
Identification of informative features 
for predicting proinflammatory potentials 
of engine exhausts
Chia‑Chi Wang1,2,3,4, Ying‑Chi Lin1,2, Yuan‑Chung Lin2,3, Syu‑Ruei Jhang3 and Chun‑Wei Tung1,2,4*

From 4th International Work-Conference on Bioinformatics and Biomedical Engineering-IWBBIO 2016 
Grenada, Spain. 20–22 April 2016

Background
Engine exhausts are known to cause adverse health effects [1, 2]. Toxicities associated 
with the exposure of engine exhausts include carcinogenicity, mutagenicity and immu-
notoxicity [3–5]. Toxicity assessments of engine exhausts is essential for developing safe 
alternative fuels with lower toxicity [6]. Among the chemicals from engine exhausts, 
polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs are substances of major 
concern due to their known genotoxicity effects [6] and are suspected carcinogens in 
humans [7].

Abstract 

Background:  The immunotoxicity of engine exhausts is of high concern to human 
health due to the increasing prevalence of immune-related diseases. However, the 
evaluation of immunotoxicity of engine exhausts is currently based on expensive and 
time-consuming experiments. It is desirable to develop efficient methods for immuno‑
toxicity assessment.

Methods:  To accelerate the development of safe alternative fuels, this study proposed 
a computational method for identifying informative features for predicting proin‑
flammatory potentials of engine exhausts. A principal component regression (PCR) 
algorithm was applied to develop prediction models. The informative features were 
identified by a sequential backward feature elimination (SBFE) algorithm.

Results:  A total of 19 informative chemical and biological features were successfully 
identified by SBFE algorithm. The informative features were utilized to develop a com‑
putational method named FS-CBM for predicting proinflammatory potentials of engine 
exhausts. FS-CBM model achieved a high performance with correlation coefficient val‑
ues of 0.997 and 0.943 obtained from training and independent test sets, respectively.

Conclusions:  The FS-CBM model was developed for predicting proinflammatory 
potentials of engine exhausts with a large improvement on prediction performance 
compared with our previous CBM model. The proposed method could be further 
applied to construct models for bioactivities of mixtures.
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For toxicity evaluation of engine exhausts, several polycyclic aromatic hydrocarbons 
(PAHs) are quantified. Subsequently, a toxicity equivalence factor (TEF) method pro-
posed by U.S. Environmental Protection Agency (EPA) is applied to estimate the overall 
toxicity posed by PAH mixtures. Finally, a TEQ value representing the overall toxicity of 
a PAH mixture is calculated based on the summation of equipotent concentrations of 
BaP converted from PAHs. The TEF/TEQ method has been widely applied to calculate 
the carcinogenicity and mutagenicity of PAH mixtures in environmental samples [8–13]. 
Despite its wide use, TEQ values are calculated in a simple additive manner assuming 
no antagonistic and synergistic effects among the chemicals and based on only routinely 
tested PAHs without incorporating the effects from other chemicals that could limit the 
usefulness of the TEF method [14]. As a complement to TEF method, Ames test [15], 
which is capable of determining the genotoxicity of engine exhausts, is routinely con-
ducted to provide an overall genotoxicity of mixtures [16, 17].

In contrast to the evaluation of carcinogenicity and mutagenicity, there is currently 
no well-established method for the evaluation of immunotoxicity potentials for engine 
exhausts. Recently, a computational prediction model CBM based on chemical and bio-
logical features was developed to facilitate the immunotoxicity assessment of engine 
exhausts [14]. Due to the association between genotoxicity and immunotoxicity of PAHs 
[18], features collected from routinely conducted tests including quantification of PAHs, 
TEQ value and results from Ames test were utilized in the CBM model to predict the 
proinflammatory potentials of engine exhausts. The CBM model performed well with 
correlation coefficients of 0.972, 0.839 and 0.847 for training, cross-validation and test, 
respectively. The results also suggested that both chemical and biological features are 
required to develop an effective model [14]. Although, the effectiveness of CBM model 
for predicting proinflammatory potentials has been demonstrated, the importance of 
each feature should be further studied to provide insights into the relationship between 
features and proinflammatory potentials.

In this study, a sequential backward feature elimination (SBFE) algorithm was devel-
oped and applied to identify informative features for predicting proinflammatory poten-
tials. The SBFE algorithm removes a feature with lowest contribution to the prediction 
performance iteratively. The feature selection process excluded five features from a total 
of 24 chemical and biological features. A FS-CBM model was developed by using the 
remaining 19 informative features selected by SBFE algorithm. By excluding unrelated 
features, the FS-CBM model achieved a high performance with correlation coefficient 
values of 0.997, 0.946 and 0.943 obtained from training, cross-validation and independ-
ent test, respectively. Compared with our previous CBM model [14], the FS-CBM model 
utilizing only 19 informative features provides 10% performance improvement for both 
cross-validation and independent test.

Methods
Samples of engine exhaust

A total of 16 engine exhaust samples were collected from a six-cylinder engine of 
Cummins B5.9-160 using various blends of diesel–hydrogen fuels in the Refining and 
Manufacturing Research Center for heavy-duty diesel engine operation at the Chi-
nese Petroleum Corporation. Engine tests were completed using a Schenck GS-350 
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dynamometer under several loading conditions. Each collected sample was extracted 
in a Soxhlet extractor with a mixed solvent (n-hexane and dichloromethane 1:1 (v/v), 
750  mL each) for 24  h. The extracts were then poured up into silica gel positioned 
under a layer of anhydrous Na2SO4 (about 1 cm high) and above a glass fiber support. 
The purified solution was concentrated to 1.0  mL by purging with ultra-pure nitro-
gen for GC/MSD analysis. The GC/MSD equipped with a capillary column (HP Ultra 
2; 50 m ×  0.32 mm ×  0.17 μm) was calibrated with a diluted standard solution of 16 
PAH compounds (PAH mixture-610  M from Supelco, USA) plus five additional indi-
vidual PAHs (Merck, Germany). The concentrations of 21 PAH compounds, including 
naphthalene (Nap), acenaphthylene (AcPy), acenaphthene (Acp), fluorine (Flu), phen-
anthrene (PA), anthracene (Ant), fluoranthene (FL), pyrene (Pyr), benzo(a)anthracene 
(BaA), chrysene (CHR), cyclopenta(c,d)pyrene (CYC), benzo(b)fluoranthene (BbF), 
benzo(k)fluoranthene (BkF), benzo(e)pyrene (BeP), benzo(a)pyrene (BaP), perylene 
(PER), dibenzo(a,h)anthracene (DBA), benzo(b)chrycene (BbC), indeno(1,2,3,-cd)pyr-
ene (IND), benzo(ghi)perylene (BghiP), and coronene (COR), were then determined as 
described in our previous studies [12, 13, 19, 20].

Fluctuation Ames test

Salmonella typhimurium TA98 and TA100 were grown overnight in nutrient broth sup-
plemented with ampicillin 25 μg/mL under constant shaking at 37 °C. The resulting cul-
tures were used directly (TA98) or diluted 1:4 (TA100) with exposure medium (Moltox). 
The test samples, positive and negative controls were prepared as triplicates in 24-well 
plates. 10 μL of the tester was mixed with the bacterial overnight culture (50 μL) and 
exposure medium to a total volume of 250 μL/well and cultured for 90 min at 37 °C with 
250  rpm constant shaking. After this pre-incubation, 2.5 mL of the histidine-deficient 
reversion indicator medium (Moltox) were added to each well. The mixtures were then 
transferred to 384-well plates (48 aliquots per test) and incubated for 48 h at 37 °C with-
out agitation. A reversion due to mutation events can be detected by the color shift of 
the reversion indicator medium from purple to yellow, caused by the pH change of the 
medium due to the metabolic activity of the revertants. The number of wells contain-
ing revertants was determined by an absorption measurement at 590 nm. A sample is 
considered mutagenic when the number of revertant wells is significantly higher than 
the number of revertant wells in the negative control. In this study, the genotoxicity is 
represented as two proportions of the number of wells with revertants to the number of 
all tested wells for TA98 and TA100 tests.

Cell culture and TNF‑alpha detection

Human monocyte THP-1 cells were cultured in RPMI 1640 cell culture medium supple-
mented with 10% heat-inactivated fetal bovine serum (Hyclone) and 1% penicillin/strep-
tomycin (Gibco) at 37 °C in 5% CO2. THP-1 cells (5 × 105 cells/well) were treated with 
different samples in 48-well plates in the presence of lipopolysaccharide (0.5 μg/mL) for 
48 h. The supernatants were collected and quantified for TNF-alpha, as an indicator of 
cell proinflammatory responses, by standard sandwich enzyme-linked immunosorbent 
assay (ELISA) as previously described [21, 22]. The TNF-alpha level in LPS group was 
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designated as 100%, and the levels of TNF-alpha in each group was calculated according 
to the following formula: 

where a value over 100% indicates induction and a value smaller than 100% indicates 
inhibition.

Principal component regression (PCR)

Principal component regression (PCR) has been extensively used for the development of 
various predictive regression models [23–25]. The development of PCR model is based 
on a two-step method. First, principal component analysis (PCA) is applied to extract 
informative principal components accounting a given number of proportion of vari-
ance of data. Subsequently, the regression model is built from selected principal compo-
nents using linear regression algorithms. The PCA procedure is based on an orthogonal 
transformation converting potentially correlated variables to linearly uncorrelated prin-
cipal components. In this study, 95% of variance is utilized to select informative prin-
cipal components from correlation matrix for developing regression. M5 algorithm is 
then utilized for selection of principal components for linear regression. The regression 
model can be regularized by a ridge parameter to avoid overfitting problems. A leave-
one-out cross-validation (LOOCV) procedure is applied to determine the best ridge 
parameter r ∈ {21, 20, …, 2−15} giving the highest correlation coefficient. The implemen-
tation of the PCR methods is based on WEKA package [26].

Sequential backward feature elimination algorithm

In this study, a wrapper-based feature selection method was developed and applied to 
identify informative features giving highest prediction performance. The feature selec-
tion method of sequential backward feature elimination (SBFE) algorithm is to remove 
features with lowest contribution to the prediction performance of PCR models itera-
tively. The prediction performance for each feature subset is evaluated by the PCR 
model using LOOCV. The sequential feature selection algorithms are simple yet power-
ful methods that have been successfully applied in several biological problems includ-
ing pupylation sites [27], esophageal squamous cell carcinoma [28] and Ames-negative 
hepatocarcinogens [29].

Results and discussion
Identification of informative features

According to our previous report [14], several experiments utilizing various combina-
tions of features have been conducted to show that both chemical and biological features 
are required for constructing predictive model. The results implied that most features 
are useful. However, the individual effects and the optimal feature subsets have not been 
studied. In this study, a sequential backward feature elimination (SBFE) algorithm was 
developed and applied to identify informative features for predicting proinflamma-
tory potentials of engine exhausts. A total of 22 chemical features of PAHs and TEQ 
value and 2 biological features of TA98 and TA100 were utilized in this study. Please 
refer to our previous paper for a detailed dataset characteristics [14]. Figure 1 shows the 

Proinflammatory potential = TNF-alphasample/TNF-alphaLPS × 100%,
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results of the feature selection. For each number of features, its corresponding training 
and LOOCV performances were evaluated by the PCR algorithm. By removing the top 
five irrelevant features namely PA, BeP, PER, FL and BaP, the correlation coefficient val-
ues have been improved to 0.997 and 0.946 for training and LOOCV, respectively. The 
exclusion of additional features does not further improve the performance. Interestingly, 
the removed five features are all chemical features representing concentrations of PAHs. 
Among the five eliminated features, BaP is the reference PAH for the TEF method. The 
results might suggest that the concentration of the most carcinogenic compound BaP 
alone may not be highly related to proinflammatory potentials, however, the TEQ value 
is still useful for predicting proinflammatory potentials of engine exhausts. The final 
informative feature set consists of 17 chemical and 2 biological features.

FS‑CBM model

A final model named FS-CBM was constructed for predicting proinflammatory poten-
tials of engine exhausts based on 11 training samples using 19 selected informative fea-
tures and a ridge parameter of 2−7. The model gave the highest training and LOOCV 
performance. The fitting result is shown in Fig. 2. The FS-CBM model is shown in the 
following Eq. 1.

Fig. 1  Results from feature selection

Fig. 2  Fitting results on training set based on informative features
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An independent test dataset consisting of five samples was applied to further validate 
the prediction performance of the developed FS-CBM model. The correlation coeffi-
cient and mean absolute error were 0.943 and 47.96, respectively. The independent test 
result is shown in Fig. 3. Compared with our previous study [14], there is a 10% improve-
ment in terms of correlation coefficient on independent test dataset making the FS-
CBM model more useful for predicting proinflammatory potentials of engine exhausts. 
The comparison of the FS-CBM model and our previous CBM model [14] is shown in 
Table 1. The selection of informative features provided superior performance on train-
ing, LOOCV and test.

Feature importance

The above mentioned feature selection method successfully identified the 19 informa-
tive features for predicting proinflammatory potentials of engine exhausts. While the 
19 features are essential for an effective model, the importance for each feature could 
provide better understanding of the relationship between features and proinflammatory 
potentials. Two methods applied to rank the importance of the features were shown in 
the follows.

The first method was to utilize the results from SBFE to provide information on the 
feature importance. The first eliminated feature is with lowest importance. The rank-
ing of features according to the importance is TA98, BkF, Nap, AcPy, Acp, TEQ, COR, 

(1)
TNF-alpha = −0.6587 ∗ PC1+ 2.3191 ∗ PC3− 11.9916 ∗ PC5+ 2.4534 ∗ PC6

− 6.5432 ∗ PC7− 48.2167 ∗ PC8+ 100.3696

Fig. 3  Independent test result

Table 1  Comparison of FS-CBM and CBM model

CC correlation coefficient

Model FS-CBM (this study) CBM [14]

Number of features 19 24

Training CC 0.997 0.972

LOOCV CC 0.946 0.839

Test CC 0.943 0.849
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TA100, BbC, BaA, CYC, Flu, Pyr, BbF, CHR, Ant, BghiP, IND, DBA, BaP, FL, PER, BeP 
and PA. Based on the SBFE algorithm, TA98 and PA were the most important and irrel-
evant features, respectively. The results showed that both biological features of TA98 
and TA100 are critical features for proinflammatory potentials. In summary, unlike 
carcinogenicity, there is no clear association between ring numbers and proinflamma-
tory potentials as the top five important PAH features have 5, 2, 3, 3 and 6 rings. The 
first method provides only ranking information on relative feature importance without a 
quantitative measurement for their contributions to the prediction of proinflammatory 
potentials.

To give a quantitative measurement on feature importance, the second method uti-
lized the decrease on prediction performance by excluding a specific feature that is a 
simple and useful method for evaluating feature importance [30]. The influence of fea-
ture exclusion on training and LOOCV performance is shown in Fig. 4. All features in 
the FS-CBM model were essential for an effective model according to the significant 
decrease on LOOCV performance. For example, the removal of TA100 feature resulted 
in failure to fit the training sample with the correlation coefficients of zero and negative 
values for training and LOOCV, respectively. By contrast, the removal of TA98 feature 
does not result in a failed fitting but a significant decrease on LOOCV performance. The 
ranking also showed no clear association between ring numbers and proinflammatory 
potential, which is consistent with the first method.

Altogether, biological features of TA98 and TA100 play important roles on predict-
ing proinflammatory potentials of engine exhausts. Both methods identified Acp as 
one of the top ranking features indicating that the concentration of Acp could be cru-
cial to proinflammatory potentials. Our results are consistent with previous studies in 
which PAHs have been reported as potent immunotoxic environmental toxicants on 
monocytes [18, 31, 32]. Experimental evidence suggested a direct link between carcino-
genicity and immunotoxicity of PAHs [18, 31]. BaP, BaA, BbF, BkF, DBA and IND were 
found to induce toxic effects on macrophages [31]. Interestingly, these PAHs, except 
BaP, were identified as important features in this study for predicting proinflammatory 
potential of engine exhausts. BaP at a low concentration (1 µM) can significantly induce 
caspase-3 activation and cell death [31] so that BaP could induce proapoptotic effects 

Fig. 4  Evaluation of feature importance based on the exclusion of each feature
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on macrophage rather than significantly stimulate the production of proinflammatory 
cytokines. The proapoptotic effect of Bap might explain the exclusion of Bap feature. 
In addition to the important features, the eliminated features are also consistent with 
a study reporting the effects of PAHs on MCP-1 (monocyte chemoattractant protein-1, 
one of the early stage releasing chemokines during macrophage activation) production 
by THP-1 cells [33]. In that study, Nap and Acp, both identified as informative features, 
dramatically induced the production of MCP-1. In contrast, the eliminated features of 
PA, BaP and FL only slightly induced MCP-1 production [33]. The selection of informa-
tive features is consistent with previous studies that the informative features of Nap and 
Acp are correlated with proinflammatory potentials and the eliminated features of PA, 
BaP and FL are not the major factors associated with macrophage activation.

Conclusions
The toxicity prediction for a single compound has been extensively studied and numer-
ous methods have been developed such as ligand-based quantitative structure–activ-
ity relationship (QSAR) models [34, 35], chemical–protein interaction-based models 
[36, 37], high-content screening assay-based models [38], and interaction profile-based 
inference systems of CTD [39] and ChemDIS [40, 41]. However, toxicity prediction of 
complex mixtures is still a challenge due to the complexity of chemical interactions in 
mixtures. Compared with the prediction works for single compounds, only a limited 
number of studies for complex mixtures has been reported, for example, the prediction 
of mutagenicity [42]. Besides, such prediction models often just involve chemical fea-
tures such as the mass spectrometry profile without incorporation of biological features. 
In this study, we have developed an FS-CBM model which predicts the proinflammatory 
potentials of engine exhausts using both chemical and biological features. The usefulness 
of biological features has been shown and informative features were identified for better 
understanding of proinflammatory potentials for engine exhausts. The successful appli-
cation of the FS-CBM model demonstrates the potential application of computational 
methods for toxicity predictions of mixtures. More samples are being collected and ana-
lyzed to enlarge the sample size for developing a more robust model. The combination 
of biological and chemical features could be further applied to the prediction of various 
toxicities such as skin sensitization and hepatotoxicity for mixtures.
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