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Abstract: Recently published clinical trials involving the use of adipose-derived stem cells (ADSCs)
indicated that approximately one-third of the studies were conducted on musculoskeletal disor-
ders (MSD). MSD refers to a wide range of degenerative conditions of joints, bones, and muscles,
and these conditions are the most common causes of chronic disability worldwide, being a major
burden to the society. Conventional treatment modalities for MSD are not sufficient to correct the
underlying structural abnormalities. Hence, ADSC-based cell therapies are being tested as a form
of alternative, yet more effective, therapies in the management of MSDs. Therefore, in this review,
MSDs subjected to the ADSC-based therapy were further categorized as arthritis, craniomaxillofacial
defects, tendon/ligament related disorders, and spine disorders, and their brief characterization
as well as the corresponding conventional therapeutic approaches with possible mechanisms with
which ADSCs produce regenerative effects in disease-specific microenvironments were discussed to
provide an overview of under which circumstances and on what bases the ADSC-based cell therapy
was implemented. Providing an overview of the current status of ADSC-based cell therapy on MSDs
can help to develop better and optimized strategies of ADSC-based therapeutics for MSDs as well as
help to find novel clinical applications of ADSCs in the near future.

Keywords: adipose-derived stem cell; clinical trials; musculoskeletal disorders

1. Introduction

Stem cells refer to a group of unspecialized cells with the ability to differentiate into
many lineage-specific cell types and to renew themselves. Although embryonic stem cells
are known to have the most powerful pluripotency [1], their ethical issues and limited
availability have promoted the search for adult stem cells for tissue regeneration and stem-
cell-based therapeutics [2]. One of the well-known examples of such adult stem cells are
bone-marrow-derived mesenchymal stem cells (BM-MSCs), and since their first discovery
in 1970 [3], they have been considered the major players in stem-cell-based therapies, being
the most frequently used cells in clinical settings [4]. However, the invasive harvesting
procedure of BM-MSC poses unnecessary pain and/or risk of infection, and it may also
yield an insufficient amount of cells for clinical applications [5]. Such drawbacks of BM-
MSCs have driven yet another search, and a number of adult stem cells from different
sources, such as adipose tissue, umbilical cord, dental pulp, and endometrium, have been
reported [6]. Among these cells, adipose-derived stem cells (ADSCs) are considered good
candidates for autologous cell therapy since they can be obtained in high numbers from
the abundant adipose tissue of the body [7].

Since the very first isolation and identification of human ADSCs in 2002 [8], numerous
strategies to utilize ADSCs as a main component of regenerative cell therapeutics have
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been developed and tested. As the name indicates, ADSCs refer to adult mesenchymal
stem cells obtained from adipose tissue. In terms of their characteristics, very similar to
the BM-MSCs, they possess a self-renewal ability and multi-potency. On the other hand,
unlike the BM-MSCs, a sufficient amount of ADSCs can be easily obtained from adipose
tissue with a minimally invasive procedure such as liposuction, and adherent ADSCs can
be expanded in vitro, maintaining the capacity to differentiate [9]. Such ease of harvesting
and multi-potency of ADSCs make them attractive adult stem cells for repairing damaged
tissues and organs, and the PubMed search for recently published clinical trials (within the
last 10 years) involving the use of ADSCs indicated that approximately one-third of the
published clinical studies were conducted on musculoskeletal disorders (MSD).

MSD refers to a wide range of degenerative conditions of joints, bones, and muscles.
The most common examples of MSD include osteoarthritis, osteoporosis, rheumatoid
arthritis, and sports injuries, and these conditions are also the most common causes of
chronic disability worldwide, being a major burden to society [10]. Conventional treatment
modalities for MSD such as pharmacological and non-pharmacological therapies are used
mainly to reduce the pain associated with these conditions. In other words, these treatment
options may relieve the symptoms and the pain associated with musculoskeletal disorders,
but they are often associated with a wide range of undesirable side effects and are not
sufficient to correct the underlying structural abnormalities. Hence, it is not so surprising
that ADSC-based cell therapies are continuously being tested as an alternative, yet more
effective, therapy in the management of musculoskeletal conditions.

Therefore, in this concise review, focusing on the type of MSDs subjected to therapeu-
tic application of ADSCs in the recently published clinical studies, a brief characterization
of MSDs as well as corresponding conventional therapeutic approaches including regener-
ative therapies using stem cell other than ADSCs will be discussed to provide an idea of
under which circumstances and on what bases the ADSC-based cell therapy was imple-
mented. By providing an overview of the current status of ADSC-based cell therapy on
MSDs, we hope that this concise review can help to develop better and optimized strategies
of ADSC-based therapeutics for MSDs as well as to find novel clinical applications of
ADSCs in the near future.

2. MSD as a Major Target of ADSC-Based Cell Therapeutics

The PubMed search conducted on 1 June 2021 using “adipose derived stem cells or
adipose derived regenerative cells or adipose derived stromal cells” as keywords with a
filtering condition of article type “clinical trial” and a publication date of “10 years” came
up with 167 studies. Among those articles, the number of original clinical studies that
involved human subjects was 106, but 28 of them used stromal vascular fractions (SVFs)
that are known to contain ADSCs [11] instead of isolated ADSCs. Since SVFs may be
missing or without additional biological impact as compared to the standard cell therapy
using isolated ADSCs only, those 28 studies are not covered by this review.

Out of a total of 78 studies, about one-third of the studies (21 studies) involved
the application of ADSCs on MSCs, including but not limited to osteoarthritis, achilles
tendinopathy, and rotator cuff tears. The top three disease categories also included gas-
trointestinal (14 studies) and circulatory (10 studies) categories (Figure 1). The details of
each individual study covered by this review are described in the following subsections
cartegorized by the type of musculoskeletal disorders (MSD) targeted.
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Further analysis of the 21 clinical studies involving the use of isolated ADSCs on 
MSDs indicated that arthritis (10 osteoarthritis and 1 rheumatoid arthritis) was the most 
frequently targeted disorder of the musculoskeletal system. The clinical studies of ADSC-
based cell therapy on arthritis are listed in Table 1. 

Figure 1. Different disorders subjected to isolated ADSC-based therapeutics are categorized by the
systems the targeted tissue/organ belong to, and the ratio of each category is indicated.

3. Type of MSDs Targeted
3.1. Arthritis

Further analysis of the 21 clinical studies involving the use of isolated ADSCs on MSDs
indicated that arthritis (10 osteoarthritis and 1 rheumatoid arthritis) was the most frequently
targeted disorder of the musculoskeletal system. The clinical studies of ADSC-based cell
therapy on arthritis are listed in Table 1.



Int. J. Mol. Sci. 2021, 22, 10586 4 of 27

Table 1. Summary of clinical studies examined therapeutic use of hADSCs on arthritis for the last 10 years.

Target Disorder No. of Patients Treated
(Age: Mean ± SD) ADSC Type ADSC

Delivery
Study

Outcome Year Ref. No.

1 Knee osteoarthritis 25 (54.20 ± 9.30) Autologous, derived from
infrapatellar fat pad

Infrapatellar injection
with PRP 1

No major AEs 2 with significantly
increase Lysholm, Tegner activity

scale, and VAS 3 score
2012 [12]

2 Knee osteoarthritis 18 (63.0 ± 12.49) Autologous, derived from
abdominal fat Intra-articular injection

Improved function and pain
without adverse events, reduced

cartilage defects
2014 [13]

3 Knee cartilage defects 40 (38.75 ± 9.56) Autologous, derived from
buttocks

After microfracture,
intra-articular injection with

fibrin glue

Improved KOOS 4 pain and
symptom sub score

2016 [14]

4 Knee osteoarthritis 18 (64.63 ± 9.37) Autologous, derived from
abdominal fat Intra-articular injection Safe, without SAEs 5 2016 [15]

5 Refractory rheumatoid
arthritis 46 (53.96 ± 20.64) Allogeneic (Cx611) Intravenous injection

Well tolerated with no evidence of
dose-related toxicity, but some

AEs and SAEs
2017 [16]

6 Osteoarthritis 18 (54.8 ± 17.73) Autologous, isolated from
lipoaspirates

Intra-articular injection,
repeated

Safe and improved pain, function,
and cartilage volume 2018 [17]

7 Knee osteoarthritis 20 (54.65 ± 11.99) Autologous, derived from
abdominal fat Intra-articular injection No SAEs, clinically significant

pain, and functional improvement 2019 [18]

8 Knee osteoarthritis 12 (62.25 ± 6.50) Autologous, derived from
abdominal fat Intra-articular injection Significant improvement of the

WOMAC 6 score without SAEs 2019 [19]

9 Knee osteoarthritis 26 (55.03 ± 9.19) Autologous, derived from
abdominal fat Intra-articular injection

Significant improvements in joint
function, pain, quality of life, and

cartilage regeneration
2019 [20]

10 Subtalar joint arthritis 52 (56.9: 20.3–79.6) 6 Allogeneic
ADSC loaded, partially

demineralized cancellous bone
(AlloSource) was grafted

Good clinical outcomes in spite of
the high non-union rates 2019 [21]

11 Knee osteoarthritis 18 (54.77 ± 17.79) Allogeneic Intra-articular injection
a possible compositional changes
of cartilage, significant reduction
in WOMAC 7 and SF-36 8 scores

2019 [22]

1 Platelet-rich plasma (PRP), 2 adverse events (AEs), 3 visual analog scale (VAS), 4 knee injury and osteoarthritis outcome score (KOOS), 5 serious adverse events (SAEs). 6 In this study, age was presented as
means with the range. 7 Western Ontario and McMaster Universities Osteoarthritis index (WOMAC), 8 Medical Outcomes Short-Form-36 questionnaire (SF-36).
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Classification by the anatomic sites affected (so targeted by the ADSC-based cell
therapy) indicated that osteoarthritis (OA) of the knee was the major MSD with nine
studies, and there were two studies for osteoarthritis of the ankle and refractory rheumatoid
arthritis. As the most common musculoskeletal progressive condition, OA is a degenerative
disease of the joints that displays clinical signs such as cartilage loss, osteophyte formation,
and periarticular bone deformation [23]. Various pro-inflammatory cytokines and growth
factors such as interleukin-1, tumor necrosis factor-alpha, transforming growth factor-beta,
and matrix metalloproteinase are known to contribute to the progression of OA [24]. As
conservative treatments, pharmacological agents such as acetaminophen, aspirin, and oral
non-steroidal anti-inflammatory drugs (NSAIDs) are recommended for early management
of OA [25] and surgical interventions such as total joint replacements may be necessary for
severe OA with persisting pains [26]. However, pharmacological agents are not sufficient
to correct the underlying structural abnormalities so that they are not able to prevent
the progressive degeneration of the OA joint [27]. In the case of total joint replacement,
although it is generally successful with enhanced mobility and reduced pain, it also has
its own disadvantages such as a substantial risk of thrombosis and infection as a major
surgical procedure and a high cost to cover hospital care and rehabilitation, which is similar
to many other major surgeries [28]. Such limitations of conservative treatments promoted
the development of less-invasive approaches for the management of OA.

Intra-articular injection of hyaluronic acid or platelet-rich plasma (PRP) [29,30], as well
as MSCs, are the well-known examples of such less-invasive approaches. From the early
2000s, MSC-based cell therapy for OA has been suggested [31], and the emergence of MSC-
based cell therapy in OA treatment is based on the ease of harvesting, the safety, and the
cartilage differentiation potential of MSCs [13,32] and their paracrine and immunomodual-
tory effects [33–35]. The first clinical study that examined the effect of BM-MSC on articular
cartilage defect was almost two decades old [36]. In that particular study, where the effect
of BM-MSC transplantation was compared to that of a high tibial osteotomy in treating
the articular cartilage defect, 42 weeks of transplantation resulted in hyaline cartilage-like
tissue regeneration and improvement of both the arthroscopic and histological grading
score, suggesting the clinical feasibility of MSC-based cell therapy for OA. Thereafter, such
a beneficial effect of MSC-based cell therapy on OA has been further validated in many
different pre-clinical and clinical studies [33], and it was adopted as a possible alternative
to conventional therapeutics for treating other diseases as well [37].

Similarly, the effect of ADSCs on OA treatment has been investigated in animals
of various species first, and after preclinical animal studies showed evidence of ADSC-
mediated cartilage regeneration [38–40], the feasibility of using ADSCs for OA treatment in
humans has been further scrutinized. One of the early studies tested the clinical potential
of ADSCs in treating OA-utilized autologous ADSCS in the form of SVF with platelet-
rich plasma and hyaluronic acid [41]. In this particular study, two human subjects with
knee OA were treated, and regeneration of cartilage-like tissue was confirmed by magnetic
resonance imaging (MRI). Thereafter, more studies using ADSCs for treating OA in humans,
as indicated in Table 1, became available, accumulating evidence of cartilage regeneration.

The majority (eight out of nine) of the studies on OA utilized autologous
ADSCs [12–15,17–20], and ADSCs were most frequently derived from abdominal fat (five
out of nine) [13,15,18–20]. The number of ADSCs for a single injection ranged from
1.89 × 106 to 1.0 × 108, and the most frequently used dose was 5 × 107 [15,17,20,22]. The
method used to deliver ADSCs was intra-articular injection of ADSC solution, except the
three studies either used platelet-rich plasma (PRP) [12] or fibrin glue [14] or partially
demineralized cancellous bone [21] in combination with ADSC solution. No study on
OA reported any treatment-related significant adverse events suggesting the safety of
using ADSCs in treating OA. However, the study examined the effect of intravenously
injected allogeneic ADSCs on refractory-rheumatoid-arthritis-reported adverse events
(AEs)—although most of the AEs were of mild-to-moderate intensity [16]. In that particular
study, transient fever was the most frequent treatment-related AE. Although it was not
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clearly determined, some form of infusion reaction was suggested as the underlying mech-
anism [42]. Additionally, there was one case of a lacunar infarction (left hemihypoesthesia
and paretic ataxic gait), which was regarded as the dose-limiting toxicity. Since no apparent
cause was determined, it was considered as likely treatment-related. Nevertheless, the
treatment was well tolerated without dose-related toxicity, and it even demonstrated signs
for potential therapeutic effects, calling for further research to investigate.

In terms of the clinical efficacy of ADSCs on OA, except studies with other pri-
mary purposes such as evaluating the safety of using ADSCs [15,16] or validating multi-
compositional MRI as an effective tool for evaluating cartilage repair [22], most of the
studies reported significantly improved pain and/or function. In the study where the
patients received infrapatellar fat pad-derived MSCs with PRP, both the mean Lysholm
score [43] and the Tegner activity scale [44], which measure activities of daily living, signifi-
cantly increased in the experimental group compared to the control group that matched
in terms of patient age and sex and follow-up period, suggesting improved knee func-
tion [12]. Furthermore, ADSC treatment significantly decreased the VAS score, indicating
an improvement in the patient’s pain.

In another study, the safety and efficacy of autologous ADSCs without adjuvants
indicated that treatment with 1.0 × 108 ADSCs resulted in a 39% reduction of the WOMAC
score, which measures pain, stiffness, and physical functioning of the joints [45] and a
45% decrease in the VAS at six months following injection. Furthermore, in radiological
evaluation, it was found that the size of cartilage defects significantly decreased both in
the medial femoral (40% decrease) and the tibial condyles (49% decrease) as well as in
the lateral femoral (51% decrease) and the tibial condyles (46% decrease) at six months.
Additionally, the cartilage volume significantly increased over the six months both in
the medial femoral (14% increase) and the tibial condyles (22% increase) [13], suggesting
regeneration of damaged cartilage.

While these studies involved a single injection of ADSCs, there are also studies that
utilized multiple injections of ADSCs [17,18]. For example, a study published in 2018 exam-
ined the long-term (96 weeks) safety and efficacy of repeated injection of ADSCs (with an
interval of 48 weeks between the first two and the third injection), and the results indicated
that the WOMAC score gradually reduced over time with a mean improvement rate of
27.81, 48.63, 39.07, 47.95, and 53.29%, at the 12th, 24th, 48th, 72nd, and 96th weeks following
the initial injection, respectively. Furthermore, MRI evaluation showed that an increase
in the cartilage thickness was more significant after the third injection compared with the
first two injections, suggesting enhanced benefits of repeated injections [17]. Additional
clinical-efficacy-related findings from other studies are also summarized in Table 1.

Altogether, these studies demonstrated that using ADSC-based cell therapy on OA is
safe, and it produced promising results so that further clinical studies to verify its safety
and efficacy as well as to set up a standardized therapeutic protocol are recommended.
According to the ClinicalTrials.gov (accessed on 24 September 2021), 12 clinical trials to
examine the effect of ADSCs on OA are ongoing (categories counted; recruiting, not yet
recruiting, active, not recruiting, and enrolling by invitation) as of now.

In OA or degenerative join disease, damages to chondroblasts, chondrocytes, and the
extracellular matrix (ECM) induced by various factors, such as oxidative stress, inflam-
matory factors, and mitochondrial dysfunction [46], initiate the degradation of cartilage
tissue, which eventually leads to structural failure and loss of function [47]. Therefore,
the fundamental premise of MSC-based therapeutic approaches for treating OA is that
MSCs both/either directly adhere and become incorporated into the host tissue for os-
teogenic differentiation and/or exert reparatory effects on host cells via a paracrine mecha-
nism, and empirical evidence indicated that those two mechanisms may synergistically
work together [48].

ClinicalTrials.gov
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For direct incorporation of MSCs in treating OA, two different studies have reported
direct adherence and incorporation of injected MSCs, although they were not ADSCs. First,
MSCs isolated from synovium of rats were used for meniscus cartilage regeneration, and
the results indicated that the intra-articular injected MSCs migrated and adhered to the site
of injury, and filled the meniscal defect [49]. In another study, umbilical-cord-blood-derived
(UCB) MSCs with hyaluronic acid (HA) were utilized to treat rabbit joint articular cartilage
defects, and the delivered UCB-MSCs adhered to the site of injury and regenerated cartilage
comparable to normal cartilage tissue in terms of cellular structure and collagen organiza-
tion [50]. Nevertheless, although those previous studies have clearly demonstrated that the
delivered MSCs definitely attached at the site of injury, whether those incorporated MSCs
were indeed differentiated into chondroblasts and/or chondrocytes is still inconclusive.
In fact, other studies involved implanted a cell-tracking strategy that suggested that the
adherence of MSCs at the site of cartilage defects was necessary, but those adhered MSCs
were not necessarily differentiated into new chondroblasts and/or chondrocytes [48,51].

As for the paracrine effects, MSCs are known to secrete a wide range of bioactive
factors, such as proteins, nucleic acids, proteasomes, exosomes, microRNA, and membrane
vesicles, in response to the surrounding environment, and those bioactive factors affect
various biological entities including the immune system, apoptosis, and growth and
differentiation [52]. The secretome of MSCs can be categorized into the following three
classes: growth factors, cytokines, and extracellular vesicles [53,54]. The growth factors and
cytokines released from MSCs can be either pro-inflammatory or anti-inflammatory [54].
Vascular endothelial growth factor (VEGF), tumor necrosis factor β1 (TGF-β1), interleukin
13 (IL-13), and insulin-like growth factor (IGF-1) are some examples of anti-inflammatory
mediators released from MSCs [55–59]. Although the secretome of MSC also includes
pro-inflammatory mediators such as IL-1b, IL-6, IL-8, IL-9, and matrix metalloproteinase 3
(MMP-3) [60–63] and the final effect of MSCs on inflammation is decided by the temporal
and spatial net effect of those growth factors and cytokines, mounting evidence indicates
that MSCs more than often produces an overall anti-inflammatory effect [64–66].

It should be noted that although those growth factors and cytokines were categorized
as pro- and anti-inflammatory mediators for the sake of discussion, the true nature of
any given one of them is too complicated to be described by a single biological function.
For example, IGF-I and TGF-β have been demonstrated to enhance the chondrogenic
differentiation of MSCs [67], and they are also reported to increase the production of
cartilage matrix components such as proteoglycan, type II collagen, and aggrecan in
chondrocytes [68]. Furthermore, IGF-1 is known to regulate cellular apoptosis [69], and,
in fact, it has been demonstrated that it can suppress apoptosis via the Src/PI-3K/AKT
pathway in chondrocytes [70]. Therefore, it is most likely that those bioactive molecules
from MSCs work together in a complex signaling network to produce an overall reparative
impact on damaged cartilage.

Speaking of the anti-apoptotic effect of MSC-derived bioactive molecules, it has been
reported that co-culturing with MSCs decreased the expression of pro-apoptotic proteins
such as caspase 3 and Bax, while it increased the expression of anti-apoptotic protein,
Bcl-2, in alveolar macrophages [71], suggesting the anti-apoptotic effect of MSC-derived
secretome. Additionally, evidence more directly related to the anti-apoptotic effect of
ADSC-derived secretome on chondrocytes has been reported as well [72]. Based on those
findings, it can be speculated that the growth factors and the cytokines released by ADSCs
may prevent the death of chondrocytes, in addition to suppressing the inflammatory
response in the diseased joint. Therefore, as the underlying mechanisms of ADSC-induced
cartilage regeneration, it seems that the incorporation of stem both cells and paracrine
effects contributes to the regenerative effect of MSCs, and it is likely that the same can be
applied to ADSCs as well.
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3.2. Craniomaxillofacial Defects

Out of 20 clinical studies involving the use of isolated ADSCs on musculoskeletal
disorders, 3 studies were on craniofacial defects, namely, calvarial defects, caraniofacial
microsomia, and cranio-maxillofacial hard-tissue defects (Table 2).

Table 2. Summary of clinical studies involving the use of isolated hADSCs on craniomaxillofacial defects for the last
10 years.

Target Disorder
No. of Patients

Treated
(Age: Mean ± SD)

ADSC Type ADSC
Delivery

Study
Outcome Year Ref. No.

1 Calvarial defects 4 (63.8: 59–75) 1
Autologous,
derived from
abdominal fat

ADSCs containing
betaTCP 2

granules were laid
on the dura

No
complications

with satisfactory
ossification

2011 [73]

2 Craniofacial
microsomia 7 (12.10 ± 2.20)

Autologous,
derived from
abdominal fat

Subcutaneous
injection in a form
of ADSC-enriched

fat

Significant
increase of

surviving fat
volume

2013 [74]

3
Cranio-

Maxillofacial
hard-tissue defects

13 (53.23 ± 10.29)
Autologous,
derived from
abdominal fat

ADSC seeded
resorbable

scaffolds were
implanted

Successful
integration of the
construct in 10 of

the 13 cases.

2014 [75]

1 In this study, age was presented as mean with the range, 2 beta-tricalcium phosphate (betaTCP).

Although these three studies were classified in this category because they were dealing
with craniofacial defects, they can be further classified by the characteristic of ADSCs with
which those studies intended to produce therapeutic effects, including the osteogenic
differentiation potential and the adipogenic differentiation potential. To be more specific,
the osteogenic differentiation potential is for calvarial defects and cranio-maxillofacial hard-
tissue defects, and the adipogenic differentiation potential is for craniofacial microsomia.

Calvarial defects refer to defects of the skull and are caused by various reasons
including but not limited to trauma, infection, congenital malformations, neoplasm, and
the surgical removal of tumors [76]. Likewise, cranio-maxillofacial hard-tissue defects can
be a result of congenital malformations, traumatic avulsion, tumor resection, or severe
infection. Clinical approaches for reconstruction of such defects encompass autografts,
allografts, xenografts, or alloplastic grafts. Although the use of autografts is considered to
be the gold standard for the reconstruction of bony defects [77,78], they still have limitations
such as donor site morbidity, bone resorption, and lack of tissue availability [79–81]. On the
other hand, alloplastic grafts have no donor-site morbidity and can be precisely shaped for
individualized reconstruction so that they have replaced autografts as the more advanced
gold standard for the reconstruction [82]. Nevertheless, they also have limitations such as
a lack of ability to integrate and grow with the host bone [83,84].

To achieve proper regeneration, cell delivery to bony defect may be required in
addition to the use of a proper scaffold. In general, cell-based therapeutic strategies for
bony defects utilize either scaffolds pre-seeded with cells or acellular scaffolds promoting
in situ recruitment of autologous cells [85]. Due to the limited quantity issue of BM-MSCs,
ADSCs have become an alternative source of adult stem cells that are more easily obtainable
in large numbers. Additionally, the osteogenic differentiation potential of ADSCs made
them an even more promising candidate for bony defects.
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The very first animal study on the feasibility of using ADSCs for calvarial defects
was reported in 2004. In that particular study, it was demonstrated that ADSC seeded in a
poly(lactic-co-glycolic acid) (PLGA) scaffold achieved complete bone bridging in a mouse
model, and the treatment contributed to the majority (84–99%) of newly formed bone [86].
Furthermore, the first case report of the use of ADSCs to augment calvarial defects in a
7-year-old girl came in 2004 as well [87]. In that study, ADSCs with fibrin glue promoted
new bone formation and near complete calvarial continuity within three months following
the treatment. Slightly larger clinical studies followed some years later, and those studies
are covered by this review.

In a study published in 2011, autologous ADSCs (1.5 × 107 cells) derived from ab-
dominal fat were used to augment calvarial defects in four patients [73]. For adjuvant,
beta-tricalcium phosphate (betaTCP) granule, a well-known bone substitute material to
improve osteogenesis [88,89], was used, and the results indicated satisfactory ossification
without complications. In another study published in 2014, it was demonstrated that a com-
posite of abdominal-fat-derived ADSCs seeded on resorbable scaffolds was applied to hard
tissue defects of various craniomaxillofacial sites, including the frontal sinus (three cases),
the frontal cranium (two cases), the parietal cranium (two cases), the temporal cranium (one
case), the mandible chin (one case), the mandible body (two cases), and the nasal septum
(two cases). The average number of ADSCs applied was approximately 6.5 × 106 with a
range of 2.8 × 106 to 1.6 × 107, and the results indicated that the composites successfully
integrated into host tissues in 10 out of 13 cases [75].

Of note, unlike the majority of the OA cases where naive ADSCs were treated without
any other adjuvants, those clinical trials for ossification frequently used scaffolds to promote
new bone formation. This indicates that, although naive ADSCs have some beneficial
effect to augment a bony defect [90], using only naive ADSCs for a bony defect may not
be sufficient to produce the desired outcomes. Speaking of adjuvants for ossification,
osteoinduction prior to transplantation is known to be effective, especially in treating
critical-size defects [91,92]. Therefore, future studies on ADSCs, or any type of stem
cells for that matter, for a bony defect may focus on finding an optimized combination
of adjuvants such as scaffolds and osteoinducing agents. A brief overview on currently
available options may help in selecting the ideal osteoinducing agents for future studies.

Although ADSCs have adipogenic, chondrogenic, or osteogenic differentiation po-
tential, each specific lineage has major regulators, and Runx2 and Osterix are such major
regulators for osteogenesis [93,94]. Moreover, several signaling pathways including bone
morphogenetic protein (BMP) [95], Notch [96], Wnt [97], and Hedgehog-signaling [98] are
known to regulate osteogenic differentiation, and the Wnt signaling pathway is possibly
the most critical since it drives ADSCs away from adipogenic or chondrogenic lineages to
a osteogenic lineage by increasing Runx2 and Osterix [99,100]. There are also well-known
supplementary substances added to the medium to promote osteogenic differentiation of
ADSCs such as dexamethasone, beta-glycerophosphate, and ascorbic acid [101]. Dexam-
ethasone has been reported to increase Runx2 activity, Beta-glycerophosphate promotes
osteogenesis by being a phosphate source, and ascorbic acid increases production and
subsequent secretion of pro-collagen [102].

In addition, pro-osteogenic growth factors such as bone morphogenetic protein (BMP)
can be used to promote osteogenesis. Belonging to the transforming growth factor (TGF)
family [103], BMP is a well-established pro-osteogenic growth factor [104], and BMP-
induced osteogenic differentiation of ADSCs has been reported [105,106]. The binding
of BMP-2 or -3 to Ser/Thr kinase receptors results in phosphorylation of the Smad1/5/8
complex, which eventually increases the expression of RunX2 and Osterix by recruiting
Smad4 to the complex [95]. The effectiveness of BMP in bone repair has been demonstrated
in clinical trials [107,108]. Lastly, there are also other supplements that may enhance the
osteogeneic potential of ADSCs, and they include, but are not limited to, vitamin D3 [109],
selenium [110], and alendronate [111].
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In addition to the above-mentioned biological molecules that regulate the osteogenic
differentiation of ADSCs, using meticulously chosen biomaterials as scaffolds to provide
mechanical stability and protection may also promote osteogenic differentiation of ADSCs.
An appropriate scaffold can simulate the biological signals from extracellular the matrix,
and it provides binding sites for cell adhesion as well as space for calcium deposition. To
accommodate such requirements, carefully considering the size and interconnection of
pores, as well as the stiffness of material (material property), are important. For example,
although the size of osteoblasts is in the range of 10–50 µm [112], regeneration of mineral-
ized bone was enhanced with macropores (100–200 µm) possibly because the lager pore
size allows the infiltration of other cells involved in colonization and vascularization [113].
On the other hand, in contrast to macropores, micropores (pore size <10 µm) provide a
greater surface area for cell adhesion and showed better bone protein adsorption [114].

Therefore, a wide range of materials with various pore sizes are actively being devel-
oped and tested [115,116]. The frequently reported biomaterials for the bone-regenerating
scaffolds include hydroxyapatite (HA) [117], β-tricalcium phosphate (β-TCP) [73], synthetic
polymers such as polylactic acid (PLA) [118], and poly lactic-co-glycolic acid (PLGA) [119].
Furthermore, a combination of osteogenic bioactive molecules and biomaterial-based scaf-
folds has also been tested. For example, a BMP-2 coated PLGA scaffold was applied to
a calvarial defect, and the result indicated that the growth-factor-immobilized scaffold
increased the osteogenic differentiation of ADSCs [120]. As such, stem cells, bioactive
molecules, and scaffolds are three major components of the currently available bone regen-
eration strategy [121], and finding an ideal combination of these factors can make or break
the current bone regeneration approaches. Since ADSCs harvested from patients with ongo-
ing osteoporosis or aging may have a compromised potential for bone formation [122,123],
these combinatory approaches will be especially beneficial when such patients undergo
autologous ADSC therapy.

Craniofacial microsomia is one of the most common congenital conditions and is
associated with anomalies of the jaws, ears, facial soft tissue, orbits, and facial nerve
function [124]. Due to such a wide phenotypic spectrum, diagnosis and treatment of
craniofacial microsomia is challenging. Often accompanied in craniofacial microsomia, soft
tissue deficiency can be repaired with reconstructive techniques such as free flap, dermal
fat graft, and structural fat graft.

Also known as free tissue transfer, free flap surgery refers to a transplantation of
tissue and its blood supply, which are surgically removed from one part of the body for
the purpose of reconstruction. Although the adipofascial free flap is regarded as the best
method to provide a large amount of soft tissue for a severe deficiency [125], limitations
such as donor-site morbidity and a lengthy procedure still remain. Another well-established
approach is a dermal fat graft for moderate and mild deformities. However, a certain degree
of resorption and the subsequent need for additional augmentations are the limitations
of this procedure [126]. Finally, there is the structural fat grafting that has changed the
way various reconstruction-requiring conditions are treated [127,128]. Invented by Sidney
Coleman [129], structural fat grafting involves fat harvesting from the abdomen, flanks,
thighs, or buttocks; a refinement process; and microinjection (injection of small aliquots).
The structural fat grafting can increase the precision of delivery, minimize scarring, and
decrease donor-site morbidity, while yielding a greater number of viable adipocytes with
more optimal function within fat grafts [130].

The study covered by this review also applied the structural fat grafting on microsomia
with modification. The modification was to enrich the fat grafts with additionally isolated
ADSCs so that the ADSC content of the graft increased [74]. In fact, ADSC-enriched fat
transplantation significantly increased the surviving fat volume in that study, and such
results stand to reason considering ADSCs are more tenacious than mature adipocytes, and
the surviving ADSCs are the major effector of fat tissue transplantation [131,132].
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Considering ADSCs can also differentiate into endothelial cells and smooth muscle
cells, leading to new blood vessel formation [133,134], such a beneficial effect of ADSCs
might be the result of increased neovascularization within the transplanted fat tissue [135].
Additionally, ADSCs are known to secrete pro-angiogenic factors such as VEGF and
hepatocyte growth factor (HGF) [136], and therefore, ADSCs may promote angiogenesis of
the host tissue and within the graft to improve graft revascularization and subsequent graft
survival. Another soluble factor released from ADSCs that may improve fat graft survival
is IGF-1. IGF-1 is a known anti-apoptotic factor [137], and it has been demonstrated that
sustained release of IGF-1 from ADSCs protected cardiomyocytes from apoptosis following
myocardial infarction [138].

Furthermore, IGF-1 is also a potent mitogen for adipocyte differentiation [139], and
therefore, ADSCs may prevent apoptosis of the graft, while stimulating preadipocytes’
differentiation into mature adipocytes, thus retaining graft volume. Lastly, the most
recent mechanistic insight for the role of ADSCs on the survival of fat graft involves
the extracellular vesicles (EVs) released from ADSCs [140]. In that particular study, it
was demonstrated that ADSC-derived EVs enriched with the let-7 family of miRNAs
improved the survival of fat grafts by promoting angiogenesis via the let-7/argonaute 1
(AGO1)/VEGF signaling pathway.

3.3. Tendon- and Ligament-Related Disorders

Out of 20 clinical studies covered by this review, 5 studies were on tendon- and
ligament-related disorders, namely, 2 studies on lateral epicondylosis and lateral elbow
tendinopathy, 2 studies on rotator cuff tears, and 1 study on anterior cruciate ligament (Table 3).
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Table 3. Summary of clinical studies involving the use of isolated hADSCs on arm disorders for the last 10 years.

Target Disorder No. of Patients Treated
(Age: Mean ± SD) ADSC Type ADSC

Delivery
Study

Outcome Year Ref. No.

1 Lateral
epicondylosis 12 (51.85 ± 13.86) Allogeneic Intratendinous injection

with fibrin glue

Safe and improved elbow pain (VAS
1), performance (MEPI 2), and

structural defects
2015 [141]

2 chronic lateral
elbow tendinopathy 18 (46.5 ± NA 3)

Autologous, derived from
periumbilical zone

Percutaneous injection to
the affected elbow

Significantly improved mean VAS
scores for maximum pain score,

QuickDASH 4-Compulsory score,
QuickDASH-Sport score

2021 [142]

3 Rotator cuff tears 72 (59.05 ± 3.60) Autologous, derived
from buttocks

ADSC loaded in fibrin glue
was injected

Although ADSC significantly
improved structural outcomes in

terms of the retear rate, there were
no clinical differences compared to

the control group

2017 [143]

4 Rotator cuff tears 11 (64.60 ± 9.60)

Autologous, derived from
either the periumbilical

abdominal area, bilateral
flanks, or medial thigh fat

Intra-articular injection Significantly higher mean ASES 5

total scores without adverse events
2020 [144]

5 Anterior cruciate ligament
reconstruction 20 (24.70 ± 4.70) Autologous, derived from

abdominal or inner thigh fat
Intra-articular injection,

applied to BTB 6 autograft

Although ADSC significantly
improved knee function and

healing/maturation of the graft, it
was not significantly different
compared to the control group

2019 [145]

1 Visual analog scale (VAS); 2 Mayo clinic performance index (MEPI); 3 not available; 4 mean quick disabilities of the arm, shoulder, and hand; 5 American Shoulder and Elbow Surgeons Standardized Shoulder
Assessment Form (ASES); 6 bone-patellar tendon-bone (BTB).
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Often called the “tennis elbow,” lateral epicondylosis is a common painful condition
that affects the tendons joining the forearm muscles on the outside of the elbow [146].
Common non-surgical treatment of lateral epicondylosis includes, but not is limited to,
physiotherapy [147], injections of corticosteroid [148], extracorporeal shock wave ther-
apy [149], acupuncture [150], topical glyceryl trinitrate [151], botulinum toxin [152], and
platelet-rich plasma [153]. Regarding the cell therapy for lateral epicondylosis, it was
surprising that only a handful of studies had been conducted to date. Except the two
studies subjected to this review, there were only five clinical studies that involved cell
therapy on lateral epicondylosis, and they have used tenocytes, tenocyte-like cells, bone
marrow aspirates, and allogeneic ADSCs, respectively [154–158]. It was also interesting to
notice that tenocytes or tenocyte-like cells were more frequently used than MSCs [155,157].

Considering lateral epicondylosis involves inflammation and/or tearing of the ten-
dons joining the forearm muscles on the outside of the elbow [76], it seems to be intuitively
logical to prefer tenocyte or tenocyte-like cells over classical stem cells such as BM-MSCs.
Since the one study used bone marrow aspirate rather than isolated BM-MSCs [158], the
studies covered by this review are the only studies that examined the effect of isolated
stem cells. In the study published in 2015, either 106 or 107 allogeneic ADSCs were used,
and the results showed that there was no significant AEs and VAS score that progressively
decreased, indicating improved pain management. Furthermore, the MEPI performance
score significantly increased, demonstrating that ADSC therapy was safe and effective for
treating lateral epicondylosis [141].

Another study where 18 tennis players were treated with approximately 8 × 106

autologous ADSCs for recalcitrant lateral elbow tendinopathy indicated that ADSC therapy
significantly improved clinical parameters readily at one month following injection and
structural repair of the origin of common extensor tendon at six months after injection [142],
without any joint effusion or skin hypersensitivity reactions that had been observed in the
previous similar study where allogeneic ADSCs were used [141].

Another tendon-related disorder treated with ADSCs is rotator cuff tears. The rotator
cuff refers to a structured tendinous insertions of muscles for stabilizing the glenohumeral
joint, and rotator cuff disorder is the most common condition of the shoulder in the aged
population [159,160]. Rotator cuff tears can be caused by either traumatic or degenerative
reasons. Traumatic tears occur literally due to significant trauma to the rotator cuff, while
degenerative tears are more common and multifactorial in that both extrinsic factors such
as the anterior part of the cuff abutting against the coracoacromial arch during forward
elevation of the shoulder [161] and intrinsic factors like excess levels of reactive oxygen
species (ROS) damaging tendons [162] gradually lead to a full-thickness tear.

Rotator cuff tears are often treated with surgical options to increase function and
decrease pain, and new materials and surgical techniques to improve the outcomes of the
surgical repair have been utilized to meet such ends [163]. However, the regeneration of
the fibro-cartilaginous transition zone between the rotator cuff and the bone has not been
satisfactory [164] with a persistently high failure rate of the repair [165]. Thus, the efforts
to improve the biological environment around the damaged cuff using growth factors as
well as stem cells came into play [166,167].

Regarding the use of stem cells for rotator cuff tears, it was demonstrated that rotator-
cuff-derived MSCs have higher myogenic potential compared to BM-MSCs [168], and
tenocyte-derived stem cells from tendons have been isolated and characterized [169]. How-
ever, the very first clinical study of stem cells’ effect on rotator cuff utilized mononuclear
stem cells from bone marrow aspirate, which resulted in better functional outcomes than
would usually be expected without stem cell adjuvant [170]. Similarly, the study used
additional autologous ADSCs injection (a mean of 4.46 × 106 cells in 2 mL of fibrin glue)
during arthroscopic rotator cuff repair, which also demonstrated that using ADSCs as the
adjuvant improved the structural outcome possibly by providing an adequate biological
environment around the cuff [143]. Furthermore, not only as an adjuvant but also as an
independent therapeutic, the effect of ADSCs in the treatment of rotator cuffs has been
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demonstrated in a very recent study [144]. In that study, a single injection of an average of
11.4 × 106 autologous ADSCs was used to treat symptomatic, partial-thickness rotator cuff
tears, and the treatment improved shoulder function without AEs suggesting a potential of
ADSCs as a substitute for corticosteroids commonly used for short-term pain relief [171].
Altogether, those studies indicated that ADSC-based cell therapy represents a feasible
option in order to improve rotator cuff regeneration.

As to the possible underlying mechanisms of MSCs for treating tendinopathy, although
initial therapeutic strategy might have been targeted tenogenic differentiation of delivered
MSCs, it seems that the therapeutic effects of MSCs are mainly achieved by interacting
with the tendon resident cells [172]. It has been reported that co-culturing tendon cells
and BM-MSCs up-regulated the expression of tendon-related genes such as scleraxis
and tenomodulin, collagens, decorine, and tenascin, leading to significant tendon ECM
deposition [173,174], which suggests that BM-MSC may enhance the tenogenic capacities
of tendon-derived stem cells and tendon stem/progenitor cells. Similar to the case of BM-
MSCs, ADSCs also have demonstrated that they communicate with tendon cells to increase
the expression of tendon-related genes [175,176]. Furthermore, a previous study that
examined the effect of ADSCs on the tendon niche showed that ADSCs helped to preserve
the native architecture of tendon tissue with early increased collagenolytic activity of matrix
metalloproteinases (MMPs) [177]. Considering the deposition of ECM increased in ADSC
and a human tendon-derived cell co-culture system [176], it may be possible that ADSCs
exert a beneficial effect on tendon regeneration by modulating the microenvironment of
the tendon niche.

Finally, an anterior cruciate ligament (ACL) tear is the disorder that had been subjected
to ADSC-based cell therapy. With the posterior cruciate ligament, the anterior cruciate liga-
ment helps stabilize a knee joint [178]. An anterior cruciate ligament tear is one of the most
common knee injuries, and it is estimated that approximately 80,000 to 100,000 anterior
cruciate ligament repairs are performed each year in the United States [179]. The majority
of anterior cruciate ligament tears are caused by a non-contact mechanism such as sudden
directional change making the knee rotate inward [180]. Due to greatly advanced surgical
techniques [181], anterior cruciate ligament reconstruction became a gold standard for
anterior cruciate ligament tears [182]. However, only less than a half of patients achieve
full recovery [183], and patellar tendon grafts used for reconstruction are different from
natural anterior cruciate ligaments [184]. Such limitations of anterior cruciate ligament
reconstruction necessitated exploration of other therapeutic options including the use of
growth factors, platelet-rich plasma, and stem cells.

A number of different types of stem cells have been examined for their potential as
alternative therapeutics for anterior cruciate ligament tears to date. First of all, MSCs have
been most widely investigated possibly because they are capable of ligamentogenic differ-
entiation with proper growth factors [185–187]. Another type of MSC examined for their
potential in treating anterior cruciate ligament tears is synovium-derived mesenchymal
stem cells (SMSCs) [188]. Furthermore, it has been demonstrated that they have higher
proliferation and differentiation potentials than MSCs derived from other tissues [189],
suggesting SMSCs can be a feasible candidate for alternative therapeutics. Not surprisingly,
stem cells derived from anterior cruciate ligaments were examined for their potential as
well, and the studies indicated that anterior cruciate ligament-derived stem cells have
characteristics very similar to those of BM-MSC, suggesting they could be a viable source
of stem cells for anterior cruciate ligament repair [190,191].

Regarding the potential use of ADSCS for the treatment of anterior cruciate ligament
tears, in vitro studies demonstrated that human ADSCs failed to stimulate anterior cruciate
ligament fibroblast proliferation and collagen production [192], which had been observed
for porcine ADSCs [193], making the therapeutic beneficial of ADSCs in treating anterior
cruciate ligament tears uncertain. In fact, one study covered by this review also demon-
strated that 1.8 × 107 ADSCs loaded in bone-patellar tendon-bone (BTB) graft produced no
statistically significant improvement compared to a control group (without ADSC admin-
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istration). Nevertheless, there are only a handful of studies that exist, so further studies
are needed to fully evaluate the potential of ADSCs as alternative therapeutics for anterior
cruciate ligament tears.

Although how ADSCs enhance ligament repair is not completely elucidated, mechan-
ical signals from the host tissue may significantly contribute to the observed beneficial
effect of ADSCs. A previous study examined the effect of co-culturing with ACL cells, and
mechanical stress on MSC indicated that the combination of regulatory signals from ACL
cells and mechanical stress enhanced selective differentiation of MSCs toward ligament
cells by demonstrating increased typical ACL cell markers such as collagen type I and III
and tenascin in MSCs following co-culturing with ACL cells in the presence of mechanical
stress [194]. Therefore, it is reasonable to speculate that mechanical signals from host tissue
following cell transplantation may stimulate cell-surface stretch receptors and adhesion
sites, resulting in increased synthesis and secretion of key ligament ECM components [195].

3.4. Spine Disorders

Out of 20 clinical studies covered by this review, 2 studies were on spine disorders,
namely, one on degenerative spondylolisthesis and the other on chronic discongenic low
back pain (Table 4).

Table 4. Summary of clinical studies involving the use of isolated hADSCs on spine disorders for the last 10 years.

Target Disorder
No. of Patients

Treated
(Age: Mean ± SD)

ADSC Type ADSC
Delivery

Study
Outcome Year Ref. No.

1
Degenerative

spondylolisthesis
(TLIF) 1

3 (48.70 ± 14.30)
Autologous,
derived from
abdominal fat

ADSC seeded
DBM 2 was

implanted into the
disc space

Grad 3 fusion,
VAS and ODI 3

improved
2017 [196]

2 Chronic discogenic
low back pain 10 (43.50 ± 10.16)

Autologous,
derived from
abdominal fat

Percutaneous
injection of ADSC

in combination
with HA 4

derivatives

Safe and
tolerable

without no
adverse events.

2017 [197]

1 Transforaminal lumbar interbody fusion (TLIF), 2 demineralized bone matrix (DBM), 3 Oswestry disability index (ODI), 4 hyaruronic
acid (HA).

Spinal disorder refers to a condition impairing the backbone, and the associated pain
poses a major medical and socioeconomic problem due to its high prevalence in the general
population [198]. Degenerative spondylolisthesis is defined as a condition where one
vertebral body slips forward on top of another one below without rupture of the posterior
arc [199], and more than 10% of the population in the United States suffers from this
condition [200]. For patients who are symptomatic, non-operative conservative treatment
options includes anti-inflammatory medications such as non-steroidal anti-inflammatory
drugs (NSAIDs) and narcotic analgesics [201], physical therapy [202], and epidural steroid
injections [203]. On the other hand, fusion surgery has been proven to be effective for
patients who do not respond well to non-operative management [204]. However, fusion
surgery that frequently involves the use of autologous iliac crest bone grafts (AICBG) [205]
accompanies a risk of complications such as donor site pain, infection, hematoma, and
meralgia paresthetica [206,207].

In an effort to overcome such limitations, alternative options such as new bone sub-
stitutes [208] and stem-cell-based approaches have been explored. Studies that explored
the potential of MSCs for spinal fusion have demonstrated that the use of MSCs produced
outcomes comparable to those of iliac crest grafts in terms of histology and mechanical
properties [209,210]. Regarding clinical trials involving application of ADSCs to degen-
erative spondylolisthesis, one study covered by this review reported that the use of 3D
graft made of autologous ADSCs in patients receiving minimally invasive transforaminal
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lumbar interbody fusion (MI-TLIF) resulted in significant improvement in the VAS score
and the ODI and achievement of grade 3 fusion without donor site complications [196].
Although only one study did not guarantee the clinical benefit of using ADSCs for de-
generative spondylolisthesis so that further studies are required, a very recent study
where a combination of BM-MSC and allogeneic graft achieved a higher rate of poste-
rior spinal fusion and radiographic complete response without significant AEs [211] also
suggests the potential of ADSCs, or stem cells in general, as alternative therapeutics for
degenerative spondylolisthesis.

Chronic low back pain is one of the leading causes of disability and one of the major
clinical and socioeconomic global health burdens [212]. The term discogenic back pain
refers to back pain caused by internal structural change of the lumbar intervertebral
disc (IVD) without herniation, anatomical deformity, or other alternate clear causes of
pain and disability [213]. Quite similar to the case of degenerative spondylolisthesis,
common non-operative modalities for chronic discongenic low back pain include drug
therapy using NSAIDs [214] and opioids [215], physical rehabilitation theary [216], epidural
injection [217], and percutaneous intradiscal therapies to alter the internal mechanics of
the disc with heat, radiofrequency, or injection of various chemicals [218]. As for surgical
treatment options, interbody fusion [219], prosthesis replacement [220], and dynamic
fixation system [221] have been utilized for chronic discogenic low back pain.

Regenerative approaches for chronic low back pain involve the use of PRP [222,223],
chondrocytes [224], and stem cells. The feasibility and safety of MSC-based cell therapy for
chronic back pain has also been examined, and clinical benefits such as analgesic effects and
functional improvement were demonstrated [197,225,226]. Those studies also include the
study using ADSCs, and according to that particular study, a single intradiscal injection of
hyaluronic acid (HA) derivatives and an autologous ADSC (2 or 4 × 107 cell/disc) mixture
significantly improved VAS, ODI, and SF-36 scores without AEs in patients with chronic
discogenic low back pain [197], demonstrating the safety and tolerability of ADSC-based
cell therapy as well as its promising clinical efficacy.

The IVD is located between the vertebral bodies of the spinal column, and the nucleus
pulposus (NP, nucleus) comprises the inner gelatinous structure [227]. The deterioration
of NP architecture, which can be characterized by the change of gelatinous, hydrated
ECM into a more fibrous tissue due to aging or pathologic trauma, is the main cause
of intervertebral disc degeneration (IDD) [228], and IDD is a major cause of back pain.
Therefore, restoring the adequate NP architecture may relieve the pain, and this is what
MSC-based cell therapy targets. In other words, MSCs may differentiate into mature cells,
support resident cell activity by paracrine mechanism, and/or recruit local progenitor
cells to promote endogenous repair of the degenerated IVD [229]. As supporting evidence
for such speculation, first, multiple studies have reported NP-cell-like differentiation of
MSCs [230–232], and one recent study indicated that the IVD-transplanted autologous
BM-MSCs survived in the host IVD tissues up to eight months [233].

Regarding the MSC supporting of resident cells, it has been demonstrated that co-
culturing MSCs with NP cells increased cell proliferation and ECM production of NP
cells [234,235], and the exosome-mediated paracrine mechanism was found to contribute
to this resident-cell-supporting effect of MSCs [236]. Additionally, immunomodulation
by MSCs may also contribute to the regenerative effect of MSCs in IDD. As for the in-
flammatory response during IDD, IVD resident cells and immune cells release several
proinflammatory cytokines including, but not limited to, IL-1b, tumor necrosis factor alpha
(TNFα), interferon-c, and prostaglandin E2 causing ECM breakdown, neoangiogenesis,
and the stimulaton of additional cytokines [237–239]. Since such inflammatory stimuli can
increase cell apoptosis and neurogenic differentiation of NP-MSCs, which may contribute
to IVD reinnervation and the development of chronic LBP [240], MSCs that are known to
produce anti-inflammatory cytokines, anticatabolic mediators, and growth factors even
under IDD-like conditions [241,242] may help to create a microenvironment favoring
IVD regeneration.
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4. Conclusions

MSDs are now the second most common cause of years lived with disability (YLD) in
the world [243]. Therefore, an effective long-term solution for MSDs would relieve pain and
agony for a significant portion of the population as well as reduce the related socioeconomic
costs for the healthcare system. Regenerative therapies, including stem cell-based therapy,
are non-surgical conservative interventions that will likely be preferred over conventional
invasive surgical approaches once their safety, reliability, and efficacy are confirmed in
humans. The use of ADSC-based therapy in the regeneration of musculoskeletal tissue is
relatively young but dynamic. Although the current literature regarding the clinical use
of ADSCs in MSDs is still limited, the preliminary results of initial clinical trials both in
humans and in animals indicate that it can be safe and effective for bone defects, cartilage
regeneration, and tendinopathies (Figure 2). Nevertheless, to harness the full therapeutic
potential of ADSCs, further basic studies are desired, as are longer-term safety studies
and more randomized larger-scale controlled trials to examine the safety and efficacy of
ADSC-based therapy for MSDs.
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