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Abstract

The study of diffusion in macromolecular solutions is important in many biomedical applica-
tions such as separations, drug delivery, and cell encapsulation, and key for many biological
processes such as protein assembly and interstitial transport. Not surprisingly, multiple mod-
els for the a-priori prediction of diffusion in macromolecular environments have been pro-
posed. However, most models include parameters that are not readily measurable, are
specific to the polymer-solute-solvent system, or are fitted and do not have a physical mean-
ing. Here, for the first time, we develop a homogenization theory framework for the prediction
of effective solute diffusivity in macromolecular environments based on physical parameters
that are easily measurable and not specific to the macromolecule-solute-solvent system.
Homogenization theory is useful for situations where knowledge of fine-scale parameters is
used to predict bulk system behavior. As a first approximation, we focus on a model where
the solute is subjected to obstructed diffusion via stationary spherical obstacles. We find that
the homogenization theory results agree well with computationally more expensive Monte
Carlo simulations. Moreover, the homogenization theory agrees with effective diffusivities of a
solute in dilute and semi-dilute polymer solutions measured using fluorescence correlation
spectroscopy. Lastly, we provide a mathematical formula for the effective diffusivity in terms
of a non-dimensional and easily measurable geometric system parameter.

Introduction

The study of diffusion of solutes such as small molecules or globular proteins in aqueous mac-
romolecular solutions is important in many biological, biomedical, and biopharmaceutical
fields. For example, hindered diffusion in macromolecular systems influences protein assembly
[1], intracellular and interstitial transport [2, 3], the design of cell scaffolds for tissue engineer-
ing applications [4], and drug or protein release from drug delivery devices, [5, 6] among oth-
ers. Accordingly, tracer diffusion in solutions of macromolecules has been a focus of research
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for several decades [7, 8]. While great strides have been made, diffusion, being a dynamic pro-
cess, is difficult to measure in real time [9, 10] and challenging to accurately predict a-priori
[11, 12]. Underpinning their importance in multiple fields, many models have been developed
for the prediction of diffusion in macromolecular systems [11, 13-23]. However, most theoreti-
cal models include parameters that are not easily measurable, are specific for the solute-macro-
molecule-solvent system, or depend on fitted parameters that lack physical meaning. Thus,
models that utilize readily available or measurable system parameters would be of high utility
to researchers in the field.

In the context of general heterogeneous media, a vast body of literature exists for obtaining
effective homogeneous macroscopic diffusivity based on fine-scale diffusivities of heterogeneous
media [24, 25], which goes as far back as the work of none other than Maxwell [26]. The early
work considered inclusions of spherical or other simple shapes of one type of medium embedded
in another medium, and focused on the case when the volume fraction of the inclusions was very
small. A relatively recent theory, known as homogenization theory, generalizes this earlier body
of work [27-33] and is backed by rigorous mathematical limits. The inclusions considered in this
theory can be far more general in shape and the volume fraction of inclusions need not be small.

In this manuscript, we develop a framework based on homogenization theory for the pre-
diction of solute diffusivity in macromolecular environments and validate the theory with
experimental data obtained by fluorescence correlation spectroscopy (FCS).

The homogenization theory provides a simple large scale homogeneous approximation of a
medium which is heterogeneous in the fine-scale, with respect to a property that is governed by
a mathematical equation. To the best of our knowledge, the applicability of this powerful the-
ory towards the prediction of solute transport in macromolecular environments has not been
explored previously with the backing of experimental measurements. The homogenization the-
ory usually applies to two forms of microscopic media: periodic or random. The periodic ver-
sion of the theory applies to heterogeneous but periodic spatial structures where the periodic
length is very small compared to the spatial extent of interest. The random version of the the-
ory applies to heterogeneous media with fine and random structure that possess certain charac-
teristics (stationarity and ergodicity) and the characteristic length of the fine structure is very
small compared to the spatial extent of interest. The homogenization theory provides a rigor-
ous mathematical limit of the property under study as the scale separation ratio € (the ratio of
the periodic or characteristic length of the fine spatial structure to the length of the spatial
region of interest) approaches 0. The validity of the resulting approximation depends on
whether the scale separation is significant (e sufficiently small). An important message that is
learned from the homogenization theory is that the effective large scale property is often not a
straightforward spatial average of the fine-scale property of the heterogeneous medium [30,
33]. In fact the effective large scale property is obtained via solving a partial differential equa-
tion inside a periodic cell—the so-called “unit cell problem”- and then computing an average
of certain derivatives of the solution. This observation is one of the key reasons for our use of
the homogenization approach as it provides a rigorous result once an appropriate periodic
microscopic model is decided upon.

Here we use the periodic homogenization theory due to its simplicity. While the homogeni-
zation theory provides an overarching theme, the choice of the periodic microscopic model is
important. As we are studying the diffusion of a solute in a macromolecular solution, as a first
approximation, we investigate a model consisting of periodically placed stationary and spheri-
cal macromolecules acting as impenetrable obstacles. We also assume that there is no signifi-
cant interaction between the solute and macromolecules, where the macromolecules hinder
diffusion by obstruction only. This results in a model that only utilizes parameters that are
readily measurable or available in the literature, thus, simplifying comparison with
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experimental data. For this geometry we introduce a dimensionless number, p, so that the ratio
D,/D, of the effective diffusivity D, to the “free” diffusivity Dy in a solvent (water) without poly-
mers, is a function of p alone. Thus, all key system parameters enter via p.

We find that the effective diffusivities predicted by the homogenization theory agree well
with computationally more expensive Monte Carlo simulation results. More importantly, the
predictions by the homogenization theory agree with effective diffusivities measured experi-
mentally in dilute and semi-dilute polymer solutions. We also provide an approximating for-
mula for D,/D, predicted by the homogenization theory (see Eq (23)) as a function of p. FCS, a
biophysical technique that enables in-situ, real time measurements of dynamic properties, is
used to acquire the experimental data. FCS is a single molecule spectroscopic technique that
measures the fluctuations of fluorescent probes in a defined confocal volume and correlates
them in time to give information on diffusion times, concentrations, and interactions [34-36].
We probe various polymer-solute pairs in order to interrogate the model’s assumptions and
validity. We determine that the model can provide a reasonable prediction for solute diffusivity
in polymer solutions in the dilute and semi-dilute regimes; however, due to the rigid sphere
assumption, the model predicts slower than experimental diffusivity in the concentrated
regime. Interestingly, regardless of the spherical obstacle assumption, we observe a good agree-
ment between model and experiment for both spherical and random coil polymer molecules.
We further provide a mathematical description of the theoretical data to enable easy compari-
son with other models or experimental data. With the developed homogenization theory
framework, we have set the stage for future theory extensions to include interaction between
the solute and obstacle or other obstacle geometry that would more closely emulate the random
coil structure of some macromolecules. The ability to predict diffusion a-priori based on easily
measurable system parameters would enable the rational design of macromolecular systems for
targeted applications, such as drug delivery, and will aid in our understanding of various trans-
port-dependent processes.

Theory
Modeling Assumptions

We are concerned with the motion of a solute molecule A in solvent B where there are also
polymer molecules C dissolved in solvent B. We assume that the solute A is present in low con-
centrations so that we expect a given solute molecule to only encounter molecules B and C. We
also assume that the polymer molecules C are stationary and impenetrable spheres.

In the absence of polymer molecules C, a molecule A undergoes a succession of seemingly
random changes in its direction of motion as well as its velocity due to successive interactions
or collisions with the numerous surrounding molecules B of the solvent, where the interactions
themselves tend to occur after seemingly random durations of time. We may regard the motion
of the solute in between successive changes in direction and velocity as steps in a random walk.
Under certain assumptions on the steps of this random walk over a time scale (or equivalently
a length scale) that is sufficiently large, the solute molecule A would have undergone several
steps of the random walk and the central limit theorem may be evoked to approximate the ran-
dom walk by the mathematically idealized Brownian motion also known as the Wiener process
[37, 38]. Then the probability density p(x, t) of finding a given molecule A at position x at time
t is governed by the the partial differential equation (PDE) of diffusion

%p(xv t) = DOAp(x> t)v (1)

where A is the Laplacian and the scalar Dy is the diffusivity, which depends on the solute A and
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the solvent B among other things. If the motion is happening in a confined region Q such as a
container then the PDE Eq (1) is solved on the spatial domain Q with the no-flux boundary
conditions on the boundary 9Q of Q. The no-flux conditions are expressed by

Vp(x,t) - n(x) =0 (2)

where Vp is the spatial gradient of p and n(x) is the vector normal to the boundary 0Q of Q at
a location x on the boundary.

In the presence of large polymer molecules C in solution, a given solute molecule A will
undergo collisions with both the solvent molecules B as well as the polymer molecules C. On
average, if the solute molecule A undergoes several collisions with the solvent molecules B in
between collisions with polymer molecules C, we may assume the motion of the solute mole-
cule A to be a Wiener process with specular reflections at the molecules C. Under our assump-
tion that the polymer molecules are stationary and impenetrable spheres of radius R, we have a
reflected Wiener process describe the motion of the center of molecule A where the reflections
happen at the surface of the stationary spherical obstructions of radius R+a. In this case the
probability density p(x, t) of finding a given solute molecule A is still given by the same PDE Eq
(1). However, the domain of the PDE is the domain €/, which excludes from Q the spherical
obstructed regions. The boundary conditions Eq (2), in addition to the external boundary 0€,
shall also apply on the internal boundaries, which are the surfaces of the spherical obstructions.

If the spatial length scale L’ of Q is sufficiently large compared to the characteristic spacing
L between the spherical obstructions, one may expect to obtain some approximations for the
diffusive behavior of solute A. In order to apply the periodic version of the homogenization
theory we assume that the polymer molecules are spaced periodically (simple cubic arrange-
ment) with center-to-center distance L. The homogenization theory of periodic structures pre-
dicts that when L is much smaller than L’ we may treat the resulting motion of solute A as
(normal) diffusion in a homogeneous medium (without obstructions) which has an effective
diftusivity D, that differs from Dy. A more realistic assumption on the placement of the spheri-
cal obstructions is that they are randomly placed (subject to non-overlap) with uniform proba-
bility density. This leads to the homogenization theory for random media. We expect this
approach to yield a similar value for D,.

Parameter p

We define p, a dimensionless number, as

2(R+a)

L )

p =
where a is the hydrodynamic radius of the solute, R is the hydrodynamic radius of the polymer
molecule and L is the average center-to-center distance between polymer molecules in solution
(see Fig 1). The values for R and a were obtained from the literature and are summarized in
Table 1.

The center-to-center distance L between two polymer molecules is calculated from geomet-
ric considerations assuming a simple cubic arrangement by

L= <CTVI<]A>§, (4)

where Myy is the molecular weight of the polymer, ¢ is the concentration of the polymer solution
(in weight per volume) and N, is the Avogadro number (6.022 x 10** particles/mol). An example
of the calculated L and p values for a certain polymer-solute system is given in Table 2.
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Fig 1. Microscopic model.

doi:10.1371/journal.pone.0146093.g001

Homogenization Theory

Here we summarize the periodic homogenization theory as applied to our problem [43]. Let Q
denote the domain of interest in which we are observing the diffusion phenomenon and sup-
pose L’ is the length characterizing Q. We introduce a scaling factor, € = L/L’, where L is the
spacing between the periodic obstructions. Let €, be the region with the periodic spherical

Table 1. Summary of polymer and solute properties.

Polymer My, (kDa) Hydrodynamic radius, R (nm) ¢’ (%)
Dextran 500 500 15.9 [39] 2.5
Dextran 70 70 5.8 [40] 6.9

Ficoll 400 8.0 [41] 9.1
Solute My (kDa) Hydrodynamic radius, R (nm)
RNase 13.7 1.8 [42] -

doi:10.1371/journal.pone.0146093.t001
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Table 2. Summary of calculated center-to-center distance, L, and p values for a representative poly-
mer-solute pair, namely Dextran500 and fluorescently labelled RNase.

Dextran500 conc. (mg/ml) L(nm) P
0.2 160.7 0.219
0.4 127.54 0.276
0.6 111.41 0.316
0.8 101.23 0.348

1 93.97 0.375
3 65.15 0.541
5 54.95 0.642
7 49.12 0.718
10 43.62 0.809
18 35.82 0.985
25 32.14 1.098
50 25.5 1.384

doi:10.1371/journal.pone.0146093.t002

obstructions of radius R+a removed from €, as in Fig 2. We note that spheres of radius R+a
represent the obstructed regions that the center of the solute molecule may not enter. The
probability density p.(x, ) of finding the solute molecule satisfies

%Pe(xv t) - DUApf(xa t) = 0 on Qe,
Vp.(x,t)-n(x) = Oonl, (5)
Vp.(x,t) - n(x) 0 on 0Q,

where I, is the boundary between €, and the spherical obstructions and 9€2 is the boundary of
Q. We note that since the domain in which Eq (5) is solved varies with ¢, so does the solution.
According to the homogenization theory, p. converges to p,, as € — 0, where the limit py

® 00

L
ok K BN _ g
® 00

L/
Fig 2. Visualization of homogenization theory limit.

doi:10.1371/journal.pone.0146093.g002
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satisfies the PDE

0
apo(x, t) — D, Ap,(x,t) = 0 on Q, ©)
Vpo(x,t) -n(x) = 0 on 0Q,

where the effective diffusivity coefficient D, is obtained from the solution to the so-called unit-
cell problem.

Define Q to be the region obtained by removing a concentric sphere of radius p/2 = (a+R)/L
from a cubic cell of unit side length. Let I" be the surface of this sphere. Define w; for j = 1,2,3 to
be the solution of the PDE with boundary conditions:

—Aw;(x) = 0onQ,
Vo,(x) -n(x) = —e-n(x)onl, (7)
w,(x) is periodic at the external boundaries of the cell

where e; is the unit vector in the x;-axis direction and n(x) is the unit outward normal vector.
Once w; are solved for, D, is obtained by

)
©1QlJa

where jis 1, 2 or 3 and |Q| denotes the volume of the region Q. We note that due to the symme-
try, one obtains the same value for D, regardless of j and thus only w; needs to be computed
[33]. The solution of Eq (7) as well as the integration Eq (8) need to be performed via a suitable

1+ dw,(x)
Ox;

] dx, (8)

numerical method.

We note that this theory holds for general shapes of periodically placed obstructed regions
as long as the unobstructed region is connected. However, for general shapes, the symmetry
alluded to does not hold and the effective diffusivity D, will be described by a matrix D,;; where

Do/
DEij:T
1Q[ Ja

It must also be noted that D (1 — ¢) is more commonly referred to as the effective diffusivity
[28], where ¢ is the obstructed volume fraction. In our case, ¢ = 7p°/6 for p < 1. Whether D,
(as defined by Eq (8)) or D.(1 — ¢) is the correct effective diffusivity depends on certain details
of the problem. To explain the different situations, consider the following two scenarios. Let Q
be the overall region of interest as before, with periodically placed obstructed regions with spac-
ing L. Let Q; C Q be an open connected subset, such that the length scale of Q; is comparable
to that of QQ, and, thus, it is also much larger than L. Consider the two different initial
conditions:

dx, i,j=1,2,3. (9)

|, 0
8xj

1. at time ¢ = 0 the solute is evenly distributed inside €, including the obstructed regions
inside Q;, and solute is absent outside of Q,

2. attime ¢ = 0 the solute is evenly distributed inside Q;, but excluding the obstructed regions
inside Q;, and solute is absent outside of Q,

and further assume that the total quantity of solute inside Q; at ¢ = 0 is the same in both situa-
tions (see Fig 3). Given these two different initial conditions, we want to know how the solute
diffuses out into rest of Q for t > 0. If one were to approximate the entire region Q; with an
effective diffusivity, one must use D, as defined by Eq (8) in the second scenario while one
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Fig 3. The two different initial conditions that illustrate the role of the factor 1 - ¢ in effective
diffusivity. (a) solute evenly distributed inside Q; including the obstructed regions and (b) solute evenly
distributed inside Q4 excluding the obstructed regions.

doi:10.1371/journal.pone.0146093.g003

must use D (1 — ¢) in the first scenario. The intuition is clear when one considers the stochastic
motion of the solutes: in the second scenario all solutes are mobile while in the first only a frac-
tion, 1 — ¢, are mobile. The reason for regarding D,(1 — ¢) as the effective diffusivity is the fol-
lowing. Often in practice, the “obstructed region” may not be truly obstructed, but have very
small diffusivity 6 > 0. In this case, if the system is in steady state, the solutes will be evenly dis-
tributed inside and outside the “obstructions”. However, the time it takes to reach steady state
increases without bound as & approaches zero.

In terms of comparison with the FCS experiments measuring effective diffusivity in this
paper, the question is whether one expects to see the solute to start out uniformly anywhere in
the FCS confocal volume, or inside the confocal volume but outside of polymeric obstructions.
When the solution is prepared, one expects the solute to be only present in water and not inside
the polymer molecular regions, which we have assumed to be spheres. If indeed the polymers are
acting as regions of extremely small non-zero diffusivity § > 0, then one can expect the steady
state to be reached a very long time after the solution is prepared. In this case, since there are
only a few solute molecules present in the entire FCS confocal volume, one would expect a two
component fit showing low diffusivity for some solute molecules and larger diffusivity for the
other. The fact that a two component fit was not observed suggests that, in the practical time
frame of the FCS experiments, the solutes did not have time to effectively enter the polymeric
regions. Thus, we expect the correct effective diffusivity to use is D, defined by Eq (8).

Monte Carlo Simulations and Effective Diffusivity

The reflected Wiener process description of the motion of a solute molecule A may be expected
to be reasonable if on average the solute undergoes several collisions with solvent molecules B
in between collisions with polymer molecules C. In order for this to be valid, one expects the
mean path length of the solute A in solvent B should considerably smaller than the length of
the gap between the spheres of obstruction with radius R+a.

To verify the validity of the reflected Wiener process model, we compare Monte Carlo simu-
lations of the reflected Wiener process with Monte Carlo simulations of a random walk model,
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which we call the kinetic model. In this model we assume that (the center of) the solute mole-
cule A follows a random walk consisting of rectilinear motions with exponentially distributed
lengths, exponentially distributed time durations and uniformly distributed directions. More
details are provided in the Computational Methods section.

Both the Wiener process and the kinetic model simulations can be used to test whether the
motion of the solute molecule over long length scales behaves like unobstructed normal diffu-
sion with an effective diffusivity D, that is different from the unobstructed diffusivity D. If the
solute motion follows a normal diffusion, the mean square displacement must be linear in time
with a slope D,/6.

Recall that the predictions of the homogenization theory are only valid in the limit when L'
is significantly larger than L. Thus we expect agreement of Homogenization theory results with
the reflected Wiener process simulations when L’ is sufficiently larger than L. As described in
the section on the comparison of Monte Carlo and homogenization computations, agreement
was seen even when L’ was only a few multiples of L.

Anomalous versus normal diffusion

The term normal diffusion applies to the Wiener process. One property of a Wiener process X
() is that the mean square displacement (MSD) given by MSD(t) = E(|| X(t) — X(0)||*) (where E
is the expected value) is a linear function of time #:

MSD(t) = Ct, (10)

where C is a constant. For the Wiener process (or normal diffusion) in d dimensions, C = 2dD,
where D is the diffusivity. Generalizing the above equation by replacing ¢ with a different
power a other than 1 leads to

MSD(t) = Ct*, (11)

and processes X(¢) that satisfy this criterion with o # 1 are referred to as anomalous diffusion
[44, 45]. When a > 1, the behavior is termed superdiffusive and for o < 1 it is termed subdiffu-
sive. However, it must be noted that the MSD curve does not uniquely characterize a stochastic
process unless further assumptions are made about the time evolution equation for the proba-
bility density function. See [22, 46] for instance, where a model based on fractional differential
equations is described. In general, a stochastic process may not satisfy Eq (11) for all £, but
large t or small t behavior may be still be given Eq (11). In other words, if

lim MSD(t)/t* = C, (12)
or
lim MSD(1)/¢ = C. (13)

where C > 0, then the process is said to be anomalous diffusion for large or respectively small
time scales. Instead of considering rigorous t — 0+ or t — oo limits, one may consider different
approximations over different time intervals of the form:

MSD(t) =Ct!, t;<t<t.,. (14)
The plot of log(MSD(t)/t) against log(t) is used in [47] as a simple visual aid to differentiate
normal versus anomalous diffusion. If the form of relationship in Eq (14) holds, then one gets

log (MSD(1)/t) = (% — 1)log(t) + log (C,), £, <t <t (15)
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If the plot of log(MSD(t)/t) against log(t) is obtained via Monte Carlo simulations, one may
apply continuous and piecewise linear fit to identify different temporal regions of different dif-
fusive behaviors. See for instance [46-49] for Monte Carlo studies of random walk models on
obstructed lattices.

In the case of the reflected Wiener process considered by us, one theoretically expects both
small t and large ¢ limits to show normal diffusion. In other words, one expects

lim MSD(t)/t = 6D, lim MSD(t)/t = 6D,. (16)
t—0+ t—00

Intuitively, for small time ¢, the process does not see the obstructions and hence behaves like
the (non-reflected) regular Wiener process with free diffusivity Dy. On the other hand, homog-
enization theory predicts that over large length scales or equivalently time scales, the process
behaves like a regular Wiener process with a smaller diftusivity D, as given by Eq (8). As MSD
(t) is continuous and smooth in t, by mathematical necessity, this curve will be non-linear
(curved) in order to satisfy the large t and small ¢ limits. This is indeed observed in our Monte
Carlo simulations as we shall see later.

Materials and Methods
Computational Methods

The entirety of the computational results were collected on a Macbook Pro with a 2.6 GHz
Intel Core i7 processor and 8 GB of RAM. The Monte Carlo simulations were programmed in
C while the homogenization computations were performed in COMSOL Multiphysics, a finite
element solver.

Monte Carlo Simulation. The C programs simulated the random walk of a solute mole-
cule according to both the kinetic model as well as the Weiner process model. The random
walk occurs in a 3-dimensional space containing periodic, stationary spheres (polymer mole-
cules) as obstacles. We chose a time scale such that free diffusion (diffusion in the absence of
obstructions) was D, = 1 while the length scale was meant to represent nm. Across all simula-

tions, L = 5 while R and a varied so that p was in the range [0, v/2]. For each (a, R) pair, 100,000
simulations were completed and 250 locations were recorded at equidistant times {¢, }]2:3(1) The

output of a simulation for a given (a, R) pair was a set of vectors, X;(t;), which denotes the sol-
ute molecule’s position at time ¢; in the ith simulation. The mean square displacements at times
t; were estimated by

MSD(5) = Y Il X,1) [/, (17)

where || X;(t))|| is the magnitude of the displacement and N = 100,000 is the number of
simulations.

In the kinetic model simulation, the path length and time duration at each step were i.i.d.
exponential random variables with mean A and 7, respectively. The mean path length, 1 = 0.20,
was chosen to represent the mean free path of 0.2 nm of a water molecule in water. The value
chosen for L is a lower bound since for typical polymer concentrations the spacing L is 25 to
160 nm as seen from Table 2. The value chosen for A was an upper bound as the mean free
path of a solute molecule (larger than a water molecule) in water would be smaller than 0.2 nm.
Thus the values of 1 and L were conservative in that these underestimated the mean number of
random walk steps of the solute in between collisions with the polymer molecules, making it
harder for the Wiener process approximation of the kinetic model to hold. We would like to
note that halving the mean path length to 4 = 0.10 yielded approximately the same results.
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Noting the relationship that the mean squared displacement as a function of time ¢ (for the

unobstructed kinetic model) is given by A* t/7 (for large ) where the 7 is the mean time step, we
2,2
A
chose t = — with Dy = 1.
3D,
The Euler method was used to approximate the Wiener process with reflections and as a

check we note that halving the time step of the Euler method had roughly no effect on the sim-
ulation results, verifying the accuracy of the Euler approximation. Algorithmic descriptions of
the Monte Carlo simulations are provided in the Supporting Information section.

Homogenization Computation. COMSOL Multiphysics was used to compute solutions
of Eq (7). The domain was a cube of unit side length with a spherical region concentric with
the cube removed. The radius was varied over {0,0.02,0.04, . . ., 0.70}; this is equivalent to let-
ting p = 0,0.04, . . ., 1.40. COMSOL Multiphysics was also used to compute D, via Eq (8).

Experimental Methods

Materials. All chemicals were used as received unless otherwise noted. Dextran500 (dex-
tran from Leuconostoc ssp., 500 kDa), Ribonuclease A (RNase) and Atto488 NHS ester were
purchased from Sigma (St Louis, MO). Dextran70 (70 kDa), Dextran270 (270 kDa) and Rho-
damine 6G (R6G) were purchased from Acros Organics (New Jersey).

FCS measurements and data analysis. Polymer solutions of desired final concentration
were prepared by dissolution of polymer in phosphate buffered saline (10 mM PBS, pH 7.4).
Only polymer solutions in the dilute and semi-dilute regimes were used, i.e. below or equal to
the polymer overlap concentration, c*. The overlap concentration was calculated as follows:

* MW
© T TaRN, (18)

where R, is the radius of gyration of the polymer. Based on our model, we also define a geomet-
ric overlap concentration, ¢, as follows:
M
o =— 19
SRIN, (19)

where Ry, is the hydrodynamic radius of the polymer. Hence, by definition, at the geometric over-
lap concentration, the polymer particles would be closely packed and touching each other. To
prepare polymer-solute solutions, the fluorescently labelled solute RNase (10 nM) was mixed
thoroughly with the desired polymer solution or PBS only and 50 pl samples were transferred to
a CoverWell perfusion chamber (Molecular Probes, Carlsbad, CA) for FCS measurements.

Measurements of solutes in PBS (to obtain 7,) and in polymer solutions (to obtain 7,;) were
performed on an FCS unit equipped with a 488-514 nm laser and a Zeiss LSM510 confocal
microscope. All measurements were performed at 22°C. Acquisition times of 200 s were used to
optimize signal-to-noise ratio. Low laser intensity was used throughout to avoid activation of the
fluorophore triplet states as well as photo bleaching. The instrument was calibrated with R6G
(diffusivity for R6G = 2.8 x 107" m* s™" in water). The radius of the laser beam spot was esti-
mated to be 208 nm. The resultant autocorrelation functions were fitted with the model depicted
in Eq (20) which describes normal diffusion of a single monodisperse fluorophore [34]:

1 1 1
G(t)=1+—

N (1 + Ti) (1 +pfid> v (20)

where N is the average particle number in the detection volume, 7 is the delay time, 7,is the

PLOS ONE | DOI:10.1371/journal.pone.0146093 January 5, 2016 11/26



@’PLOS ‘ ONE

Homogenization Theory for Diffusivity Prediction

characteristic diffusion time, and p = (ro/20)* is an instrumental constant (where r, and z, are the
radius and axial length of the focused laser beam spot, respectively). Assuming a three-dimen-
sional Gaussian profile of the excitation beam, 7, can be related to diffusivity, D, by the following
equation:

Ty = -2 (2]‘)

RNase labeling. RNase was labeled with Atto488 NHS ester with 52% labeling efficiency
following the manufacturer’s procedures. Briefly, 10 mg/ml RNase in PBS was reacted with
Atto488 NHS ester at 1:2 molar ratio of RNase to Atto488 NHS ester for 2 h at room tempera-
ture. Unbound fluorophore was removed with Dye Removal Columns with >95% efficiency.
The final conjugate was used immediately or lyophilized and stored at -20°C for long term
storage.

Statistics. All experimental data is reported as the average +SD from three to six indepen-
dent experiments with minimum of four samples per experiment. Coefficient of determination,
R?, was used to compare the goodness of the fit between the experimental data and the model:

SS
R=1-_2 22
SStot ( )

where SS,., is the residual sum of squares and SS;,; is the total sum of squares.

Results and Discussion
Comparison of Monte Carlo and homogenization computations

In our Monte Carlo simulations the length scale was chosen to be nm while the time scale was
chosen so that the free diffusion coefficient was 1. The lengths 4, R and L correspond to solute
radius, radius of polymer molecule in solution when interpreted as a rigid sphere and the cen-
ter-to-center spacing of the polymer molecules in solution, respectively. As the solute and poly-
mer molecules are not spheres in reality, we used their hydrodynamic radii (R = Ry,). These
quantities are known for any given polymer-solute pair and given polymer concentration and
hence we can interpret our simulation results in terms of these lengths.

Figs 4 and 5 contain plots of the mean squared displacement from the kinetic and Wiener
process simulations for representative values of p. These figures show that over longer time
periods the mean squared displacement is linear in time, consistent with normal diffusive
behavior. We note that the diffusivity which is proportional to the slope of the line decreases as
p increases.

For convenience of implementation, in each simulation, the solute molecule started equidis-
tant from the nearest polymer molecules, which caused the solute to diffuse freely until the first
collision with a polymer molecule. Thus, we expect the mean squared displacement curve to
coincide with the case of the free diffusion line near ¢ = 0 and eventually transition to a line
with smaller slope indicative of hindered diffusion. In fact, this exact behavior can be seen in
Figs 6 and 7, which show the mean squared displacement for small ¢. During this transition
from free diffusion to hindered diffusion, we observe a nonlinearity.

The above discussion raises the question of whether, over the length scales of the FCS illu-
minated volume one could expect to see the hindered but normal diffusive behavior predicted
by our simulations. In both the kinetic model and Wiener process simulations, hindered but
normal diffusive behavior was observed over a length scale roughly equal to twice the obstruc-
tion spacing L for small values of p. For larger values of p, progressively smaller length scales
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Fig 4. Mean squared displacement for p = 0.00, 0.60, 1.00, 1.20, and 1.40 for kinetic model simulation.

doi:10.1371/journal.pone.0146093.g004

were sufficient to observe this behavior. This can be concluded from computing the root mean
square displacement over the simulation interval shown in Figs 6 and 7. For p values above 0.2
and up to 1.4, we expect L to be in the range of 25 to 160 nm (see Table 2). Since the radial
dimension rq of the FCS illuminated volume is typically 200-300 nm, we can expect to observe
the normal but hindered diffusive behavior under FCS. We note that for very dilute solutions
where L is larger than r, the corresponding p will be very small indicating nearly free diffusion.
To estimate D, for a given value of p, we first computed the line of best fit through the origin
slope of line of best fit

6
mate. Fig 8 shows D, against p as computed by the Monte Carlo simulations as well as the

of the mean squared displacement and then used D, = as the esti-

homogenization computation. S1 Table contains D, estimates by all three methods and
includes the 95% confidence intervals for the Monte Carlo simulations. In all cases, the width
of the confidence interval was less than 2% of the estimated value. It is also noteworthy that the
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D, estimates of the kinetic and Wiener simulations are within each other’s confidence intervals.
Moreover, the value of D, computed using the homogenization theory is also within the confi-
dence intervals of both Monte Carlo simulations for all p values computed. Theoretically one
expects the homogenization theory to hold in the limit when the ratio L/L’ approaches zero. In
practice, the homogenization result agrees closely with the (more accurate) Wiener process
simulations even when L' is only twice the value of L. This can be seen from Fig 5 where the
square root of the vertical axis provides the length scale L'. The straight line approximation
over a length scale L' ~ 2L = 10 yielded a value of D, which agrees closely with the Wiener pro-
cess simulations. This is a positive result. Additionally, for any given value of p, 100,000 Wiener
process Monte Carlo simulations required around 40 minutes whereas the homogenization
theory calculation required less than 1 minute.

Anomalous versus hindered but normal diffusion. It is clear that for the spatial scale of
interest to us, the mean square displacement is consistent with normal diffusion. Theoretically,
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one expects to see free diffusivity Dy when t — 0+ and the effective diffusivity D, as t — oo,
according to Eq (16). In order to take a closer look at how mean squared displacement (MSD)
changes over a large range of time scales, for two values of p, namely p = 0.6 and p = 1, MSD
was recorded at a wider range of time points. The plots in Figs 9 and 10 show the logarithm of
MSD divided by t against the logarithm of t. Moreover, for each of these two values of p, two
different initial conditions were used: one was as before where the solute starts at a midpoint
between obstacles and in the other the solute started out with a random initial condition that
was uniformly distributed outside the obstacles. Figs 9 and 10 are in agreement with Eq (16);
note that log(6D,) = log(6)~1.79. As mentioned earlier, by necessity, the curve log(MSD(t))/t
against log(f) must transition from one constant value to another. This region of transition
does not appear to fit well a power law (i.e. linear in the log scale), and moreover, the transition
seems to depend on how the initial condition is chosen.
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A transition from anomalous to normal diffusion was observed in [47], though the context
there was different (also see [46, 48, 49] for broader studies). The simulations in [47] were car-
ried out in discrete time and as such t — 0+ limit does not make much sense. In fact, if a con-
tinuous time model was used, one would expect normal diffusive behavior in the t — 0+ limit
as well. Moreover, the obstruction structure was quite different as the space was discrete and
each site was obstructed independently of other sites with a probability of p. Bearing in mind
that the spacing in the discrete lattice is analogous to the mean free path length of the solute,
the spacing between obstructions is comparable to mean free path for, say p > 0.2. On the
other hand, a lattice based discretization of our model will contain several contiguous lattice
sites corresponding to the spherical obstructed regions and several contiguous lattice sites in
between these obstructed sites corresponding to the unobstructed region.

Theoretically, one may expect anomalous diffusive behavior as t — oo, i.e. for large time or
equivalently spatial scales, when there is no separation of length scales for the spatial structure.
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In practice, this means at least up to the length scale of observation, the spatial structure has
features on every length scale. In the periodic setting that is under consideration here, if the
length scale of observation is much larger than the spacing L, then one does not expect anoma-
lous diffusion on the large time or spatial scale and our Monte Carlo simulations confirm this.
In fact, according to [47], for large p values, one observes anomalous diffusion at all time scales.
This is because, for p values above the percolation threshold, the medium exhibits a fractal
structure [47].

The homogenization theory predicts D,/D, as a function of p as depicted in Fig 8. This func-
tional relationship was computed at certain p values and may be approximated by interpolation
for other p values. We found that the formula

D,/D, = e’ (23)

fits this relationship well for smaller p values. Specifically with k = 0.2568 for p values in the
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interval [0,0.92] the maximum error between this formula and the curve in Fig 8 was
6.1x 107,

It is instructive to compare D,/Dy predicted by homogenization theory with both the naive
prediction for D,/D, as the straightforward average of diffusivities as well as the Maxwell’s for-
mula given by [28]

De/D(): E (24)

where L = 47(1 — 6)/(2+8) and 6 is the diftusivity inside the spherical inclusion. For us, § =0
and hence L = 2. Fig 11 shows our homogenization theory prediction in comparison with the
naive straightforward average as well as Maxwell’s formula. We note that for p < 1 the straight-
forward average is given by the accessible volume fraction 1 — ¢ = 1 — p>/6. Additionally,
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while Maxwell’s formula does not agree with the homogenization theory curve, Maxwell’s for-
mula “corrected” by the factor 1/(1 — ¢) agrees well with the homogenization theory. See the
discussion of the factor 1 — ¢ in the section on Homogenization Theory.

Comparison of homogenization results with experimental data

In this work, we used FCS to measure solute diffusivity in three different polymer solutions.
The autocorrelation functions for all solute-polymer pairs were described well by a single com-
ponent fit Eq (20). Even though Eq (20) was originally developed to describe freely diffusing
monodisperse fluorescent solutes [34], it has been successfully applied to the description of
hindered diffusion in polymer solutions and networks [3, 10, 18]. The assumption of monodis-
persity was satisfied as each solute molecule was conjugated with a single fluorophore as
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expected from the 52% labeling efficiency. In all cases, we express the normalized effective dif-
tusivity, D,/Dy, as To/T4 where Ty is the free solute diffusion time in water.

Experimental data on solute diffusivity as a function of polymer concentration for the solute
RNase in three different polymer solutions was used to validate the developed model (Fig 12).
An increase in polymer concentration leads to a decrease in L, which in turn leads to an
increase in p (see Eq (4), Table 2). Note that p is a lumped dimensionless parameter that is not
specific for a given solute-polymer pair but is subject to several assumptions discussed in more
detail below. Overall, our data is in excellent agreement with the model indicating that normal-
ized diffusivity decreases with increase in p due to decrease in spacing between the polymer
molecules.

All polymer solutions were prepared in the dilute and semi-dilute regimes, i.e. below and at
the overlap concentration Eq (18) unless otherwise noted, to closely match the model assump-
tions. In particular, the model assumes the polymer obstacles to be rigid spheres meaning that
the smallest L would be equivalent to the diameter of a single polymer molecule. Based on that
geometric model, we define a geometric overlap concentration Eq (19). Note that for polymer
molecules such as the dextrans used in this study for which R, > R, Eqs (18) and (19) would
yield similar overlap concentrations. Due to the rigid sphere assumption, the model is not
expected to fit well the diffusivity of solutes in the concentrated regime where chain entangle-
ments are present. To test this assumption, we focus on the diffusivity of RNase in the two dex-
tran solutions, namely Dextran70 and Dextran500. The overlap concentration, ¢*, is 6.9% w/v
(c? = 7.4% w/v) and 2.5% w/v (c? = 2.5% w/v) for Dextran70 and Dextran500, respectively. We
observed an excellent agreement between experimental data and model data for all p values
except for the last data point (circled on the graph) where the decrease in solute diffusivity was
less than predicted by the model. The last data point was taken at the concentrated regime for
both polymer solutions, specifically a concentration of 7% w/v for Dextran70 and 5% w/v for
Dextran500. Thus, as anticipated, we suggest that due to the rigid sphere assumption, the
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model will predict a faster drop in diffusivity at the concentrated regime expected for a solute
diffusing in a solution of flexible polymer chains.

Apart from the rigidity, the second aspect of the assumption is the spherical obstacle geome-
try. While there are some relatively globular polymers and certainly many globular protein
macromolecules, majority of polymers would behave like a random flexible coil. Thus, to test if
the model would be applicable to both globular and random coil macromolecules, we chose
two types of polymers, namely Ficoll and Dextran (Fig 12). Ficoll is a rigid, highly-branched
globular polymer of epichlorohydrin and sucrose, which has been traditionally assumed nearly
perfectly spherical in shape of [50] and only more recently it has been described as an interme-
diate between a solid sphere and a well-solvated linear random coil [51]. Dextran, a slightly
branched polymer of 1,6-glucopyranose units, is less compact than Ficoll and behaves like a
flexible coil rather than a sphere in an aqueous solution [52]. Interestingly, in all cases, our data
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Table 3. Coefficient of determination to establish the goodness of the fit between experimental data
and the homogenization model data. Note that data in the concentrated regime was excluded from the
calculation.

Polymer R?

Dextran70 0.95
Ficoll400 0.88
Dextran500 0.89

doi:10.1371/journal.pone.0146093.t003

matches the model closely: the goodness of the fit was also confirmed by the high values for the
coefficient of determination R (Table 3). Note that the R* values do not include the two data
points in the concentrated regime. While the results indicate that the model could potentially
apply to random coil polymers, the homogenization theory can also be modified to describe
random coil geometry.

The model also assumes the obstacles to be stationary, which is a good approximation if the
polymer molecule is much larger than the solute and, thus, its diffusivity can be considered
negligible as compared to the diffusivity of the solute. Free diffusivity of solutes as a function of
solute properties depends on the radius of the solute and its molecular weight [11]. Table 1
depicts the hydrodynamic radii of both the polymer and solute molecules demonstrating that
the difference between the two ranges from ~ 3-fold (for the RNase-Dextran70 solute-polymer
pair) to ~9-fold (for the RNase-Dextran500 solute-polymer pair). Molecular weights between
solute and polymer pairs are also disparate. Thus, the chosen solute-polymer pairs satisty this
assumption.

Lastly, the model assumes no interaction between the solute and polymer: solute diffusivity
in the polymer solution is hindered by obstruction only. Thus, solute-polymer pairs were cho-
sen accordingly. For example, we have previously shown that diffusivity of RNase in neutral
dextran solution (the one used in this study) is hindered by obstruction only [3]. Ficoll, simi-
larly to dextran, is also an inert sugar-based polymer and interaction between Ficoll and the
solute was not expected [53].

Conclusions

We described a framework based on homogenization theory for the prediction of macro-scale
diffusivity of a solute in aqueous polymer solutions. The framework consists of starting with a
fine-scale model with clearly stated assumptions and then applying homogenization theory to
compute the effective macro-scale diffusivity. Our fine-scale model assumed the polymer mole-
cules to be impenetrable stationary spherical obstacles that were periodically placed in water.
The solute was assumed to be a rigid sphere undergoing a Wiener process with specular reflec-
tions at the spherical obstacles.

The success of this approach depended on both the accuracy of the fine-scale model as well
as the validity of the homogenization theory over the length-scale of interest. Since homogeni-
zation theory is only accurate in the limit when the ratio L/L’ approaches zero, where L is the
characteristic fine-scale length and L’ is the characteristic macro-scale length, the accuracy of
the homogenization theory was tested against Monte Carlo simulations of the reflected Wiener
process model. We note that for purposes of comparison with FCS experiments, L’ is the radial
dimension of the FCS confocal volume. However, in applications of longterm interest to us, L’
is much larger than this.

Additionally, as a verification of the reflected Wiener process model assumption, we per-
formed a kinetic Monte Carlo simulation. Here we used physically relevant mean path-lengths
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and did not assume a Gaussian distribution. Both Monte Carlo simulations agreed with each
other as well as with the homogenization theory prediction over spatial scales of interest to us.
It is also important to note that the homogenization computations are significantly more effi-
cient to carry out than Monte Carlo simulations. Agreement between the two different Monte
Carlo simulations with homogenization theory does not validate the fine-scale model, since all
three of these computations assumed stationary impenetrable spherical geometry for the poly-
mer molecules. Thus, the most important result we observed was the agreement of the homog-
enization theory with experimental data for effective solute diffusivities in dilute and semi-
dilute regimes.

We note that the homogenization theory predictions also agree with a modified form of the
simple Maxwell’s formula for reasonable range of obstruction radii. While the spherical
obstruction assumption is simple, and hence the modified Maxwell’s formula could also be
used, the main goal of this work is to demonstrate, as a proof-of-principle, the application of
the homogenization theoretic framework to the problem of predicting effective diffusivities of
a solute in an aqueous polymer molecular environment. To that end, the success of this work
shows promise for future work of modeling solute movement in polymer gels using a similar
framework. Since the geometry of the gels will be more complicated, simple formulae such as
Maxwell’s will not be applicable in those situations and the power of the homogenization the-
ory will be relevant.

Supporting Information

S1 Text. Description of the Monte Carlo simulation algorithm for the kinetic and Wiener
process models.
(PDF)

$2 Text. Description of the confidence interval calculations for the slope of the mean
squared displacement.
(PDF)

S1 Table. Effective diffusivity coefficients from the Monte Carlo simulations and homoge-
nization theory. Diffusion coefficient estimates from the Monte Carlo simulations and COM-
SOL Multiphysics. In COMSOL Multiphysics, the “fine” mesh setting was generally used and
there were no warning or error messages. For p = 1.32, 1.36, and 1.40 the “extra fine” mesh set-
ting was used due to inaccurate results.

(PDF)

Acknowledgments

The work of authors Chehreghanianzabi and Zustiak was supported by start-up funds to Dr.
Zustiak provided by Saint Louis University.

Author Contributions

Conceived and designed the experiments: SZ YC. Performed the experiments: SZ YC. Analyzed
the data: PD MR YC SZ. Contributed reagents/materials/analysis tools: SZ. Wrote the paper:
PD MR YC SZ. Computational Programming: PD MR. Theory Development: MR PD.

References

1. Minton AP. Implications of macromolecular crowding for protein assembly. Current opinion in structural
biology. 2000; 10(1):34-39. doi: 10.1016/S0959-440X(99)00045-7 PMID: 10679465

PLOS ONE | DOI:10.1371/journal.pone.0146093 January 5, 2016 23/26


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0146093.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0146093.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0146093.s003
http://dx.doi.org/10.1016/S0959-440X(99)00045-7
http://www.ncbi.nlm.nih.gov/pubmed/10679465

@’PLOS ‘ ONE

Homogenization Theory for Diffusivity Prediction

10.

11.

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24,

Leduc C, Padberg-Gehle K, Varga V, Helbing D, Diez S, Howard J. Molecular crowding creates traffic
jams of kinesin motors on microtubules. Proceedings of the National Academy of Sciences. 2012; 109
(16):6100—6105. doi: 10.1073/pnas.1107281109

Zustiak SP, Nossal R, Sackett DL. Hindered diffusion in polymeric solutions studied by fluorescence
correlation spectroscopy. Biophysical journal. 2011; 101(1):255-264. doi: 10.1016/j.bpj.2011.05.035
PMID: 21723836

Cheema U, Rong Z, Kirresh O, MacRobert AJ, Vadgama P, Brown RA. Oxygen diffusion through colla-
gen scaffolds at defined densities: implications for cell survival in tissue models. Journal of tissue engi-
neering and regenerative medicine. 2012; 6(1):77-84. doi: 10.1002/term.402 PMID: 21312340

Ashley GW, Henise J, Reid R, Santi DV. Hydrogel drug delivery system with predictable and tunable
drug release and degradation rates. Proceedings of the National Academy of Sciences. 2013; 110
(6):2318-2323. doi: 10.1073/pnas.1215498110

Zustiak SP, Leach JB. Characterization of protein release from hydrolytically degradable poly (ethylene
glycol) hydrogels. Biotechnology and bioengineering. 2011; 108(1):197-206. doi: 10.1002/bit.22911
PMID: 20803477

Kirkwood JG, Riseman J. The intrinsic viscosities and diffusion constants of flexible macromolecules in
solution. The Journal of Chemical Physics. 1948; 16(6):565-573. doi: 10.1063/1.1746947

Sundel6f LO. Diffusion in macromolecular solutions. Berichte der Bunsengesellschaft fir physikalische
Chemie. 1979; 83(4):329-342. doi: 10.1002/bbpc.19790830408

Price C, Zhou X, Li W, Wang L. Real-time measurement of solute transport within the lacunar-canalicu-
lar system of mechanically loaded bone: Direct evidence for load-induced fluid flow. Journal of Bone
and Mineral Research. 2011; 26(2):277-285. doi: 10.1002/jbmr.211 PMID: 20715178

Zustiak SP, Boukari H, Leach JB. Solute diffusion and interactions in cross-linked poly (ethylene glycol)
hydrogels studied by fluorescence correlation spectroscopy. Soft Matter. 2010; 6(15):3609-3618. doi:
10.1039/c0sm00111b

Amsden B. Modeling solute diffusion in aqueous polymer solutions. Polymer. 2002; 43(5):1623-1630.
doi: 10.1016/S0032-3861(01)00749-2

Peppas NA, Narasimhan B. Mathematical models in drug delivery: How modeling has shaped the way
we design new drug delivery systems. Journal of Controlled Release. 2014; 190:75-81. doi: 10.1016/j.
jconrel.2014.06.041 PMID: 24998939

Amsden B. Solute diffusion within hydrogels. Mechanisms and models. Macromolecules. 1998; 31
(23):8382-8395. doi: 10.1021/ma980765f

Brannon-Peppas L, Peppas NA. Solute and penetrant diffusion in swellable polymers. IX. The mecha-
nisms of drug release from pH-sensitive swelling-controlled systems. Journal of Controlled Release.
1989; 8(3):267-274. doi: 10.1016/0168-3659(89)90048-5

Hadjiev NA, Amsden BG. An assessment of the ability of the obstruction-scaling model to estimate sol-
ute diffusion coefficients in hydrogels. Journal of Controlled Release. 2015; 199:10-16. doi: 10.1016/j.
jconrel.2014.12.010 PMID: 25499554

Leier A, Marquez-Lago TT, Burrage K. Simulating diffusion in crowded environments with multifrac-
tional Brownian motion. FEBS J. 2012; 279:524.

Masaro L, Zhu X. Physical models of diffusion for polymer solutions, gels and solids. Progress in poly-
mer science. 1999; 24(5):731-775. doi: 10.1016/S0079-6700(99)00016-7

Michelman-Ribeiro A, Horkay F, Nossal R, Boukari H. Probe diffusion in aqueous poly (vinyl alcohol)
solutions studied by fluorescence correlation spectroscopy. Biomacromolecules. 2007; 8(5):1595—
1600. doi: 10.1021/bm061195r PMID: 17441767

Ochab-Marcinek A, Hotyst R. Scale-dependent diffusion of spheres in solutions of flexible and rigid
polymers: mean square displacement and autocorrelation function for FCS and DLS measurements.
Soft Matter. 2011; 7(16):7366—7374. doi: 10.1039/c1sm05217a

Petit JM, Roux B, Zhu X, Macdonald P. A new physical model for the diffusion of solvents and solute
probes in polymer solutions. Macromolecules. 1996; 29(18):6031-6036. doi: 10.1021/ma951159c

Siepmann J, Siepmann F. Modeling of diffusion controlled drug delivery. Journal of Controlled Release.
2012; 161(2):351-362. doi: 10.1016/j.jconrel.2011.10.006 PMID: 22019555

Sokolov IM. Models of anomalous diffusion in crowded environments. Soft Matter. 2012; 8(35):9043—
9052. doi: 10.1039/c2sm25701g

Wijmans J, Baker R. The solution-diffusion model: a review. Journal of membrane science. 1995; 107
(1):1-21. doi: 10.1016/0376-7388(95)00102-I

Sahimi M. Heterogeneous Materials I: Linear transport and optical properties. vol. 1. Springer Science
& Business Media; 2003.

PLOS ONE | DOI:10.1371/journal.pone.0146093 January 5, 2016 24 /26


http://dx.doi.org/10.1073/pnas.1107281109
http://dx.doi.org/10.1016/j.bpj.2011.05.035
http://www.ncbi.nlm.nih.gov/pubmed/21723836
http://dx.doi.org/10.1002/term.402
http://www.ncbi.nlm.nih.gov/pubmed/21312340
http://dx.doi.org/10.1073/pnas.1215498110
http://dx.doi.org/10.1002/bit.22911
http://www.ncbi.nlm.nih.gov/pubmed/20803477
http://dx.doi.org/10.1063/1.1746947
http://dx.doi.org/10.1002/bbpc.19790830408
http://dx.doi.org/10.1002/jbmr.211
http://www.ncbi.nlm.nih.gov/pubmed/20715178
http://dx.doi.org/10.1039/c0sm00111b
http://dx.doi.org/10.1016/S0032-3861(01)00749-2
http://dx.doi.org/10.1016/j.jconrel.2014.06.041
http://dx.doi.org/10.1016/j.jconrel.2014.06.041
http://www.ncbi.nlm.nih.gov/pubmed/24998939
http://dx.doi.org/10.1021/ma980765f
http://dx.doi.org/10.1016/0168-3659(89)90048-5
http://dx.doi.org/10.1016/j.jconrel.2014.12.010
http://dx.doi.org/10.1016/j.jconrel.2014.12.010
http://www.ncbi.nlm.nih.gov/pubmed/25499554
http://dx.doi.org/10.1016/S0079-6700(99)00016-7
http://dx.doi.org/10.1021/bm061195r
http://www.ncbi.nlm.nih.gov/pubmed/17441767
http://dx.doi.org/10.1039/c1sm05217a
http://dx.doi.org/10.1021/ma951159c
http://dx.doi.org/10.1016/j.jconrel.2011.10.006
http://www.ncbi.nlm.nih.gov/pubmed/22019555
http://dx.doi.org/10.1039/c2sm25701g
http://dx.doi.org/10.1016/0376-7388(95)00102-I

@’PLOS ‘ ONE

Homogenization Theory for Diffusivity Prediction

25.

26.
27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.
38.

39.

40.

41.

42,

43.

44.

45.

46.

47.

48.

49.

Torquato S. Random heterogeneous materials: microstructure and macroscopic properties. vol. 16.
Springer Science & Business Media; 2013.

Maxwell J. A Treatise on Electricity and Magnetism. 1873;.

Bensoussan A, Lions JL, Papanicolaou G. Asymptotic analysis for periodic structures. vol. 374. Ameri-
can Mathematical Soc.; 2011.

Jikov VV, Kozlov SM, Oleinik OA. Homogenization of differential operators and integral functionals.
Springer Science & Business Media; 2012.

Cioranescu D, Donato P. An introduction to homogenization, volume 17 of Oxford Lecture Series in
Mathematics and its Applications. The Clarendon Press Oxford University Press, New York. 1999;
4:118.

Cioranescu D, Paulin JSJ. Homogenization of reticulated structures. vol. 136. Springer Science &
Business Media; 2012.

Marchenko VA, Khruslov EY. Homogenization of partial differential equations. vol. 46. Springer Sci-
ence & Business Media; 2008.

Pavliotis GA, Stuart A. Multiscale methods: averaging and homogenization. Springer Science & Busi-
ness Media; 2008.

Alexanderian A, Rathinam M, Rostamian R. Homogenization, symmetry, and periodization in diffusive
random media. Acta Mathematica Scientia. 2012; 32(1):129—154. doi: 10.1016/S0252-9602(12)60008-
3

Magde D, Elson EL, Webb WW. Fluorescence correlation spectroscopy. Il. An experimental realization.
Biopolymers. 1974; 13(1):29-61. doi: 10.1002/bip.1974.360130103 PMID: 4818131

Michelman-Ribeiro A, Mazza D, Rosales T, Stasevich TJ, Boukari H, Rishi V, et al. Direct measurement
of association and dissociation rates of DNA binding in live cells by fluorescence correlation spectros-
copy. Biophysical journal. 2009; 97(1):337—-346. doi: 10.1016/].bpj.2009.04.027 PMID: 19580772

Raccis R, Roskamp R, Hopp I, Menges B, Koynov K, Jonas U, et al. Probing mobility and structural
inhomogeneities in grafted hydrogel films by fluorescence correlation spectroscopy. Soft Matter. 2011;
7(15):7042—7053. doi: 10.1039/c0sm01438a

Gardiner CW. Handbook of stochastic methods. vol. 4. Springer Berlin; 1985.

Ethier SN, Kurtz TG. Markov processes: characterization and convergence. vol. 282. John Wiley &
Sons; 2009.

Armstrong J, Wenby R, Meiselman H, Fisher T. The hydrodynamic radii of macromolecules and their
effect on red blood cell aggregation. Biophysical journal. 2004; 87(6):4259-4270. doi: 10.1529/
biophysj.104.047746 PMID: 15361408

De Nobel J, Dijkers C, Hooijberg E, Klis F. Increased cell wall porosity in Saccharomyces cerevisiae
after treatment with dithiothreitol or EDTA. Journal of general microbiology. 1989; 135(7):2077-2084.

Zeiger AS, Loe FC, Li R, Raghunath M, Van Vliet KJ. Macromolecular crowding directs extracellular
matrix organization and mesenchymal stem cell behavior. PloS one. 2012; 7(5):e37904—e37904. doi:
10.1371/journal.pone.0037904 PMID: 22649562

de la Torre JG, Huertas ML, Carrasco B. Calculation of hydrodynamic properties of globular proteins
from their atomic-level structure. Biophysical Journal. 2000; 78(2):719-730. doi: 10.1016/S0006-3495
(00)76630-6

Donato P, Nabil A. Homogenization of semilinear parabolic equations in perforated domains. Chinese
Annals of Mathematics. 2004; 25(02):143—-156. doi: 10.1142/50252959904000159

Bouchaud JP, Georges A. Anomalous diffusion in disordered media: statistical mechanisms, models
and physical applications. Physics reports. 1990; 195(4):127-293. doi: 10.1016/0370-1573(90)90099-
N

Metzler R, Klafter J. The random walk’s guide to anomalous diffusion: a fractional dynamics approach.
Physics reports. 2000; 339(1):1-77. doi: 10.1016/S0370-1573(00)00070-3

Ellery AJ, Simpson MJ, McCue SW, Baker RE. Characterizing transport through a crowded environ-
ment with different obstacle sizes. The Journal of chemical physics. 2014; 140(5):054108. doi: 10.
1063/1.4864000 PMID: 24511923

Saxton MJ. Anomalous diffusion due to obstacles: a Monte Carlo study. Biophysical journal. 1994; 66(2
Pt 1):394. doi: 10.1016/S0006-3495(94)80789-1 PMID: 8161693

Saxton MJ. Anomalous diffusion due to binding: a Monte Carlo study. Biophysical journal. 1996; 70
(3):1250. doi: 10.1016/S0006-3495(96)79682-0 PMID: 8785281

Vilaseca E, Isvoran A, Madurga S, Pastor |, Garcés JL, Mas F. New insights into diffusion in 3D
crowded media by Monte Carlo simulations: effect of size, mobility and spatial distribution of obstacles.

PLOS ONE | DOI:10.1371/journal.pone.0146093 January 5, 2016 25/26


http://dx.doi.org/10.1016/S0252-9602(12)60008-3
http://dx.doi.org/10.1016/S0252-9602(12)60008-3
http://dx.doi.org/10.1002/bip.1974.360130103
http://www.ncbi.nlm.nih.gov/pubmed/4818131
http://dx.doi.org/10.1016/j.bpj.2009.04.027
http://www.ncbi.nlm.nih.gov/pubmed/19580772
http://dx.doi.org/10.1039/c0sm01438a
http://dx.doi.org/10.1529/biophysj.104.047746
http://dx.doi.org/10.1529/biophysj.104.047746
http://www.ncbi.nlm.nih.gov/pubmed/15361408
http://dx.doi.org/10.1371/journal.pone.0037904
http://www.ncbi.nlm.nih.gov/pubmed/22649562
http://dx.doi.org/10.1016/S0006-3495(00)76630-6
http://dx.doi.org/10.1016/S0006-3495(00)76630-6
http://dx.doi.org/10.1142/S0252959904000159
http://dx.doi.org/10.1016/0370-1573(90)90099-N
http://dx.doi.org/10.1016/0370-1573(90)90099-N
http://dx.doi.org/10.1016/S0370-1573(00)00070-3
http://dx.doi.org/10.1063/1.4864000
http://dx.doi.org/10.1063/1.4864000
http://www.ncbi.nlm.nih.gov/pubmed/24511923
http://dx.doi.org/10.1016/S0006-3495(94)80789-1
http://www.ncbi.nlm.nih.gov/pubmed/8161693
http://dx.doi.org/10.1016/S0006-3495(96)79682-0
http://www.ncbi.nlm.nih.gov/pubmed/8785281

@’PLOS ‘ ONE

Homogenization Theory for Diffusivity Prediction

50.

51.

52.

53.

Physical Chemistry Chemical Physics. 2011; 13(16):7396—7407. doi: 10.1039/c0cp01218a PMID:
21412541

Davidson MG, Deen WM. Hindered diffusion of water-soluble macromolecules in membranes. Macro-
molecules. 1988; 21(12):3474-3481. doi: 10.1021/ma00190a022

Fissell WH, Hofmann CL, Smith R, Chen MH. Size and conformation of Ficoll as determined by size-
exclusion chromatography followed by multiangle light scattering. American Journal of Physiology-
Renal Physiology. 2010; 298(1):F205—F208. doi: 10.1152/ajprenal.00312.2009 PMID: 19846572

Bohrer M, Patterson GD, Carroll P. Hindered diffusion of dextran and ficoll in microporous membranes.
Macromolecules. 1984; 17(6):1170-1173. doi: 10.1021/ma00136a011

Venturoli D, Rippe B. Ficoll and dextran vs. globular proteins as probes for testing glomerular perms-
electivity: effects of molecular size, shape, charge, and deformability. American Journal of Physiology-
Renal Physiology. 2005; 288(4):F605—F613. doi: 10.1152/ajprenal.00171.2004 PMID: 15753324

PLOS ONE | DOI:10.1371/journal.pone.0146093 January 5, 2016 26/26


http://dx.doi.org/10.1039/c0cp01218a
http://www.ncbi.nlm.nih.gov/pubmed/21412541
http://dx.doi.org/10.1021/ma00190a022
http://dx.doi.org/10.1152/ajprenal.00312.2009
http://www.ncbi.nlm.nih.gov/pubmed/19846572
http://dx.doi.org/10.1021/ma00136a011
http://dx.doi.org/10.1152/ajprenal.00171.2004
http://www.ncbi.nlm.nih.gov/pubmed/15753324

