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Abstract.
Background: Cognitive and biological markers have shown varying degrees of success in identifying persons who will
develop dementia.
Objective: To evaluate different combinations of cognitive and biological markers and identify prediction models with the
highest accuracy for identifying persons with increased dementia risk.
Methods: Neuropsychological assessment, genetic testing (apolipoprotein E – APOE), and structural magnetic resonance
imaging (MRI) were performed for 418 older individuals without dementia (60–97 years) from a population-based study
(SNAC-K). Participants were followed for six years.
Results: Cognitive, genetic, and MRI markers were systematically combined to create prediction models for dementia at six
years. The most predictive individual markers were perceptual speed or carrying at least one APOE �4 allele (AUC = 0.875).
The most predictive model (AUC = 0.924) included variables from all three modalities (category fluency, general knowledge,
any �4 allele, hippocampal volume, white matter-hyperintensity volume).
Conclusion: This study shows that combining markers within and between modalities leads to increased predictivity for
future dementia. However, minor increases in predictive value should be weighed against the cost of additional tests in
larger-scale screening.
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INTRODUCTION

Dementia and Alzheimer’s disease (AD) have
a long preclinical phase during which a range of
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cognitive and biological markers may be used to
identify people in the early stages of disease devel-
opment [1]. Many clinical trials and interventions
for dementia are focused on this period, where
they are most likely to result in the prevention or
delaying of dementia onset. In the present study,
we evaluate the ability of a set of commonly used
markers from three modalities: cognitive, genetic,
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and structural-magnetic resonance imaging (MRI), to
identify individuals with a high probability to develop
dementia within the next 6 years.

Cognitive deficits can present years or decades
before a clinical diagnosis of dementia [2, 3], with
perceptual speed, executive function, and episodic
memory being most consistently impaired in the pre-
clinical phase [4, 5]. Of the dementia risk genes,
carrying the �4 allele of apolipoprotein E (APOE) is
the strongest risk factor for AD [6]. In addition, MRI
markers, such as grey matter volumes, can predict
future AD up to 10 years before clinical diagno-
sis [7] and white matter hyperintensities (WMHs)
have been associated with increased dementia
risk [8, 9].

Whereas all of these markers hold some predic-
tive value, the power of individual markers is more
limited. Recent research has therefore focused on
the possible benefits of combining various prodro-
mal markers. Increased predictivity has been reported
from combining neuropsychological tests with MRI
markers [10, 11] or by combining MRI markers and
APOE [12]. Some [13], but not all [14], studies sug-
gest that combining across modalities yields higher
predictive value than combining within modalities.
Moreover, several studies report a plateau in accu-
racy, after which the benefit of adding further markers
is limited [10, 15]. From a practical perspective, due
to financial, availability, or time constraints, it might
not be possible to include a large number of predic-
tors, if screening is to be implemented on a larger
scale.

In this study, we perform a systematic investiga-
tion of the added value of combining markers from
cognitive, genetic and MRI domains, both within and
across modalities, to identify those at increased risk
of developing dementia.

MATERIALS AND METHODS

Participants

Data were collected from participants involved in
a longitudinal population-based study, the Swedish
National Study on Aging and Care in Kungshol-
men (SNAC-K). Baseline assessment was conducted
on 3,363 individuals, belonging to specific age
cohorts. Older age groups (≥78 years) were re-
examined after 3 and 6 years and younger age
groups (60–72 years) after 6 years. The assessment at
each wave consisted of a nurse interview, a medical

Fig. 1. Flowchart of study participants.

examination, and a neuropsychological testing
session.

The present study focuses on a subgroup (n = 555)
from the baseline study sample that underwent
MRI scanning. Due to exclusion (poor quality
images/technical issues; n = 52, missing cogni-
tive data; n = 12, infarct/tumor/neural abnormality;
n = 31, neurological disorder; n = 7, autoimmune dis-
order; n = 1) and drop-out, follow-up data were
available for 418 participants. Of those, 354 remained
dementia free, 28 developed dementia, and 36 died
during the 6-year follow-up (see Fig. 1).

Compared to the full sample, the MRI sample was
significantly younger, more educated, had a higher
Mini-Mental State Examination (MMSE) score, and
included more women (p < 0.01).

All stages of SNAC-K have been approved by
the Karolinska Institutet ethical committee or the
regional ethical review board and written informed
consent was collected from all participants. In cases
where participants had severe cognitive impairment,
a proxy was asked for consent.

Dementia diagnosis

Dementia diagnoses were made according to the
Diagnostic and Statistical Manual of Mental Disor-
ders, 4th edition [16]. A preliminary diagnosis was
made by the examining physician, followed by a sec-
ondary diagnosis based on computerized data from
the medical examination. In cases of disagreement, a
final decision was made by a senior physician. The
cognitive assessment used for diagnosis included the
MMSE [17], the Clock test [18] and items regard-
ing memory, executive functioning, problem solving,
orientation, and interpretation of proverbs. Neuropsy-
chological, genetic, and neuroimaging information
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was not used for diagnostic purposes. For those
who died before receiving a dementia diagnosis in
SNAC-K, death certificates and medical records were
reviewed to identify additional dementia cases.

Cognitive assessment

A detailed description of the included tasks has
been previously published [19], except the trail mak-
ing test (TMT) which is described below.

Assessment of episodic memory involved free
recall of a 16-item wordlist and a 32-item yes/no
recognition test [20]. Two tasks of semantic mem-
ory were administered, a general knowledge task
and a vocabulary task [21, 22]. Verbal fluency was
assessed with letter (‘F’ and ‘A’) and category (‘ani-
mals’ and ‘professions’) fluency. Tasks of perceptual
speed included digit cancellation [23], pattern com-
parison [24] and TMT-A [25]. This task involved
connecting 13 encircled digits in numeric order as
fast and accurately as possible. The TMT-A score
was calculated by dividing number of correct con-
nections by completion time. Executive function was
measured using TMT-B [25], where circles with num-
bers and letters were connected based on numeric
and alphabetical order, alternating between the two
categories (1-A, 2-B, etc.). The TMT-B score was
calculated by dividing number of correct connections
by completion time, after which TMT-A performance
was regressed out to minimize the influence of motor
speed.

Genotyping

DNA was obtained from peripheral blood samples
and genotyping was performed using MALDI-TOF
analysis on the Sequenom MassARRAY platform
[26]. Because very few individuals carried two �4
alleles, the APOE (rs429358) polymorphism was ana-
lyzed as a binary variable, i.e. ‘�4 versus no �4’.
However, there was no significant effect of having
two �4 alleles (n = 15) over having only one �4 allele
(n = 89; p = 0.355) with regard to future dementia risk.

MRI assessment

Acquisition
MRI data were acquired using a 1.5T scanner

(Philips Intera, Netherlands). The protocol included
an axial 3D T1-weighted fast field echo (FFE)
sequence with repetition time (TR) 15 ms, echo time
(TE) 7 ms, flip angle (FA) 15◦, field of view (FOV)

240, 128 slices with slice thickness 1.5 mm and
in-plane resolution 0.94 × 0.94 mm, no gap, matrix
256 × 256, and an axial turbo FLAIR sequence (TR
6000 ms, TE 100 ms, inversion time 1900 ms, FA 90◦,
ETL 21, FOV 230, 22 slices with slice thickness 5 mm
and in-plane resolution 0.90 × 0.90 mm, gap 1 mm,
matrix 256 × 256).

Post-processing
The T1-weighted images were first segmented

into grey matter, white matter and cerebro-spinal
fluid (CSF) using the unified segmentation method
approach [27] and SPM12b (Statistical Parametric
Mapping, Wellcome Trust Centre for Neuroimaging,
http://www.fil.ion.ucl.ac.uk/spm/). Further removal
of odd voxels from the segments was achieved
through the ‘light clean-up’ option. Total intracranial
volume (ICV) was obtained by adding grey matter,
white matter and CSF volumes.

Automatic segmentation of hippocampal vol-
umes was performed using the Freesurfer image
analysis suite (v. 5.0.1, Martinos Center for
Biomedical Imaging, Harvard-MIT, Boston, USA;
http://surfer.nmr.mgh. harvard.edu/). This procedure
has previously been described by Gerritsen et al. [28].

WMHs were manually delineated on the FLAIR
images by a single rater. For details about the proce-
dure, see Köhncke et al. [29].

All volumes were corrected for ICV, using the anal-
ysis of covariance approach [30].

Statistical analysis

All statistical analyses were conducted in IBM
SPSS 23. Baseline differences between incident
dementia and no dementia groups were deter-
mined using χ2 tests for dichotomous variables and
ANOVAs for continuous variables.

Multinomial logistic regressions were employed
to investigate how well various markers, or combina-
tion of markers, predicted future dementia, with three
outcomes possible: no dementia (reference group),
incident dementia, and death. The third outcome was
included to take into account mortality as a compet-
ing risk. However, as the outcome of interest was
dementia, only estimates from the reference and inci-
dent dementia groups are reported in this paper. Age,
sex, and education were included as covariates in all
models and all variables were entered simultaneously.
To determine which variable or combination of vari-
ables best predicted future dementia, the estimated
probabilities from the multinomial regressions were

http://www.fil.ion.ucl.ac.uk/spm/
http://surfer.nmr.mgh. harvard.edu/
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saved and receiver operating characteristics (ROC)
were calculated for the dementia outcome using the
no dementia group as reference.

The predictive value of individual variables was
determined first. Significant individual measures,
based on the regression analyses, with the highest
area under the curve (AUC) value within their domain
were entered into subsequent models. This was done
to reduce the number of variables and to address
issues of collinearity. The threshold for statistical
significance was set to p < 0.05.

Predictive models were built within and between
modalities (cognitive, genetic, MRI). Models were
created by starting with the best predictor (based on
AUC value) and adding a second variable from the
same or a different modality, systematically testing all
available combinations. The 2-variable model with
the highest AUC was then used as the base for testing
a possible 3-variable model using the same method.
When no predictor could add further unique vari-
ance, in the regression analyses, this was considered
the final model. The statistical significance of differ-
ences in AUC between models was assessed using
DeLong’s test. The Bayesian information criterion
(BIC) was used as a measure of model fit.

All non-dichotomous variables were standardized
and all scores where a higher value was related to
a decreased risk were reversed so that odds ratios
(ORs) represent increased risk per SD-unit change in
the predictor.

RESULTS

Background

Descriptive characteristics across follow-up sta-
tus are shown in Table 1. Persons who developed

Table 1
Descriptive characteristics across dementia status at follow-up

No Incident
dementia dementia

n 354 28
Female, n (%) 211 (59.60) 20 (71.40)
Age, years mean (SD) 68.95 (8.34) 78.85 (6.61)
Follow-up time, years mean (SD) 5.78 (.30) 4.88 (1.40)
Education, years mean (SD) 13.22 (4.25) 9.78 (3.49)
MMSE mean (SD)

Baseline 29.25 (.97) 28.11 (1.50)
Follow-upa 28.39 (1.49) 21.40 (2.72)

aFollow-up refers to the 6-year follow-up for the no dementia and
time of diagnosis (3-year, n = 6, or 6-year, n = 22, follow-up) for
the incident dementia group.

dementia were significantly older, had fewer years
of education, and lower MMSE scores at baseline
compared to the no dementia group (p < 0.001). Both
groups included more women but there was no differ-
ence in sex distributions between groups (p = 0.20).

Raw scores and baseline differences in predictor
variables between those who developed dementia and
those who did not are presented in Supplementary
Table 1. Correlations among all variables included in
the prediction models are available in Supplementary
Table 2.

Individual predictors

Results from multinomial logistic regressions and
ROC analyses showed that the pattern comparison
task (perceptual speed) and the presence of at least
one �4 allele were the strongest individual predic-
tors of future dementia up to six years later (Table 2).
Word recall (episodic memory), TMT-B (executive
function), category fluency (verbal fluency), and gen-
eral knowledge (semantic memory) were the best
predictors in their respective cognitive domains and
were therefore entered in the combined models.
Hippocampal and WMH volume were the only sig-
nificant MRI variables and both were kept for model
development. However, results from DeLong’s test
show none of the individual models were significantly
more predictive of future dementia when compared
to the covariate model (model 0) including age, sex
and education.

As pattern comparison, carrying any �4 allele, and
hippocampal volume were the strongest individual
predictors of their respective modalities, they were
chosen as bases for the combined models.

Intra-modality models

Adding further variables from within the base
variable’s modality numerically increased predic-
tivity (Table 3). Of the intra-modality models, the
highest predictive value was obtained by adding
a test of episodic memory (word recall) to the
perceptual speed predictor (pattern comparison),
which yielded the highest combined predictive
value (AUC = 0.901). Among the MRI variables,
hippocampal volume and WMHs both contributed
unique variance and remained significant within the
same model (AUC = 0.878). The final model for the
cognitive modality was significantly more predic-
tive (DeLong’s, p = 0.01) than the model including
only the covariates (model 0); however, there was no
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Table 2
Multinomial logistic regressions for individual variables

Variables No dementia Incident OR (95% C.I.) p ROC–
(n) dementia (n) AUCa

Sex (female versus male) 354 28 1.69 (0.726–3.95) 0.222 0.559
Age 354 28 3.15 (2.06–4.82) 0.000 0.809
Education 354 28 2.85 (1.68–4.83) 0.000 0.742
Covariates (combined) 354 28 0.845

Cognitive

Episodic Memory
Word recall 353 28 2.38 (1.45–3.90) 0.001 0.872
Word recognition 353 28 1.68 (1.12–2.51) 0.012 0.852

Semantic Memory
Vocabulary 352 28 1.54 (1.04–2.28) 0.033 0.864
General knowledge 353 28 1.95 (1.26–3.02) 0.003 0.866

Verbal Fluency
Letter fluency 354 27 1.60 (0.98–2.62) 0.062 0.853
Category fluency 353 27 2.25 (1.31–3.87) 0.003 0.866

Perceptual Speed
Digit cancellation 352 26 2.32 (1.28–4.22) 0.006 0.869
Pattern comparison 352 26 2.48 (1.37–4.50) 0.003 0.875
Trail-making task A 353 27 2.59 (1.34–5.02) 0.005 0.863

Executive Function
Trail-making task B 351 26 1.77 (1.04–3.02) 0.035 0.870

Genetic

APOE (�4 versus no �4) 349 28 4.89 (2.02–11.85) 0.000 0.875

MRI

Total tissue volume 354 28 1.35 (0.96–1.90) 0.081 0.846
Total grey matter volume 354 28 1.60 (0.88–2.92) 0.127 0.853
Hippocampal volume 346 27 2.15 (1.23–3.79) 0.008 0.859
Total white matter volume 354 28 1.31 (0.82–2.08) 0.254 0.841
WMH volume 342 28 1.72 (1.06–2.78) 0.027 0.858

aIncident dementia versus no dementia. AUC, area under the curve; CI, confidence intervals; OR, odds ratio; ROC,
receiver operating characteristic curve; WMH, white matter hyperintensity.

Table 3
Multinomial logistic regressions for intramodality models

Variables No dementia Incident OR (95% C.I.) p BIC ROC–AUCa

(n) dementia (n) (95% C.I.)

Model 0 Covariates 354 28 426.09 0.845 (0.793–0.896)

Cognitive

Model 1 Pattern comparison 352 26 2.48 (1.37–4.50) 0.003 414.28 0.875 (0.822–0.928)
Model 2 Pattern comparison 352 26 2.02 (1.10–3.73) 0.025 414.28 0.901 (0.858–0.944)

Word recall 2.46 (1.42–4.25) 0.001

MRI

Model 1 Hippocampal volume 346 27 2.15 (1.23–3.79) 0.008 408.43 0.859 (0.798–0.920)
Model 2 Hippocampal volume 334 27 1.97 (1.12–3.47) 0.019 410.85 0.878 (0.828–0.928)

WMH volume 1.85 (1.12–3.05) 0.016
aIncident dementia versus no dementia. AUC, area under the curve; CI, confidence intervals; OR, odds ratio; BIC, Bayesian information
criterion; ROC, receiver operating characteristic curve; WMH, white matter hyperintensity. Model 0 includes sex, age, and education.

significant increase in predictivity from model 0 to
the final MRI model (p = 0.080).

Inter-modality models

The models with the numerically highest predictive
values were obtained by combining variables across
modalities (Table 4).

The model starting with the strongest indi-
vidual cognitive predictor (pattern comparison,
AUC = 0.875) was most improved by adding the
word recall test (AUC = 0.901). The final model
also included hippocampal volume (AUC = 0.913).
Although the addition of pattern comparison did
not increase predictivity compared to model 0
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Table 4
Multinomial logistic regressions for intermodality models

Variables No dementia Incident OR (95% C.I.) p BIC ROC–AUCa

(N) dementia (N) (95% C.I.)

Model 0 Covariates 354 28 426.09 0.845 (0.793–0.896)

Cognitive

Model 1 Pattern comparison 352 26 2.48 (1.37–4.50) 0.003 414.28 0.875 (0.822–0.928)
Model 2 Pattern comparison 352 26 2.02 (1.10–3.73) 0.025 414.28 0.901 (0.858–0.944)

Word recall 2.46 (1.42–4.25) 0.001
Model 3 Pattern comparison 344 25 1.96 (1.04–3.69) 0.036 401.28 0.913 (0.874–0.952)

Word recall 2.18 (1.24–3.82) 0.007
Hippocampal volume 2.07 (1.11–3.86) 0.022

Genetic

Model 1 APOE (�4 versus no �4) 349 28 4.89 (2.02–11.85) 0.000 398.82 0.875 (0.826–0.923)
Model 2 APOE (�4 versus no �4) 348 28 5.48 (2.16–13.94) 0.000 397.06 0.908 (0.867–0.949)

Word recall 2.50 (1.49–4.19) 0.001
Model 3 APOE (�4 versus no �4) 347 28 5.81 (2.21–15.28) 0.000 393.07 0.922 (0.883–0.960)

Word recall 2.47 (1.46–4.19) 0.001
General knowledge 1.96 (1.21–3.16) 0.006

MRI

Model 1 Hippocampal volume 346 27 2.15 (1.23–3.79) 0.008 408.43 0.859 (0.798–0.920)
Model 2 Hippocampal volume 345 26 2.68 (1.44–4.99) 0.002 398.63 0.895 (0.845–0.944)

Category fluency 2.56 (1.40–4.70) 0.002
Model 3 Hippocampal volume 340 26 2.17 (1.16–4.05) 0.015 377.70 0.911 (0.869–0.953)

Category fluency 2.58 (1.37–4.85) 0.003
APOE (�4 versus no �4) 4.09 (1.51–11.06) 0.005

Model 4 Hippocampal volume 328 26 2.04 (1.08–3.85) 0.028 382.15 0.921 (0.882–0.960)
Category fluency 2.60 (1.39–4.89) 0.003
APOE (�4 versus no �4) 4.04 (1.46–11.18) 0.007
WMH volume 1.81 (1.05–3.09) 0.031

Model 5 Hippocampal volume 327 26 2.16 (1.14–4.11) 0.019 385.08 0.924 (0.883–0.965)
Category fluency 2.45 (1.28–4.69) 0.007
APOE (�4 versus no �4) 4.15 (1.47–11.71) 0.007
WMH volume 1.75 (1.00–3.07) 0.049
General knowledge 1.77 (1.05–2.97) 0.031

aIncident dementia versus no dementia. AUC, area under the curve; CI, confidence intervals; OR, odds ratio; BIC, Bayesian information
criterion; ROC, receiver operating characteristic curve; WMH, white matter hyperintensity. Model 0 includes sex, age and education.

(p = 0.222), the 2-variable model (p = 0.012), fol-
lowed by the 3-variable model (p = 0.007) led to
a significant increase in predictivity, relative to
model 0.

Even though the presence of at least one �4
allele was a strong predictor in itself (AUC = 0.875),
adding a cognitive test, word recall, further improved
dementia prediction (AUC = 0.908). The addition
of the general knowledge task resulted in a final
model where all three variables gave independent
contributions to dementia prediction (AUC = 0.922).
Compared to the covariate model, the addition of
a single variable did not significantly increase pre-
dictive value (p = 0.171), whereas predictivity for
models with two or more variables increased from
model 0 (p = 0.001).

A model starting with hippocampal volume, the
strongest MRI predictor, was most improved by
adding the category fluency test (AUC = 0.895).
Adding the presence of at least one �4 allele

resulted in a 3-variable model including tests from
each modality (AUC = 0.911). Prediction was further
increased by the inclusion of WMHs (AUC = 0.921).
The addition of the general knowledge task resulted
in a final model of 5 variables spanning all modali-
ties, which had the highest predictivity of all models
tested (AUC = 0.924). As with the other modality
bases, there was no significant increase in pre-
dictivity from the inclusion of only one variable
(p = 0.476), although, all models from three variable
onwards showed a significant increase in predictive
value (p < 0.05). Taking into account the BIC val-
ues, note that, although the highest predictive value
was obtained using all 5 variables, BIC increased
after three variables suggesting a lowering of
model fit.

All model bases showed a significant increase in
AUC from model 0 to the final models (cognitive
base, p = 0.007; genetic base, p = 0.001; MRI base,
p = 0.005). However, there was no significant differ-
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ence in predictivity between any of the final models.
The final inter-modality models were also not signifi-
cantly different from the final intra-modality models.

For ROC curves for all model bases, see Supple-
mentary Figure 1.

DISCUSSION

The present study demonstrates that markers com-
monly used in clinical praxis from cognitive, genetic,
and MRI modalities can be used for predicting future
dementia. Including additional markers in the mod-
els increased predictivity and to obtain a significant
increase in predictivity over age sex and education, at
least two predictors were required. Adding markers
from a different modality led to a higher numerical
increase in predictivity and the model with the high-
est predictive value included markers from all three
modalities. However, it should be noted that none
of the final models were significantly different from
each other. When choosing which and how many pre-
dictors to include, economical and practical aspects
should also be considered.

Individual predictors

The observably strongest predictor of future
dementia within the cognitive modality was per-
ceptual speed (pattern comparison). This was also,
numerically, the strongest predictor overall (along-
side APOE). Previous research has often indicated
episodic memory [10, 31, 32] or executive function
[33, 34] as the most predictive cognitive domains.
Nevertheless, our current findings are in line with
results suggesting that perceptual speed does equally
well in differentiating persons with preclinical AD
from controls [4]. As AD and dementia is preceded
by multiple changes in neural structure and function,
both in the hippocampus and beyond [35], it may be
that global cognitive deficits reflect the wide-ranging
brain changes in the preclinical phase.

The current results are in line with previous
research showing deficits in multiple cognitive
domains in preclinical AD and MCI [4, 5]. Possible
underlying mechanisms for these cognitive deficits
are hippocampal atrophy, which may primarily affect
episodic memory [36], and alterations in the white
matter, which have been linked to speed [37]. The
findings that hippocampal volume and WMHs were
strong predictors of dementia are consistent with
these observations.

Alongside perceptual speed, the presence of any
APOE �4 allele was the strongest predictor of future
dementia. APOE is known to be the strongest genetic
risk factor for AD [6], thus, our findings support pre-
vious research regarding the predictivity of the �4
allele [14, 38]. Although there are studies showing
no significant predictive value when competing with
other variables, such as hippocampal volume, cogni-
tive tests, and CSF markers [33].

Among the MRI variables included, hippocam-
pal volume and WMHs were significantly predictive
of dementia. Hippocampal integrity is a well-
established neuroimaging marker for dementia,
particularly AD [39]. While more wide-spread or
whole-brain atrophy has been shown to predict future
dementia [7], this is not a consistent finding [40] and
was not the case in the current study. This may be
due to the relatively long distance from diagnosis, as
atrophy in preclinical AD begins in the entorhinal and
hippocampal regions before spreading to other parts
of the brain [41]. Vascular burden may also lead to
brain atrophy; WMHs have been found to increase
the rate of hippocampal atrophy in persons with MCI
[42].

Studies that have used WMHs as a sole predictor of
future dementia have produced mixed findings [8, 9].
While traditionally associated with vascular demen-
tia [43], WMHs hold some predictive value for AD
[8] as the effects of vascular lesions can exacerbate
AD pathology [42, 43]. In this context it is important
to note that in the general older population, persons
with dementia will commonly present with a mix of
vascular and AD pathology [44, 45]. Furthermore,
many markers have been shown to predict vascular
dementia and AD in a similar way [43, 46].

Although the numerically best individual predic-
tors were the presence of any �4 allele and a test
of perceptual speed, there was homogeneity in pre-
dictivity across the variables tested. Previous studies
have sometimes claimed that cognitive markers are
the best predictors of future dementia [14, 32, 47,
48], although there are conflicting results [12, 34],
potentially due to the inclusion of highly predic-
tive and specific CSF markers. However, the current
results show only minor variation in predictive abil-
ity among the included cognitive, genetic, and MRI
variables, suggesting that no individual modality is
clearly superior at predicting future dementia. The
fact that no single test provided a significant increase
in predictivity above that of the covariates highlights
the need for predictor models that include multiple
variables.
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Combined models

Adding variables from the same modality (cogni-
tion or MRI) led to increased dementia prediction,
consistent with previous findings [10, 13, 38],
although, the increase in predictivity relative to the
covariate model was only significant for the cognitive
modality.

An important observation was that the high-
est predictive values were obtained by combining
across modalities. All of the final models included
variables from at least two modalities, with the
numerically best model combining variables from all
three modalities. Intercollinearity among variables
within domains might partly explain why predic-
tors from a different modality were more likely to
contribute unique variance (Supplementary Table 2).
Previous work supports the added benefit of combin-
ing between modalities such as MRI and cognition
[14, 32, 34] or cognitive and genetic [38]. Dukart
et al. [12] found that combining between cognitive,
genetic and MRI conveyed greater predictive value
than individual predictors or any combination of two
modalities. The pattern of results from our study
is consistent with these previous findings. However,
when formally testing for differences in predictiv-
ity between models the addition of structural MRI
variables increased predictive value only numerically
from a model of cognition and APOE [12].

Moreover, a model of only cognitive markers did
not differ significantly from models including mul-
tiple modalities. Worth noting is also that, although
predictive value increased in the final models of the
MRI base, the BIC value also increased after the
3-variable model indicating a worsening of model
fit. This suggests that the models with more than
three predictors may be over-fitted to this specific
dataset, leading to an artificial increase in predictiv-
ity. Thus, adding more predictors may not be optimal,
especially considering the relatively small increase in
AUC.

Strengths and limitations

A major strength of the current study is the
population-based sample, making the results gen-
eralizable outside a clinical setting. The fact that
all individuals were assessed, not only those
with subjective cognitive impairment, and that the
dementia diagnosis was based on a clinical examina-
tion, without making use of the included predictors,
minimizes the risk of circularity often present in

clinical environments. Potential limitations are that
precise information on time of dementia onset was
lacking and that the MRI sample was slightly pos-
itively biased relative to the full SNAC-K sample.
However, the bias in the MRI sample, in terms of
younger age and higher education compared to the
full sample, may have led to lower predictivity than
would be expected in the general population, as
smaller variance in the predictors leads to weaker
associations with the outcome (i.e., dementia).

Implications

Our results show that a range of widely avail-
able markers may be used to identify persons in the
general population who have an increased dementia
risk. The predictors included in these models may all
be suited as screening tools for selecting individu-
als who should take part in preventive interventions.
Indeed, several ongoing trials are multimodal, target-
ing multiple dementia types [49]. Although the results
show that dementia prediction could be improved
by including additional predictors, there was no
strong evidence to suggest one observably better
combination over another. The marginal increases
in predictive value seen beyond the 2- or 3-variable
models should also be weighed against potential
inconveniences of adding further assessments. How-
ever, cognitive tests may be particularly beneficial
for pre-dementia screening as they were found to be
equally predictive as a combination of markers from
multiple modalities, while being easy to implement
at a low cost.
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[20] Laukka EJ, Lövdén M, Herlitz A, Karlsson S, Ferencz B,
Pantzar A, Keller L, Graff C, Fratiglioni L, Bäckman L
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