1 mixture of reagents 
A and B (Donginbiotech Co., Ltd, Seoul, Korea) for 5 min. 
The membranes were then exposed to photographic film for 
several minutes. Protein band intensities were calculated us-
ing densitometric analysis with ImageJ (National Institutes of 
Health, Bethesda, MD, USA).

Statistics
All results were analyzed using Prism 6.0 (GraphPad Soft-

ware, Inc., San Diego, CA, USA) and are expressed as mean 
± SEM. Statistical analyses were performed using one-way 
analysis of variance, followed by either the Newman–Keuls 
post hoc test for western blotting or Bonferroni’s post hoc test 
for the others. Statistical significance was set at p<0.05.

RESULTS

Effects of 7,3’,4’-THIF on cell viability and LPS-induced NO 
production in BV2 microglial cells

To examine whether 7,3’,4’-THIF is neurotoxic, the MTT 
assay was conducted in BV2 microglial cells with or without 
LPS stimulation. 7,3’,4’-THIF demonstrated no neurotoxicity 
at any concentration (10, 25, or 50 μM) used in this study (Fig. 
2A, 2B). Therefore, these concentrations of 7,3’,4’-THIF were 
used in subsequent experiments.

To assess the antineuroinflammatory effects of 7,3’,4’-THIF 
in LPS-stimulated BV2 microglial cells, NO concentration was 
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measured using the Griess reagent. LPS challenge signifi-
cantly increased NO concentration by almost 25 μM compared 
with the control values (p<0.001 and p<0.001, respectively) 
(Fig. 2C, 2D). However, the increased NO production was 

significantly inhibited by 7,3’,4’-THIF at all concentrations (10, 
25, and 50 μM) during pretreatment (p<0.001, p<0.001, and 
p<0.001, respectively) (Fig. 2C) and posttreatment (p<0.001, 
p<0.001, and p<0.001, respectively) (Fig. 2D). These data 
show that 7,3’,4’-THIF inhibits LPS-induced NO production in 
BV2 microglial cells.

Effects of 7,3’,4’-THIF on LPS-induced upregulation of 
iNOS, COX-2, and IL-6 in BV2 microglial cells

LPS treatment activates iNOS in microglia, resulting in 
increased production of NO. LPS also induces COX-2 over-
expression, which mediates prostaglandin and inflammatory 
cytokine synthesis (Kim et al., 2014). Therefore, we assessed 
iNOS and COX-2 expression in microglia using western blot-
ting. Our results showed that LPS challenge significantly in-
creased iNOS and COX-2 levels up to 893.7% (p<0.001) (Fig. 
3A) and 664.8% (p<0.001) (Fig. 3B) of the control values. 
However, 10 and 25 μM 7,3’,4’-THIF effectively decreased 
iNOS levels to 586.3% (p<0.05) (Fig. 3A) and 392.7% (p<0.01) 
of the control values in LPS-stimulated BV2 microglial cells. 
Moreover, pretreatment of BV2 cells with 50 μM 7,3’,4’-THIF 
dramatically mitigated the increased iNOS and COX-2 levels 
to 164.0% (p<0.001) (Fig. 3A) and 347.7% (p<0.05) (Fig. 3B) 
of the control values in response to LPS. 

To examine the effects of 7,3’,4’-THIF on proinflammatory 
cytokine production, we measured IL-6 release using ELISA. 
LPS-stimulated BV2 cells showed significantly increased IL-6 
production to 671.3% of the control value (p<0.001) (Fig. 3C). 
Moreover, 7,3’,4’-THIF inhibited IL-6 production in a con-
centration-dependent manner (10, 25, or 50 μM) (p<0.001, 
p<0.001, and p<0.001, respectively) (Fig. 3C). These results 
suggest that 7,3’,4’-THIF exerts antineuroinflammatory effects 
by modulating inflammatory mediators.

Effects of 7,3’,4’-THIF on LPS-induced ROS accumulation in 
BV2 microglial cells

LPS-induced ROS accumulation promotes neuronal cell 
death and promotes excessive inflammatory responses (Cui 
et al., 2015). Therefore, we next investigated the effects of 
7,3’,4’-THIF on LPS-induced intracellular ROS generation us-
ing DCFH-DA, a fluorogenic dye that measures ROS activ-
ity. Cells treated with LPS exhibited markedly increased in-
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tracellular ROS formation to 127.0% compared with controls 
(p<0.05) (Fig. 4A). However, 7,3’,4’-THIF (10, 25, and 50 μM) 
markedly reduced this increased ROS production to 52.8%, 
46.5%, and 39.7% of the control values, respectively, in a con-
centration-dependent manner (p<0.05, p<0.05, and p<0.05, 
respectively) (Fig. 4A). Additionally, fluorescence micropho-
tographs of cells stained with DCFH-DA showed increased 
intensity of ROS fluorescence following LPS stimulation; this 
effect was decreased by treatment with 7,3’,4’-THIF (Fig. 4B). 
These results demonstrate that 7,3’,4’-THIF pretreatment in-
hibits LPS-induced ROS production in BV2 microglial cells.

Effects of 7,3’,4’-THIF on LPS-induced phosphorylation of 
ERK, JNK, Akt, and GSK-3β and activation of NF-κB in BV2 
microglial cells

To further understand mechanisms underlying the action 
of 7,3’,4’-THIF, we examined the expression levels of ERK 
and JNK using western blotting. In the presence of LPS, the 
phosphorylation levels of ERK and JNK increased to 170.9% 
(p<0.01) (Fig. 5A) and 1126.0% (p<0.001) (Fig. 5B) of the 
control values, respectively. However, 25 μM 7,3’,4’-THIF sig-
nificantly inhibited the expression of phosphorylated ERK to 
68.5% of the LPS-treated group (p<0.01) (Fig. 5A). Treatment 
with 50 μM 7,3’,4’-THIF significantly suppressed the phos-
phorylation levels of ERK and JNK to 58.2% (p<0.01) (Fig. 
5A) and 47.3% (p<0.01) (Fig. 5B) of the LPS-treated values, 

respectively. Furthermore, LPS treatment of microglia signifi-
cantly increased Akt and GSK-3β phosphorylation to 181.9% 
(p<0.01) (Fig. 5C) and 140.2% (p<0.001) (Fig. 5D) of the 
control values, respectively. Upon pretreatment with 50 μM 
7,3’,4’-THIF, Akt phosphorylation remained unchanged but the 
elevated GSK phosphorylation was significantly downregulat-
ed to 68.3% of the LPS-treated value (p<0.05) (Fig. 5C, 5D).

Finally, we investigated the expression levels of NF-κB, a 
crucial transcription factor that modulates neuroinflammatory 
responses in microglia. LPS significantly increased NF-κB ex-
pression to 189.4% of the control values (p<0.05) (Fig. 5E). 
However, 50 μM 7,3’,4’-THIF suppressed this NF-κB expres-
sion to 86.48% of the control values (p<0.05) (Fig. 5E).

DISCUSSION

The daidzein metabolite 7,3’,4’-THIF possesses potential 
pharmacological activities. Owing to its antioxidant, antipol-
lutant, and antiamnesic effects, 7,3’,4’-THIF may be a novel 
candidate for pharmaceutical applications (Huang et al., 2018; 
Kim et al., 2020; Park et al., 2020). Another major metabolite 
of daidzein 7,8,4’-THIF exerts strong antineuroinflammatory 
effects against LPS-induced neurotoxicity through activation 
of the NF-κB signaling pathway and inhibition of COX-2 activ-
ity in BV2 microglial cells (Wu et al., 2018). We therefore ex-

A

C
on

tro
l

200

150

100

50

R
e
la

ti
v
e

in
te

n
s
it
y

(%
)

(p
-E

R
K

/t
-E

R
K

)

7,3',4'-THIF ( M)
+LPS 100 ng/mL

�

0
0 10 25 50

p-ERK

t-ERK

B

C
on

tro
l

1,400
1,200
1,000

800
600
400
200

R
e
la

ti
v
e

in
te

n
s
it
y

(%
)

(p
-J

N
K

/t
-J

N
K

)

7,3',4'-THIF ( M)
+LPS 100 ng/mL

�

0
0 10 25 50

p-JNK

t-JNK

C

C
on

tro
l

200

150

100

50

R
e
la

ti
v
e

in
te

n
s
it
y

(%
)

(p
-

/t
-

)
A

k
t

A
k
t

7,3',4'-THIF ( M)
+LPS 100 ng/mL

�

0
0 10 25 50

p-Akt

t-Akt

D

C
on

tro
l

150

125

100

75

50

25

R
e
la

ti
v
e

in
te

n
s
it
y

(%
)

(p
-

/t
-

)
G

S
K

-3
G

S
K

-3
�

�

7,3',4'-THIF ( M)
+LPS 100 ng/mL

�

0
0 10 25 50

p-GSK-3�

t-GSK-3�

E

C
on

tro
l

250

150

100

50

R
e
la

ti
v
e

in
te

n
s
it
y

(%
)

(p
-

/t
-

)
N

F
-

B
N

F
-

B
�

�

7,3',4'-THIF ( M)
+LPS 100 ng/mL

�

0
0 10 25 50

p-NF- B�

t-NF- B�

200

** *** **

***
*

##
##

##

#

#

Fig. 5. Effects of 7,3’,4’-THIF on LPS-induced phosphorylation of ERK 1/2 (A), JNK (B), Akt (C), GSK-3β (D), and NF-κB (E) in BV2 microg-
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pected 7,3’,4’-THIF to exert protective effects against inflam-
mation-induced neurotoxicity. Recent evidence suggests that 
the inhibition of neuroinflammatory responses is an important 
therapeutic strategy for neurodegenerative disorders such 
as AD and PD. The present study showed that 7,3’,4’-THIF 
treatment mitigated LPS-induced neurotoxicity; inflammatory 
responses; ROS production; and MAPK, GSK-3β, and NF-κB 
signaling activation in BV2 microglia.

Microglial activation is an important feature of neurode-
generative disorders including AD. Therefore, we assessed 
the effect of 7,3’,4’-THIF on neuroinflammation using LPS-
stimulated BV2 microglial cells in the present study. Activated 
microglia increases the levels of proinflammatory cytokines 
IL-6, IL-1β, and TNF-α (Lull and Block, 2010). These media-
tors contribute to neuronal cell injury and eventually trigger 
inflammatory cascades (Hemmer et al., 2001). Proinflamma-
tory cytokines are markedly elevated in AD patients (Kaur et 
al., 2019). Moreover, other important mediators of inflamma-
tory responses such as iNOS and COX-2 may induce neu-
ronal death and promote neurodegeneration (Dulla et al., 
2016). Our results showed that NO release induced by LPS, 
a representative inflammation-inducing agent, was inhibited 
by both pre- and posttreatment with 7,3’,4’-THIF in BV2 mi-
croglial cells. To assess whether these effects were curative 
or preventive, the NO assay was applied before and after the 
treatment of LPS-stimulated microglia with 7,3’,4’-THIF. We 
observed that 7,3’,4’-THIF treatment significantly suppressed 
LPS-induced iNOS and COX-2 expression and proinflamma-
tory cytokine levels. Thus, 7,3’,4’-THIF ameliorated inflam-
matory responses in microglial and may therefore serve as 
a therapeutic resource in the prevention or/and treatment of 
neurodegenerative disorders.

Evidence indicates that elevated ROS levels are associat-
ed with neurodegenerative disorders such as AD (Block et al., 
2007). Previous studies have demonstrated that microglia ac-
tivation is an important factor for ROS generation, and excess 
ROS production in microglial cells is closely linked to brain 
damage resulting from high proinflammatory mediator or cyto-
kine levels (Floyd and Hensley, 2002). Furthermore, ROS trig-
ger inflammatory cascades through activation of the MAPK, 
PI3K/Akt, and GSK-3β signaling pathways (Salminen et al., 
2008; Hsieh et al., 2010). These signaling cascades further 
activate NF-κB and its subsequent inflammatory molecules in 
microglia (Gao et al., 2019; Huang et al., 2019). Therefore, 
decreasing ROS production in microglia may be an effec-
tive strategy for protecting against inflammatory damage. In 
this study, while LPS treatment significantly increased ROS 
production, 7,3’,4’-THIF pretreatment significantly decreased 
LPS-induced ROS generation in BV2 microglial cells. Thus, 
7,3’,4’-THIF may decrease LPS-induced aberrant production 
of proinflammatory factors such as NO in microglia by inhibit-
ing ROS generation.

Several results suggest that the MAPK, PI3K/Akt, GSK-3β, 
and NF-κB signaling cascades mediate inflammatory process-
es. Previous studies on microglia have shown that phosphory-
lated MAPK, PI3K/Akt, and GSK-3β activate NF-κB, leading to 
elevated expression of inflammatory mediators such as iNOS, 
COX-2, and proinflammatory cytokines (Surh et al., 2001; 
Yuskaitis and Jope, 2009). Therefore, these mediators play 
crucial roles in inflammatory processes in microglial cells and 
may serve as therapeutic targets for neuroinflammation-relat-
ed symptoms. Furthermore, NF-κB activation in microglia con-

tributes to neuronal damage and neurodegeneration (Mattson, 
2005). In addition, NF-κB—a central mediator of inflammatory 
responses—can be stimulated by various inflammatory fac-
tors such as LPS and cytokines (O’Neill and Kaltschmidt, 
1997). Therefore, in this study, we performed western blotting 
to elucidate the effects of 7,3’,4’-THIF on LPS-induced MAPK, 
PI3K/Akt, and GSK-3β, and NF-κB signaling in BV2 microg-
lial cells. Our results showed that while LPS treatment signifi-
cantly increased phosphorylation of MAPK, Akt, GSK-3β, and 
NF-κB in BV2 microglial cells, 7,3’,4’-THIF effectively inhibited 
this effect, except in Akt. These findings suggested that the 
7,3’,4’-THIF-mediated inhibition of inflammatory factors may 
result, at least in part, from the blockade of MAPK, GSK-3β, 
and NF-κB activation.

In conclusion, as depicted in Fig. 6, 7,3’,4’-THIF, a major 
daidzein metabolite, effectively protected BV2 microglial cells 
against LPS-induced neurotoxicity, oxidative stress, and in-
flammatory responses. These beneficial effects may result 
from the inhibition of NO release and reduction of iNOS, COX-
2, and proinflammatory cytokine levels. In addition, 7,3’,4’-
THIF significantly suppressed LPS-induced ROS production. 
The antineuroinflammatory effects of 7,3’,4’-THIF may result 
from the inhibition of MAPK and NF-κB signaling pathways. 
Further studies are warranted to investigate whether 7,3’,4’-
THIF protects against inflammation-induced neuronal injury 
in animal models. 7,3’,4’-THIF may be a promising approach 
for the treatment of inflammation-related neurodegenerative 
disorders.
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Fig. 6. Proposed schematic of the molecular mechanisms of the 
effects of 7,3’,4’-THIF on LPS-induced neuroinflammation in BV2 
microglial cells. LPS induces phosphorylation of MAPK signaling 
molecules (JNK and ERK 1/2) as well as GSK-3β and NF-κB. This 
activation of NF-κB induces expression of its target genes such as 
iNOS and COX-2, resulting in the production of NO and pro-inflam-
matory cytokines such as IL-6, and in the accumulation of ROS. 
Release of these inflammatory mediators leads to neuroinflamma-
tion and neuronal cell injury. Pretreatment of BV2 microglial cells 
with 7,3’,4’-THIF inhibits LPS-induced inflammatory responses 
through inhibition of MAPK signaling molecules and GSK-3β and 
NF-κB.
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