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I n t r o d u c t i o n

Cellular signaling relies on macromolecules to trans-
duce stimuli information into conformational changes 
(Changeux and Edelstein, 2005). The mechanisms by 
which macromolecules accomplish this feat are often 
allosteric: a small stimulus applied at one area of the 
macromolecule regulates behavior at locations struc-
turally distant from the active site of stimulation. A 
detailed and mechanistic understanding of allosteric 
regulation is a major goal of biophysics (Changeux, 
2012, 2013). The Monod-Wyman-Changeux (MWC) 
model, which provides a physical-chemical interpreta-
tion of indirect regulation in terms of the geometry 
of the regulatory molecule (Monod et al., 1963, 1965; 
Marzen et al., 2013), has emerged as an essential tool 
in this effort. Operationally, any given MWC model 
represents a candidate hypothesis for how allosteric 
conformational change occurs. If a model is not able 
to quantitatively fit available data, it is rejected. For 
models that agree with the data, the model parameter 
values provide estimates of biophysically meaningful 
properties that cannot be measured directly. Tre-
mendous effort has gone toward determining which 
mechanistically relevant parameters best fit available 
macromolecular data (Colquhoun and Hawkes, 1982, 
1995; Horn and Lange, 1983; Blatz and Magleby, 1986; 
Ball and Sansom, 1989; Kienker, 1989; Ball and Rice, 
1992; Colquhoun and Sigworth, 1995; Qin et al., 1996, 

2000; Colquhoun et al., 2003; Celentano and Hawkes, 
2004; Milescu et al., 2005; Moffatt, 2007). However, 
it has recently been observed that even simple MWC 
models suffer from parameter non-identifiability: the 
data in commonly used activity (or binding) curves 
do not provide sufficient constraining power to find 
unique values of the parameters, even if essentially 
noiseless (Hines et al., 2014; Middendorf and Al-
drich, 2017a,b).

Essentially all work on parameter estimation in MWC 
models has treated non-identifiability as a hurdle to be 
overcome toward the estimation of individual MWC 
parameter values, which clearly confer mechanistically 
meaningful information about the macromolecule 
under study. Here, we argue that valuable mechanistic 
information may be lost by focusing on individual pa-
rameter values. We demonstrate that non-identifiable 
datasets admit identifiable “emergent” parameters and 
argue that these emergent parameters confer mecha-
nistic information about macromolecular function not 
available from individual parameter values themselves, 
no matter how accurate.

We begin by studying the causes of parameter 
non-identifiability in a canonical MWC model of the 
mSlo large-conductance Ca2+-activated K+ (BK) ion 
channel (Horrigan and Aldrich, 2002; Yan and Al-
drich, 2010), with respect to two common assays of 
functional activity. The non-identifiability is shown 
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to arise because the parameters compensate for 
each other to produce similar model output, rather 
than because the model contains irrelevant param-
eters. In particular, we demonstrate that observed 
parameter non-identifiability is caused by “sloppy” 
sensitivity of parameters to model output: the model 
output is highly sensitive to particular nonlinear 
combinations of parameters and essentially insensi-
tive to others (Brown and Sethna, 2003; Waterfall et 
al., 2006; Gutenkunst et al., 2007; Transtrum et al., 
2010, 2011, 2015).

We address the issue of parameter non-identifiability 
by constructing “reduced” models of the channel for 
each of the two functional assays, using the recently 
developed manifold boundary approximation method 
(MBAM; Transtrum and Qiu, 2014; Transtrum, 2016 
Preprint). Each reduced model has fewer parameters 
than the original model but describe its functional data 
equally well. Crucially, the parameters of these reduced 
models are (a) identifiable with respect to the model 
output and (b) explicitly expressed as emergent combi-
nations of the original MWC parameters. Our reduced 
models therefore allow for quantitative estimates of 
biophysically relevant parameters, despite individual 
parameter non-identifiability.

The emergent parameters of our reduced models 
indicate which coordinated changes in biophysical 
parameters may preserve assay output. We therefore 
interpret our reduced models as predictions encoded 
in the original MWC model. These predictions confer 
information about the robustness of a macromole-
cule’s underlying biophysical parameters with respect 
to a functional output. We claim that these predictions 
have physiological and evolutionary relevance, so long 
as the model is mechanistically relevant and the func-
tional assay adequately captures the macromolecule’s 
in vivo function.

It is difficult to determine confidently that any given 
assay or set of assays captures a macromolecule’s in vivo 
behavior. Here, we choose to study equilibrium bind-
ing curves, thereby adopting the hypothesis that the in 
vivo purpose of a macromolecule is to act as a biologi-
cal sensor that takes stimuli information as input and 
produces equilibrium activity as output; this hypothesis 
is common in information-theoretical studies of MWC 
models (Tkacik et al., 2008; Martins and Swain, 2011; 
Olsman and Goentoro, 2016).

Ultimately, the relevance of our predicted parameter 
compensations, and thereby our assay choice, must be 
determined experimentally. To this end, we demon-
strate that a previous meta-analysis of hemoglobin 
oxygen-binding curves confirms the physiological rel-
evance of parameter compensations in hemoglobin’s 
adaptation to varying pH, referred to as the Bohr effect 
and known to be important for the efficient transporta-
tion of oxygen through blood in vivo.

M at e ria   l s  a n d  m e t h o d s

The full code used to generate the synthetic data and  
all analyses is available on GitHub: https​://github​.com​ 
/gbohner​/MBAM.

Synthetic data generation
Our model takes as input N voltage and calcium pairs 
as an array ​X​, and an M × 1 vector of parameters θ. 
The output of the model is an N × 1 vector of open 
probabilities ​y​. We represent the model as the func-
tion ​f​​(​​𝛉, X​)​​​  =  y​, defined as in the text. Our “base” 
parameters θ* (Fig.  2  B) were chosen to match pre-
vious studies (Horrigan and Aldrich, 2002; Miranda  
et al., 2013).

Fitting noisy data
Given a θ to be estimated, noisy data ​y’​ were generated 
from mode ​f​​(​​𝛉, X​)​​​​ via

	​ y’= f​​(​​𝛉, X​)​​​ ⊙ ϵ​​(​​σ​)​​​,​

where ε(σ) is drawn from the distribution Uniform([1 
− σ, 1 + σ]). Additive and multiplicative Gaussian noise 
models were also tested.

We then used the Levenberg-Marquardt solver 
(Marquardt, 1963) to infer the best-fit parameters ​𝛉’= ​
argmin​ 𝛉​​ 𝒞​​(​​𝛉, y’​)​​​​, where ​𝒞​​(​​𝛉, y’​)​​​  =  𝒞​​‖​​f​​(​​𝛉, X​)​​​ − y’​‖​​​​ is 
the norm of the discrepancy between data and model 
output. Each fit was performed from 24 different initial 
parameter vectors, from which the global best-fit pa-
rameters were selected.

Computing relative parameter error
Σi, a lower bound on the relative size of the 95% con-
fidence interval for the i-th parameter, was calculated 
(Gutenkunst et al., 2007; Apgar et al., 2010):

	​​ Σ​ i​​  =  exp​(4 × ​​(​ ​σ​​ 2​ __ N ​ ​​(​H​ 𝛉​ −1​)​​ i,i​​)​​​ 
1/2

​)​ − 1,​

where

	​​ H​ 𝛉​​  = ​   ​d​​ 2​ ______ 
d log ​𝛉​​ 2​

 ​ 𝒞​​(​​𝛉, y​)​​​.​

The log Hessian ​​H​ 𝛉​ ​ ​​ is used to estimate the widths of 
the constant cost ellipsoid (Fig. 3 B), and the diagonal 
elements of its inverse are used to place a lower bound 
on individual relative parameter errors, Σi. For all of our 
calculations, N = 104 and σ = 10%.

MBAM
MBAM attempts to reduce the number of parameters in 
a model while quantitatively fitting a given dataset. This 
is accomplished by reducing the number of parameters 
in a model one at a time. Each single parameter reduc-
tion is the result of eliminating or combining diverging 

https://github.com/gbohner/MBAM
https://github.com/gbohner/MBAM
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parameters. These diverging parameters are found by 
searching through parameter space along a trajectory 
that minimizes the effect on model output. Such a tra-
jectory is found by solving the following system of ordi-
nary differential equations,

	​​
​ d __ dt ​ ​𝛉​ t​​  = ​ v​ t​​

​ 
​ ​d​​ 2​ ___ 
d ​t​​ 2​

 ​ ​𝛉​ t​​  = ​​ [​​​​(​​∇​r​ t​​​)​​​​​(​​∇​r​ t​​​)​​​​ ⊤​​]​​​​ −1​​​(​​∇​r​ t​​​)​​​​ 
​v​ t​ ⊤​ ​H​ ​𝛉​ t​​​​ ​v​ t​​ ________ 
∥​v​ t​​ ​∥​​ 2​

 ​,
​​

where t denotes time spent following the trajectory, ​​
H​ ​𝛉​ t​​​​​ refers to the log Hessian evaluated at θt as defined 
above, ​​r​ t​​  =  f​​(​​ ​𝛉​ t​​, X​)​​​ − f​​(​​𝛉 * , X​)​​​​ is the vector of output 
discrepancies for all inputs, and ∇ denotes the vector 
gradient operation with respect to the parameters.

The initial parameter vector θ0 is taken to be the vec-
tor of presumed best-fit parameters θ0 = θ*, and the 
initial direction vector ​​​(​​ ​v​ 0​​​)​​​​ is set to be the sloppiest 
direction of the constant cost ellipsoid. These initial 
conditions enforce that our search begins at the lowest 
point of our cost surface (θ0) and that we initially move 
in the direction that goes uphill as little as possible ​​​(​​ ​v​ 0​​​)​​​​. 
This trajectory is followed until the diverging parame-
ters are found (​​𝛉​ ​t​ end​​​​​), or the cost becomes so large that 
the parameters no longer fit the data. The reader is re-
ferred to Transtrum (2016) (Preprint) and Transtrum 
and Qiu (2014, 2016) for full details.

Online supplemental material
Our supplemental text contains full algebraic details of 
the MBAM reductions presented in the paper. Fig. S1 

shows RMS cost for each reduced model. Fig. S2 shows 
how parameter compensations explain the discrepancy 
between true and inferred values. Fig. S3 shows inferred 
parameters from the reduced log(Po) model.

R e s u lt s

The BK channel primarily senses two stimulus signals: 
membrane voltage and intracellular Ca2+ concentration 
(Horrigan and Aldrich, 2002; Latorre and Brauchi, 
2006; Yan and Aldrich, 2010; Miranda et al., 2013). In 
response to these signals, BK opens its channel gate, 
allowing potassium ions to permeate. We consider a 
canonical model of BK gating (Horrigan and Aldrich, 
2002; Yan and Aldrich, 2010), shown schematically in 
Fig.  1  A. The model consists of three functional do-
mains: the channel gate, voltage-sensing domain, and 
Ca2+-sensing domain. The channel gate is regulated by 
four identical and independent voltage and Ca2+ sen-
sors. Consistent with the MWC framework, each do-
main can be in one of two conformations: C-O, R-A, ​
X - X · ​Ca​​ 2+​​ for the gate, voltage, and Ca2+ subunits, re-
spectively. The function of each domain is defined by 
an equilibrium constant (L, J, K), and the coupling be-
tween domains is mediated by allosteric factors (C, D, 
E). Formally, the model is given by 

	​​
​P​ o​​​(V, ​[​Ca​​ 2+​]​)​ =

​  
​ 

L ​​(​​1 + KC + JD + JKCDE​)​​​​ 4​
   ____________________________    

L ​​(​​1 + KC + JD + JKCDE​)​​​​ 4​ + ​​(​​1 + J + K + JKE​)​​​​ 4​
 ​,
​​� (1)

Figure 1. S ynthetic steady-state data.  
(A) Schematic of the general allosteric 
gating mechanism used to gener-
ate synthetic data. Subscripts denote 
the number of identical subunits. The 
steady-state properties of this model 
are fully described by eight parameters 
{L0, zL, J0, zJ, KD, C, D, E}. (B and C) Po 
− V and log(Po) − V relationships gen-
erated from base parameters (Fig. 2 B) 
for different Ca2+ concentrations (µM: 0 
[blue circles]; 0.7 [red boxes]; 4 [brown 
crossed circles]; 12 [asterisks]; 22 [blue 
diamonds]; 55 [red circles]; 70 [brown 
boxes; 95 [gray crossed circles]). For 
each Ca2+, voltage was sampled uni-
formly in 25-mV intervals.
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with equilibrium constants (J, K, L) given by

	​ L  = ​ L​ 0​​ exp​(​ − ​z​ L​​ V ____ kT ​ )​;  J  = ​ J​ 0​​ exp​(​ 
− ​z​ J​​ V ____ kT ​ )​;  K  = ​  ​[​Ca​​ 2+​]​ _____ ​K​ D​​ ​ ,​

where zL and zJ are the partial charges associated with 
channel opening and voltage sensor activation, re-
spectively. Synthetic data generated from this model is 
shown in Fig. 1 (B and C).

The biophysical parameters {L0, zL, J0, zJ, KD, C, D, 
E} in Eq. 1 have been estimated with a wide variety of 
experimental assays. We will focus on the identifiabil-
ity of these parameters with respect to the steady-state 
open probabilities of BK at various voltages and Ca2+ 
concentrations. In the language of MWC models, this 
“Po” curve corresponds to the ubiquitous activity or 
binding curve. We will also analyze a related common 
assay (Horrigan and Aldrich, 2002): the base 10 loga-
rithms of the probabilities, log(Po), made possible by 
single-channel recordings that allow for the determina-
tion of very small steady-state open probabilities. We will 
see that the model exhibits non-identifiability with re-
spect to both assays, but the non-identifiability is more 
severe for the Po assay. We will demonstrate that this 
difference in non-identifiability implies that the log(Po) 
assay may be used to experimentally test for the pres-
ence of parameter compensations predicted to hold the 
Po assay constant.

BK parameters are non-identifiable 
because of sloppiness
We begin by asking the following: how identifiable are 
the BK model parameters, with respect to each of the 
Po and log(Po) assays? Fig. 2 illustrates the problem of 
non-identifiability via the Po assay: noisy synthetic data 
generated from the BK model are well fit (within the 
10% error bars) by parameter values far from the base 
values used to generate the data (Fig. 2, A and B). To 
get a sense of how widely the parameters inferred from 
noisy Po data may vary, we fit the Po model to 100 noisy 
synthetic Po datasets (see Materials and methods) gen-
erated from the base parameters. We found that the 
best-fit parameters to noisy data spanned many orders 
of magnitude; the inferred best-fit parameters for Lo, 
D are shown in Fig. 2 (C and D). We investigated BK 
model identifiability systematically by computing lower 
bounds on the relative parameter error (see Materi-
als and methods) around the base parameter values. 
Many parameters have significant errors with respect 
to each assay (Fig.  3  A). The model suffers from 
non-identifiability.

It has been argued that non-identifiability in scientific 
models arises because of sloppiness: the model output 
is extremely sensitive to some combinations of parame-
ters but dramatically insensitive to other combinations 
(Gutenkunst et al., 2007; Machta et al., 2013). We there-

Figure 2.  An illustration of non-iden-
tifiability. (A) Data generated with base 
parameters, well fit with fit parameters. 
Error bars are 10% from noiseless data 
value. Data are labeled as in Fig. 1. (B) 
Parameters that generated the data 
(base) and the solid lines (fit) shown in 
A. zL and zJ are in units of e, KD is in 
units of M; the other parameters are di-
mensionless. (C and D) Log of fitted L0, 
D (respectively) values to 100 noisy syn-
thetic Po datasets generated from base 
parameter values. Values span many 
orders of magnitude. The horizontal 
spread is for ease of visualization; red 
lines indicate the true base parameter.
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fore ask: do either of the Po, log(Po) assays exhibit sloppi-
ness with respect to the underlying BK model parameters?

Formally, sloppiness is a feature of a model’s approx-
imate “surface of constant cost.” To understand slop-
piness, it is therefore useful to consider a surface of 
constant cost for a toy two-parameter model (Fig. 3 B). 
The toy surface is an ellipse that sits in parameter space, 
centered around the presumed best-fit parameters. In 
general, the surface of constant cost will have dimen-
sion equal to the number of model parameters. Each 
point on a surface of constant cost identifies parame-
ters whose model output is equivalently different from 
the output generated by the best-fit parameters, as mea-
sured by a cost function. Most commonly, this cost func-
tion is the root-mean-squared (RMS) error.

The toy constant cost ellipse illustrates the two key 
features of sloppiness. (1) One axis of the ellipse is 
much longer than the other (w2 >> w1); one direction 
of parameter space therefore constrains model behav-
ior much more than the other. (2) The ellipse is “tilted” 
rather than aligned with the parameter axes, so each 
ellipse axis corresponds to a combination of the two 
parameters. The toy ellipse therefore asserts that some 
combinations of parameters constrain the model be-
havior much more than others. The degree to which a 
parameter combination constrains the model output is 
encoded in the length of its axis (wi). The error bars for 

the toy parameters θ1, θ2 are given by Σ1, Σ2. Although 
the model is constrained by the combination of the two 
parameters in the “stiff” direction of parameter space, 
neither individual parameter is well constrained.

Because the BK model has many more than two pa-
rameters, we cannot easily visualize its ellipsoid of con-
stant cost. We therefore assessed BK model sloppiness 
by computing a quantity proportional to the lengths of 
the axes of its constant cost ellipsoids, ​1 / ​w​ i​ 2​​ (Fig. 3 C). 
Each assay exhibits the striking signature of sloppy mod-
els: the ​1 / ​w​ i​ 2​​ are exponentially spaced, corresponding 
to a linear spacing in logarithm (Waterfall et al., 2006). 
The Po assay (Fig. 3 C, red marks) exhibits a greater de-
gree of sloppiness than the log(Po) assay (Fig. 3 C, black 
marks), consistent with the log(Po) assay having more 
identifiable parameters than the Po assay (Fig.  3  A). 
Note that each data point in Fig.  3  C corresponds to 
an axis of the ellipsoid of constant cost, and in general, 
each axis will correspond to a combination of param-
eters, as shown in Fig.  3  B. There exists a visible gap 
(Fig. 3 C, dashed line) between the more sloppy (below 
line) and more stiff (above line) widths for both assays. 
Although such a clear gap does not likely exist in gen-
eral, we will later observe that the minimal number of 
model reductions needed to produce an identifiable 
model is equal to the number of axes having widths 
below this dashed line. This foreshadowing is consistent 

Figure 3. T he BK model is sloppy. (A) Lower bounds on parameter error (95% confidence interval) for each of the Po, log(Po) assays. 
The Po assay exhibits much worse identifiability than the log(Po) assay. (B) Ellipsoid of constant cost for a toy two-parameter model. 
The center point of the ellipsoid are the best-fit parameters. The parameters θ1,2 are constrained in the stiff direction, but have large 
error regions Σ1,2 because of the presence of a large sloppy direction. wi denotes the length of axis i. (C) Calculated ​log ​​(​​1 / ​w​ i​​ ​​​​ 2​​)​​​​ values 
for the Po assay (red) and log(Po) assay (black). Both exhibit a linear trend, the signature of a sloppy model. The dashed line is a visual 
aid aimed to draw attention to the gap in the data points.
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with the fact that the model reduction procedure lever-
ages the geometry of the model parameter space to re-
move existing sloppiness.

A reduced model for the Po assay admits identifiable 
emergent parameters
Having shown that the BK model has non-identifi-
able parameters because of sloppiness, we now aim 
to exploit the model’s sloppiness to construct new BK 
models whose parameters are both identifiable and 
of mechanistic interest. To construct such models, we 
use the MBAM (Transtrum and Qiu, 2014; Transtrum, 
2016 Preprint).

The MBAM algorithm takes three items as input: 
data, a mathematical model thought to describe the 
data, and the parameters of the model thought to 
best fit the data. The goal of the algorithm is to find 
a point in parameter space having two properties: (1) 
the model output generated by the parameters must fit 
the data well; and (2) one or more parameters must be 
divergent, having values close to 0 or ∞. To find such a 
point, the algorithm searches through parameter space, 
along a trajectory that minimizes the effect on model 
output. The search terminates once divergent parame-
ters are found, and the model is reparameterized such 
that no parameters equal to 0 or ∞ remain. The algo-
rithm is made to repeat until the newly parameterized 
models no longer fit the data well (see Materials and 
methods). The algorithm is deterministic: run on the 

same data with the same initial conditions, it will return 
the same reductions.

An overview of our MBAM output with respect to the 
Po assay is shown in Fig. 4. MBAM was run on a set of 
synthetic data points generated from the BK model and 
initialized with the “true” BK model parameters that 
generated these data points. The algorithm was termi-
nated after five iterations, each of which reduced the 
number of model parameters by one. The first three 
MBAM iterations produced models that fit the data 
essentially exactly (Fig. S1). The model produced by 
the third reduction step (Fig. 4 A) has eliminated five 
parameters and introduced two new emergent parame-
ters, ​​ϕ​ 1​​  = ​

4
 √ 
___

 ​L​ 0​​ ​ D,   ​ϕ​ 4​​  =  CE.​ The model produced by the 
fourth step (Fig. 4 B, left) does not fit the data well at 
low calcium concentrations (Fig. 4 B, right).

To better understand how the reduced models arise, 
we plotted the numerical values of the model param-
eters during MBAM searches (Fig. 5, left) and the re-
sulting reduced models (Fig. 5, right). Because MBAM 
searches along a trajectory of essentially equivalent 
model behavior, each x-axis “time point” corresponds to 
a set of parameter values that produce essentially equiv-
alent model output (Fig.  5, left). The algorithm con-
tinues searching until one or more parameters diverge 
to zero or infinity (Fig. 5, red lines). It is interesting to 
note that as zL goes to zero (Fig. 5 A, red line), several 
nondivergent parameters must compensate (Fig.  5  A, 
curved black lines) to fit the synthetic data. Subsequent 

Figure 4.  Results of model reduction 
for the Po assay. (A, left) Schematic of 
the model admitted by the third re-
duction; five parameters have been 
eliminated from the original model 
(red crosses) and two new emergent 
parameters have been added (ϕ1,4) for 
a total reduction of three parameters. 
(A, right) This model fits the data (solid 
lines) extremely well. (B, left) Schematic 
of model admitted by the fourth reduc-
tion. (B, right) This model does not fit 
the data well at low [Ca2+]. Synthetic 
data are labeled as in Fig. 1 (B and C).
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reductions (Fig. 5, B and C) take place without such sig-
nificant compensation from nondiverging parameters.

The algebraic reparameterizations that give rise to 
the reduced models in Fig. 5 are worked out in full in 
the Supplemental text. To understand the emergent 
parameters biologically, it is instructive to consider 
the third and “final” reduced model, which is algebra-
ically governed by

	​​ P​ o​​​(V, ​[​Ca​​ 2+​]​)​  = ​ 
​​(​​J ​ϕ​ 1​​​)​​​​ 4​ ​​(​​1 + K ​ϕ​ 4​​​)​​​​ 4​

  ___________________   
​​(​​J ​ϕ​ 1​​​)​​​​ 4​ ​​(​​1 + K ​ϕ​ 4​​​)​​​​ 4​ + ​​(​​1 + J + K​)​​​​ 4​

 ​,​� (2)

with equilibrium constants (J, K) given by

	​ J  = ​ J​ 0​​ exp​(​ 
− ​z​ J​​ V ____ kT ​ )​;  K  = ​  ​[​Ca​​ 2+​]​ _____ ​K​ D​​ ​ .​

The emergent parameter ϕ4 = CE represents the ef-
fect of [Ca2+] binding on the voltage-sensing process, 
and ​​ϕ​ 1​​  = ​

4
 √ 
___

 ​L​ 0​​ ​ D​ represents the coupling of voltage sens-
ing to the pore opening. Additionally, the remaining 

original parameter KD is the binding constant of the li-
gand, J0 governs the midpoint voltage of the voltage-ac-
tivation curve, and zJ controls its slope.

We next ask: do the reduced models have identifiable 
parameters? To address this issue, we calculated lower 
bounds on the relative error for each of the reduced 
models and found that each reduction step leads to a 
model with fewer unidentifiable parameters (Fig. 6). It 
is important to note that although each model reduc-
tion step leads to a smaller number of non-identifiable 
parameters than the one before it, it is not the case that 
each parameter becomes more identifiable after each 
reduction step. In the first reduced model, L0, C, D, and 
E and all have much greater relative errors than in the 
original model (compare Fig. 6 A [table] with Fig. 3 A). 
Care must therefore be taken in interpreting these in-
termediate models (Fig. 6, A and B).

In contrast, interpreting the third reduced model 
(Fig.  6  C) is clear. The model fits the data extremely 

Figure 5.  Intermediate MBAM steps, 
Po assay. The figure should be read left 
to right, top to bottom. The left col-
umn displays the parameter values for 
a given model as MBAM progresses. 
The reduced model created upon com-
pletion of the parameter search is dis-
played on the right. (A) MBAM run for 
the full, original model. There are eight 
lines, corresponding to eight param-
eters. One of the parameters goes to 
zero; this is zL, and it is eliminated, giv-
ing our first reduced model, at right. (B) 
In the second iteration, four parameters 
are observed to diverge: L0, D, E, C. 
These parameters are eliminated, and 
three new, emergent parameters are 
created (ϕ1,2,3), yielding a net reduction 
of one parameter. (C) Two parameters 
are observed to diverge: ϕ2, ϕ3. Note 
that there are only six lines, correspond-
ing to the six remaining parameters. 
The resulting model (right) has five pa-
rameters and fits the data well (Fig. 4).
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well (Fig. 4 A) and has parameters that are identifiable 
and expressed in terms of mechanistically meaningful 
parameters (Fig.  6  C, table). Variations in underlying 
MWC parameters that keep these emergent parameters 
constant may, but do not necessarily, leave assay output 
unchanged. Conversely, any significant parameter vari-
ation that leaves the Po assay unchanged must keep the 
emergent parameters constant. Observe that the differ-
ences in base and fit parameters that give rise to the 
same dataset in Fig. 2 B do indeed keep the emergent 
parameters essentially constant. Relative to the base pa-
rameter, the fit parameter C increased by a factor of 108; 
correspondingly, the parameter E decreased by a factor 
of 108, consistent with constant emergent parameter ϕ4 
= CE. Likewise, the value of ​​

4
 √ 
___

 ​L​ 0​​ ​​ decreased by a factor of 
108, and correspondingly the value of D increased by a 
factor of 108, consistent with constant emergent param-
eter ​​ϕ​ 1​​  = ​

4
 √ 
___

 ​L​ 0​​ ​ D.​

We interpret the emergent parameters as predictions 
of the original MWC model about potential compensa-
tory mechanisms of the macromolecule. How can we 
test for the presence of these parameter compensations 
experimentally? By definition, the compensations are 
not discernible from the Po assay. To address this issue, 
we therefore turn to the log(Po) assay.

The log(Po) model reduction reveals parameter 
differences unidentifiable by Po

Having found a reduced, identifiable model for the 
Po assay, we now aim to find such a model for the 
log(Po) assay. Because the log(Po) assay was observed 
to have fewer “very sloppy” directions than the Po assay 
(Fig.  3 C), we expected to find an identifiable model 
after fewer reduction steps than needed for the Po assay. 
Indeed, MBAM produces an identifiable model after 
only one reduction step. In this model, each of the orig-

Figure 6.  Model reduction results in identifiable param-
eters. Reduced models for the Po assay are presented in 
the left column, and error lower bounds of their parame-
ters (95% confidence interval) are presented at right. A–C 
correspond to model-error pairs after one, two, and three 
reduction steps, respectively. The five-parameter model 
produced by three model reductions (C, left) has identi-
fiable parameters (within one order of magnitude for all 
parameters, right).
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inal parameters is identifiable except for zL, which has 
been eliminated (Fig. 7).

Can we use the reduced log(Po) model to detect the 
presence of large compensatory parameter changes 
that give rise to identical Po datasets? To address this 
issue, we generated test and base parameters that pro-
duced equivalent Po data (up to 10% error), but con-
tained the type of large compensatory changes shown 
in Fig. 2 B. The test and base parameters were then used 
to generate noisy synthetic log(Po) data, to which the re-
duced log(Po) model was fit. Values of the base parame-
ters inferred by the reduced log(Po) model varied many 
orders of magnitude less than when inferred from noisy 
Po data generated from the same parameters (compare 
the black points in Fig. 8 [A and B] with Fig. 2 [C and 
D]), reflecting the greater identifiably of the reduced 
log(Po) model.

This increase in identifiability allows the reduced 
log(Po) model to discern large compensatory parame-
ter changes that leave the Po assay constant (Fig. 8, red 
points). Note that the mean of the inferred parameter 
values (Fig. 8, solid lines) did not match the true val-
ues of the underlying parameters (Fig. 8, dashed lines). 
This is expected because of compensations from the 
other parameters (Fig. S2) and does not affect discern-
ibility. Our analysis is limited in that we did not exhaus-
tively sample the parameter space. Rather, we examined 
several sets of test parameters and found that large com-
pensatory variations from the base parameters were dis-
cerned via the reduced log(Po) model in all cases, even 
when the test parameters were degenerate (Fig. S3). We 
wish here only to make the point that the log(Po) assay 
can elucidate parameter variations hidden by the Po 
assay in practice, not that it must in general.

Di  s c u s s i o n

Our results demonstrate that reduced models produced 
by MBAM allow for quantitatively accurate param-
eter information to be gleaned from models that are 
non-identifiable with respect to most or all individual 
parameters. Because the emergent parameters of our 
reduced models indicate which coordinated changes in 
parameter values are necessary to preserve the output 
for a given assay, they may be interpreted as predictions 
of the MWC model about which biophysical properties 
can compensate for each other to maintain a functional 
role. For what purposes would MBAM-elucidated com-
pensatory effects be used by allosteric macromolecules? 
We propose experiments to test the role of parameter 
compensation in functional and evolutionary adapta-
tion, both of which have been previously connected to 
sloppiness (Daniels et al., 2008).

Emergent parameters may facilitate 
functional adaptation
It is well known that macromolecules exhibit some 
amount of functional robustness with respect to exper-
imental perturbations of temperature, pH, salt con-
ditions, and sequence structure (Rennell et al., 1991; 
Somero, 1995; Suckow et al., 1996; Guo et al., 2004; 
Weber and Pande, 2012). We propose that this func-
tional robustness may arise from compensatory mech-
anisms of the type identified here. That is, changes in 
environment or sequence structure that have little ef-
fect on assay output should be observed to have large 
but compensatory effects in the mechanistic parame-
ters, such that the value of MBAM-identified emergent 
parameters remain constant. In BK, for example, we 

Figure 7.  Reduced log(Po) model. (A) A model resulting from one reduction (left) fits synthetic data (right; data legend as in Fig. 1) 
very well (solid lines). (B) This model has identifiable parameters.
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may expect that a change in temperature or sequence 
that marginally effects the Po data nonetheless largely 
increases C but equivalently decreases E.

To test for the presence of a compensatory effect, 
an experimentalist generally needs at least two assays: 
a “physiologically relevant” assay whose output should 
not change upon environmental manipulation, from 
which compensatory effects may be predicted, and one 
or more secondary assays, from which the differences 
in individual parameters can be observed. Obvious can-
didates for physiologically relevant assays include bind-
ing curves (as analyzed here) and physiologically and 
thermodynamically relevant functions thereof (Wyman, 
1967; Di Cera, 1995; Chowdhury and Chanda, 2012). 
For BK, our results demonstrate that the log(Po) assay 
serves as a good secondary assay for testing compensa-
tory mechanisms predicted from the Po assay.

Measurements of hemoglobin’s oxygen-binding curve 
confirms that parameter compensations facilitate 
functional adaptation
How speculative is this prediction? On one hand, the 
existence of MBAM-identified parameter compensa-
tions is general. Compensations depend only on the 
underlying sloppiness of the model and assay, which 
have been demonstrated to be ubiquitous in multipa-
rameter models across systems biology (Gutenkunst et 
al., 2007). On the other hand, the relevance of MWC 
parameter compensations in allosteric macromolecules 

is ultimately a question for experiment. To that end, we 
note that an extensive meta-analysis of hemoglobin’s 
oxygen binding confirms the physiological relevance of 
MWC parameter compensations (Milo et al., 2007).

Milo et al. (2007) analyzed hemoglobin binding 
curves under varying physiological conditions and in 
different mammals. To quantitatively study these bind-
ing curves, Milo et al. (2007) used an MWC model that 
assumed the hemoglobin tetramer to be in one of two 
conformations: relaxed or tense. In each conformation, 
all four subunits have the same independent affinity for 
oxygen. The dissociation constants for the relaxed and 
tense states are KR, KT, respectively. The equilibrium 
constant between the fully deoxygenated tense and re-
laxed states is L0. The three mechanistic parameters KR, 
KT, L0 fully parameterize the model.

The authors found that this three-parameter model 
was non-identifiable with respect to the saturation curve. 
Using limit-style arguments that are possible for simple 
models and essentially equivalent to MBAM (Transtrum 
and Qiu, 2016), the model was reparameterized to have 
the emergent, identifiable parameters

	​​ L​ 4​​  = ​ L​ 0​​ · ​ 
​K​ R​ 4​ ___ 
​K​ T​ 4​

 ​,   ​L​ T0R4​​  = ​ L​ 0​​ ​K​ R​ 4​.​� (3)

The authors demonstrated analytically that each emer-
gent parameter has a clear physiological interpretation: 
LT0R4 controls the half-saturation point of oxygen bind-
ing p50; L4 controls the cooperativity at this point, n. 

Figure 8.  Inferred parameters from 
the reduced log(Po) model. Values 
inferred by fitting the once-reduced 
log(Po) model to 100 noisy synthetic 
measurements generated from base 
(black) and test (red) parameter sets. 
A–C correspond to inferred values of 
L0, D, J0, respectively. Solid lines con-
nect the means of the inferred base and 
test values; dotted lines connect the 
true generating base and test values. 
The test parameter set used was, in: L0 
= 10−3.7; zL = 10−0.1 e; J0 = 10−0.89; zJ = 
10−0.12 e; KD = 10−4.2 M; C = 100.79; D = 
100.66; E = 100.54. The horizontal spread 
is only for ease of visualization.
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Moreover, the authors found that n remained constant 
for human hemoglobin at varying pH (Fig. 9 A).

The results of Milo et al. (2007) therefore present 
an exceptionally simple framework in which to test 
our prediction. The n assay remains constant upon 
physiological variation and is controlled by the single 
emergent parameter L4. Is this assay constancy the re-
sult of compensations of the underlying MWC parame-
ters, as we predict?

Indeed it is. Across varying pH conditions, n stays 
constant while p50 varies. Correspondingly, L4 stays con-
stant as LT0R4 varies (Fig. 9 C). It is immediate from the 
definitions of L4 and LT0R4 (Eq. 3) that in order for L4 
to remain constant as LT0R4 varies, KT

4 must compensate 
for changes in ​​L​ 0​​   ·   ​​K​ R​​​​ 4​​.

Emergent parameters may identify evolutionary 
relevant “neutral spaces”
There is now significant theoretical (Draghi et al., 2010) 
and experimental (Hayden et al., 2011) evidence, in-
cluding in allosteric proteins (Raman et al., 2016), that 
biological systems may evolve by drifting in genotype 

space such that their primary function remains un-
changed. This is known as “neutral evolution” (Wagner, 
2005, 2008). Neutral evolution proceeds via mutations 
that leave current function unchanged but may be ad-
vantageous in a subsequent environment. Because the 
utility of these mutations do not manifest until the cor-
rect environment arises, they are said to be cryptic. The 
spaces of sequences, parameters, or network topologies 
that give rise to equivalent behaviors are known as neu-
tral spaces (Daniels et al., 2008).

Emergent parameters identified here may define neu-
tral spaces. In particular, cryptic mutations in allosteric 
macromolecules may give rise to cryptic MWC parameter 
variations—large but compensatory effects in mechanis-
tic parameters such that the value of MBAM-identified 
emergent parameters remain constant. This proposal 
can be tested by searching for cryptic MWC parameter 
changes between variants of an allosteric macromole-
cule within and across populations.

At first glance, the study of Milo et al. (2007) pro-
vides a way to interrogate this prediction as well. Milo 
et al. (2007) noted that the assay p50 stayed relatively 

Figure 9.  Analysis of hemoglobin oxygen saturation curves. These figures were generated with data published by Milo et al. 
(2007). (A and B) Reproduction of Milo et al. (2007) Fig. 2 (a and b). (C and D) Reproduction of Milo et al. (2007) Fig. 4 (a and b). 
(A and C) Each point corresponds to human hemoglobin at a different pH. (B and D) Each point corresponds to hemoglobin from 
a different mammal, at the same physiological condition. We refer the reader to the appropriate figures in Milo et al. (2007) for full 
descriptions of pH conditions and mammals used.
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constant across 25 different mammals, measured at the 
same physiological conditions (Fig. 9 B). So too did the 
emergent parameter that controls it: LT0R4 (Fig. 9 D). 
This is indeed what we would expect if the emergent 
parameter identified a neutral space.

Unfortunately, the study by Milo et al. (2007) cannot 
be used to confirm the presence of a neutral space. If 
the LT0R4 constancy reflected a neutral space, we would 
expect L0 and KR

4 to vary cryptically between species. 
Because L0 and KR cannot be estimated from the avail-
able data, we cannot determine whether p50’s constancy 
across species results from this cryptic variation or from 
L0 and KR

4 each remaining constant. The connection 
between emergent parameters and neutral spaces re-
mains speculative, though we suspect it may prove an 
interesting source of future work.

Conclusions
We have argued that parameter compensation under-
lies both non-identifiability and adaptability in allosteric 
macromolecules. We therefore contend that non-iden-
tifiability should be expected in any adaptable allosteric 
macromolecule, so long as the model is mechanistically 
relevant and the functional assay adequately captures 
the macromolecule’s function.

Non-identifiability does not itself imply that a model 
or assay is physiologically relevant. Experimentally ver-
ifying that a predicted parameter compensation is ac-
tually used, as we have done with hemoglobin and its 
cooperativity at the half saturation point of oxygen 
binding, n, is paramount. It must also be kept in mind 
that observed parameter compensations may be spu-
rious rather than meaningful and must be assessed in 
context. In hemoglobin, the mechanistic relevance of 
the model parameters and clear physiological relevance 
of the half saturation point of oxygen binding support 
the relevance of the compensation we identified.

The enormous success of MWC models in describing 
allosteric macromolecules presents a wide array of op-
portunities for further experimentally testing the func-
tional utility of parameter compensations. We anticipate 
that reduced models will prove essential for extracting 
mechanistically meaningful quantitative information 
from MWC models and provide a wealth of readily fal-
sifiable predictions about the emergent properties of 
allosteric macromolecules.
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