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Simple Summary: We assessed the efficacy and safety of low-dose apatinib monotherapy as a third-
line treatment in patients with metastatic colorectal cancer. The ORR and DCR were 4.0% (2/50) and
70% (35/50), and the median PFS and OS were 4.7 months and 10.1 months, which demonstrated
comparable survival outcomes, significant improvements to the patient’s quality of life, and tolerable
adverse reactions. We also disclosed a novel role of apatinib’s anticancer effect, i.e., inhibiting tumor-
derived exosome release. Our results indicated that apatinib treatment inhibited exosome secretion
through the regulation of MVB biogenesis, transport, and fusion by regulating LAMP2, RAB11,
Snap23, and VAMP2. This novel regulatory mechanism provides a new perspective for the antitumor
effect of apatinib in CRC treatment.

Abstract: Antiangiogenic therapy is an important treatment strategy for metastatic colorectal cancer
(mCRC). We carried out a clinical study of low-dose apatinib (250 mg) monotherapy as a third-line
treatment in patients with mCRC and assessed its efficacy and safety. It demonstrated that low-dose
apatinib had comparable survival outcomes, significantly improved the patient quality of life, and caused
tolerable adverse reactions. To further investigate the underlying mechanism of the effects of apatinib in
CRC besides angiogenesis, we performed RNA-seq, and our results suggested that apatinib may have
other potential antitumor mechanisms in CRC through multiple pathways, including exosomes secretion.
In RKO and HCT116 cells, apatinib significantly reduced exosomes secretion by targeting multivesicular
body (MVB) transport. Further studies have indicated that apatinib not only promoted the degradation
of MVBs via the regulation of LAMP2 but also interfered with MVB transport by inhibiting Rab11
expression. Moreover, apatinib inhibited MVB membrane fusion by reducing SNAP23 and VAMP2
expression. In vivo, apatinib inhibited orthotopic murine colon cancer growth and metastasis and
reduced the serum exosomes amount. This novel regulatory mechanism provides a new perspective for
the antitumor effect of apatinib beyond angiogenesis inhibition.
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1. Introduction

Colorectal cancer (CRC) is the second-most common adult cancer in women, the third-
most common in men, and the fourth leading cause of cancer death [1,2]. A large number
of patients suffer from advanced/metastatic tumors, with a 5-year survival rate of less than
20% [3]. Antiangiogenic therapy is an important treatment strategy for metastatic colorectal
cancer (mCRC). In 2004, AVF2107g, the first phase 3 study, led to the approval of bevacizumab
as the first targeted therapy for patients with mCRC, which is the milestone of targeting
angiogenesis in mCRC [4]. Other drugs targeting angiogenesis effectors (e.g., ramucirumab
and afibercept) were approved after bevacizumab failure, confirming the concept of “con-
tinuous antiangiogenic blocking” [5]. Recently, a number of new orally available multiple
receptor tyrosine kinase inhibitors have been tested in late-stage clinical trials. New molecules
targeting angiogenesis, such as furaquintinib and regorafenib, etc., have recently been tested
in refractory mCRC in order to prevent the primary and secondary resistance of frontline
antiangiogenic therapy [6].

Each antiangiogenic drug has its peculiar mechanism of action and has demonstrated
efficacy and safety in pivotal and real-world studies. Apatinib is a highly selective oral
inhibitor of VEGFR-2, with a putative activity as a multidrug resistance reverser as well [7].
Apatinib is currently approved in China for the treatment of advanced gastric cancer and
hepatocellular cancer. Recently, many clinical studies have shown apatinib’s satisfactory
efficacy in various types of cancers, including non-small cell lung cancer (NSCLC), breast
cancer, esophageal cancer, hepatocellular carcinoma, sarcoma, ovarian cancer, cervical cancer,
cholangiocarcinoma and colorectal cancer, etc., [8]. A pilot study of apatinib as a third-line
treatment in Chinese patients with heavily treated metastatic colorectal cancer reported a
disease control rate (DCR) of 77.8% and a median overall survival (OS) of 10.1 months from
apatinib (425–750 mg once a day) [9]. Two prospective studies reported that apatinib (500 mg
once a day) monotherapy in a third-line setting displays promising activities in patients with
refractory colorectal cancer [10,11]. However, in these studies, apatinib showed severe grade 3
to 4 adverse events, and the patients were not well-tolerated and controlled. In our study, we
want to provide additional clinical evidence and explore the efficacy and safety of low-dose
apatinib (250 mg once a day) for third-line treatment in Chinese patients with heavily treated
metastatic colorectal cancer.

The global antitumor therapeutic effect of an antiangiogenic agent is due to not only
antiangiogenesis but also many other mechanisms. Multiple tumor-related kinases can
be inhibited by apatinib, including VEGFR-2, platelet-derived growth factor-β (PDGF-β),
rearranged during transfection (RET), etc., [7]. In anaplastic thyroid cancer cells, apatinib
can induce apoptosis and autophagy via the AKT/mTOR pathway [12]. In ovarian cancer
cells, apatinib can promote autophagy and apoptosis through the nrf2/ho-1 pathway [13].
The growth of small cell lung cancer (SCLC) cells can be inhibited by apatinib via the
decreased expression of CD31, Ki-67,VEGF, p-AKT, p-ERK1/2, p-PI3K, and pVEGFR-
2 [14]. In vitro and in vivo, gastric cancer stem cells can be inhibited by apatinib through
suppressing the SHH pathway [15]. Apatinib can also inhibit glioblastomas by effectively
targeting NDUFA4L2 (subunit of complex I of the mitochondrial respiratory chain) [16].

In addition to angiogenesis inhibition, some novel regulation mechanism could under-
line the antitumor effect of apatinib in CRC treatment. Cancer development and progression
is a complex, multistep process driven by many signaling events. In particular, exosomes
affect cancer progression by promoting autocrine/paracrine signaling, reprogramming
stromal cells, inducing angiogenesis, and interfering with the immune system [17–19].
Exosomes secreted by different cells also have different functions and characteristics. In
colorectal cancer cells, exosomes have been shown to promote proliferation and invasion
and to make the surrounding environment more suitable for tumor growth [20,21]. Here,
we have comprehensively tested the therapeutic effect of apatinib in CRC and discovered
that apatinib treatment exerted exosome inhibition and antitumor efficacy for CRC cells
in vivo and in vitro. Our results demonstrated that apatinib treatment could significantly
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alleviate CRC progression and disclosed a novel role of apatinib’s anticancer effect by
inhibiting tumor-derived exosome release.

2. Materials and Methods
2.1. Patient Eligibility

The ethics committee of Zhongshan Hospital Xiamen University approved this retro-
spective study. All the patients or their legal guardians reviewed and signed the informed
consent before treatment. All the enrolled patients were diagnosed with advanced or mCRC
and progressed after at least two lines of systemic therapy. The inclusion criteria included:
(1) patients were confirmed to have colorectal cancer histologically, (2) patients who were
treated with apatinib in the ≥3rd line from March 2015 to August 2017, and (3) patients
who had at least one measurable lesion defined and evaluated according to the Response
Evaluation Criteria in Solid Tumors (RECIST) criteria (1.1).

2.2. Treatment

Oral apatinib was administered once daily initially. If patients had severe adverse
events, the investigator could interrupt apatinib, reduce apatinib to 125 mg, or permanently
discontinue the treatment.

2.3. Assessments of Efficacy and Safety

Progression-free survival (PFS) was set as the primary analysis endpoint; the OS,
objective response rate (ORR), and DCR were secondary analysis endpoints. The time
period from initiating the apatinib treatment to death or disease progression was defined as
PFS. The time period from initiating apatinib treatment to the date of death due to any cause
or last follow-up visit was defined as the OS. Both radiologists and oncologists assessed the
tumor responses every two months or if the patients had any sign of progression. Objective
tumor responses were assessed by RECIST criteria (1.1), including complete response (CR),
partial response (PR), stable disease (SD), and progressive disease (PD). The addition of
CR + PR + SD rates was defined as DCR. The addition of CR + PR rates was defined as
ORR. According to the National Cancer Institute Common Toxicity Criteria for Adverse
Events version 4.0 (CTCAE4.0), the investigators reviewed and determined the toxicities of
apatinib from patients’ laboratory examination results and medical history.

2.4. Cell Culture and Reagents

RKO and HCT116 cell lines were obtained from the Cell Bank/Stem Cell Bank of the
Chinese Academy of Science (Shanghai, China). Cells were cultured at 37 ◦C and 5% CO2 and
in high-glucose PRMI with 10% fetal bovine serum (FBS). Apatinib (kindly provided by Hen-
grui Medicine Co. Ltd., Lianyungang, China) was dissolved with DMSO and diluted in RMPI
medium for further experiments. The following antibodies were used for this study: mouse
monoclonal anti-actin (#a3854), rabbit monoclonal anti-ALIX (#ab186429), mouse monoclonal
anti-CD63 (#sc-5275), mouse monoclonal anti-EEA1 (#sc-137130), mouse monoclonal anti-
LAMP2 (#sc-18822), rabbit polyclonal anti-Rab11a (#71-5300), rabbit polyclonal anti-Rab11b
(#19742-1-AP), mouse monoclonal anti-Rab11c (#sc-65978), mouse polyclonal anti-Rab27a
(#17817-1-AP), rabbit polyclonal anti-Rab27b (#13412-1-AP), rabbit polyclonal anti-Snap23
(#111 203), rabbit monoclonal anti-Tsg101 (#ab133586), and mouse monoclonal anti-VAMP2
(#104 211).

2.5. RNA Sequencing Assay

The RNA-sequencing assay included the cDNA library construction, library purifi-
cation, and transcriptome sequencing. All experiments were finished according to the
protocols of the Wuhan Huada Sequencing Company’s instructions. Each group of the
RNA-sequencing assay used three samples.
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2.6. Quantitative Real-Time PCR

Cells were treated with lycorine and harvested after 24 h. The total RNA of the cells was
extracted with Trizol reagent. The FastKing RT kit was used to reverse-transcribe RNA to
cDNA. QRT-PCR was performed with the GoTaq® qPCR Master Mix. The glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) value was used as the normalized expression control.
Table S1 showed all the primers.

2.7. Western Blot

Proteins were obtained from cell lysates with the RIPA buffer. The bicinchoninic acid
(BCA) assay kit was used to determine the concentration of the protein. The total lysates
were subjected with sodium dodecyl sulfate (SDS) loading buffer at 100 ◦C and then exposed
to sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Polyvinylidene
difluoride (PVDF) membranes were transferred with the protein and blocked with 5% dried
skimmed milk. Specific primary antibodies were incubated with PVDF membranes overnight.
Then, HRP-conjugated secondary antibody was added, and the expression of the protein was
examined with the ECL plus reagents.

2.8. Go and Kegg Enrichment Analysis

GO and KEGG enrichment analyses revealed the functional roles of differentially
expressed genes (DEGs). The GO database was firstly used to analyze the functional
enrichment of DEGs enriched in terms of the cellular component, molecular function, and
biological process. The enrichment of the DEGs was determined by the KEGG pathway
database. The threshold was 0.05 to test the hypergeometric distribution of the default
enrichment results.

2.9. Isolation of Exosome

We prepared exosomes from the culture supernatant from CRC cells after 48-h culture.
To remove debris, we centrifuged the culture supernatant at 2000× g for 10 min and then
10,000× g for 30 min at 4 ◦C. The supernatant was then centrifuged at 100,000× g for
70 min at 4 ◦C. The pellet was washed with phosphate-buffered saline (PBS). Again, the
supernatant was centrifuged at 100,000× g for 70 min at 4 ◦C. Then, we collected the
exosomes and resuspended them in PBS [22].

2.10. Nanoparticle Tracking Analysis

The NanoSight NS 300 system (NanoSight Technology, Malvern, UK) was used to
track and analyze the number and size of the exosomes. Dulbecco’s PBS (DPBS) without
any nanoparticles was used to dilute the samples 150–3000 times to a concentration of
1–20 × 108 particles/mL for analysis. We measured each sample three times and recorded
each visible particle. The Stokes–Einstein equation was used to analyze the exosome
numbers and size distribution.

2.11. Immunofluorescence Assays

Four percent paraformaldehyde was used to fix the cells at 25 ◦C for 25 min. Then, the
indicated primary antibodies (1:100) were used to stain the cells overnight at 4 ◦C. Secondary
antibodies were incubated with the cells at 37 ◦C for 1 h. 2-(4-amidinophenyl)-1H-indole-6-
carboxamidine (DAPI) (Beyotime) was used to stain the nuclei at room temperature for 3 min.
A Nikon A1r confocal microscope was used to capture the immunofluorescence.

2.12. Transmission Electron Microscopy

Five percent glutaraldehyde in 0.1 M phosphate buffer was used to fixed the cells
at 4 ◦C (protected from light). Slices of about 70 nm in thickness were generated by the
fixed cells subjected to ultra-cryomicrotomy. We placed the isolated exosomes in heavy
suspension droplets on the special copper mesh of the electron microscope. Then, 20 µL of
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2% phosphotungstic acid was subjected to negative staining for 10 min. An H-7650 electron
microscope was used to analyze all the samples at 100 KV.

2.13. Animal Experiments

All the protocols of the animal experiments were approved by the Animal Care and
Use Committee of Xiamen University. A certain amount (100 µL) of RKO-luc cell suspension
with a concentration of 2.5 × 106/mL was injected subcutaneously into the right dorsal
flank of BALB/c nude mice (5-week-old females). When the subcutaneous tumor tissue
was macroscopic, we dissected the subcutaneous tumor tissues and embedded them into
the mesentery of BALB/c nude mice (5-week-old females). We divided the mice into two
groups: the control group and the apatinib group (5 mice/ group). The control group
mice were administered a daily oral gavage with 50 mg/kg PBS; the apatinib group mice
were administered a daily oral gavage with 50 mg/kg apatinib. All mice were sacrificed
at 40 days after RKO-luc cell inoculation, and the tumors were weighed and fixed for
immunohistochemistry staining. Mice were anesthetized and intraperitoneally injected
with 1.5 mg D-Luciferin of 100 µL PBS for the living imaging assay. The IVIS Lumina II
apparatus (PerkinElmer, Waltham, MA, USA) was used to analyze the bioluminescence.
The mice sera were collected, diluted with PBS, and centrifuged at 10,000× g for 30 min at
4 ◦C. A 0.22-µm filter was used to filter the resultant supernatant fluid; then, the supernatant
was centrifuged at 200,000× g for 2 h at 4 ◦C. The pellets were washed with PBS and then
centrifuged at 200,000× g for 1 h at 4 ◦C to purify the exosome.

2.14. Statistical Analysis

SPSS (Version 24.0, Chicago, IL, USA) and GraphPad Prism (Version 8.0, San Diego,
CA, USA) were used to analyze the data. The results were presented as the mean ±
standard deviation (SD). One-way ANOVA was used to determine the differences among
the groups following Tukey’s post-test. OS and PFS were estimated by the Kaplan–Meier
method with a log-rank analysis.

3. Results
3.1. Low-Dose Apatinib Monotherapy as Third-Line Treatment in Patients with Metastatic
Colorectal Cancer

Although fruquintinib, regorafenib, and TAS-102 are recommended now for patients
with mCRC after the failure of standard treatments in China, they were not approved
during our low-dose apatinib study period. This was a retrospective real-world study, and
50 patients were enrolled. All patients had colorectal cancer with liver, lung, lymph node,
peritoneum or other metastases and had previously been treated with standard first- and
second-line therapies. The main clinicopathological characteristics of the 50 patients are
shown in Table 1.

All 50 patients took 250 mg apatinib orally once daily and were evaluated by image
examination. Two (4.0%) patients achieved PR, thirty-three (66.0%) patients had SD, and
fifteen (30.0%) patients were reported with PD after the treatment, respectively, with an
ORR of 4.0% and DCR of 70.0% (Figure 1A). The median PFS and median OS with the low-
dose apatinib treatment were 4.7 (95% confidence interval (CI): 3.1–7.9) and 10.1 months
(95% CI: 8.6–12.8), respectively (Figure 1B,C). The subgroup analysis showed that there
was no significant difference in the median PFS (4.45 months vs. 4.75 months, p = 0.078)
and median OS (10.6 months vs. 9.95 months, p = 0.302) with patients who were previously
treated with and without bevacizumab (first and second standard antiangiogenic therapies)
(Figure 1D,E), indicating that patients could benefit from apatinib treatment regardless of
whether the patient had previously received bevacizumab treatment or not.

The adverse event data of low-dose apatinib are summarized in Table 2, including
hypertension, hand–foot syndrome, proteinuria, dysphonia, mucositis oral, decreased appetite,
fatigue, diarrhea, neutropenia, anemia, and platelet count decreased. The grade ≥3 severity
adverse events most frequently reported were hypertension in 4 out of 50 patients (8%), hand–
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foot skin reaction in 3 patients (6%), and proteinuria in 1 patient (2%) (Table 2). Sixteen percent
of all the patients developed grade 3 adverse events. Grade 4 toxicity was not observed in
all the patients. Toxicities of low-dose apatinib treatment were generally well-tolerated and
controllable via symptomatic treatment. No patient discontinued the apatinib treatment due
to adverse reactions, and none of the patients died of drug-related causes.

Table 1. Patients baseline characteristics (n = 50).

Patient Characteristic Value

Median age, years (range) 49 (37–68)

Sex

Male 26 (52.0%)

Female 24 (48.0%)

ECOG performance status

0–1 33 (66.0%)

2 17 (34.0%)

Primary cancer Site

Left colon 26 (52.0%)

Right colon 12 (24.0%)

Rectum 12 (24.0%)

Histology

Adenocarcinoma 48 (96.0%)

Mucinous carcinoma 1 (2.0%)

Undifferentiated carcinoma 1 (2.0%)

Metastatic Site

Liver 33 (66.0%)

Lung 25 (50.0%)

Abdominal lymph node 8 (16.0%)

Peritoneum 16 (32.0%)

Other 15 (30.0%)

No. of metastatic sites

≤2 17 (34.0%)

>2 33 (66.0%)

KRAS Status

Wild type 23 (46.0%)

Mutated 27 (54.0%)

BRAF mutation

No 48 (96.0%)

Yes 2 (4.0%)

Prior targeted treatments

Neither 15 (30.0%)

Bevacizumab and Cetuximab 5 (10.0%)

Bevacizumab only 25 (50.0%)

Cetuximab only 5 (10.0%)
ECOG, Eastern Cooperative Oncology Group.
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Figure 1. Antitumor activity of low−dose apatinib monotherapy as the third−line treatment in
patients with metastatic colorectal cancer. (A) Best percentage changed from the baseline in measur-
able tumor lesions shown by a waterfall plot. (B) Kaplan−Meier survival curve of the PFS of the
patients from low−dose apatinib treatment. (C) Kaplan−Meier survival curve of OS of the patients
from the low−dose apatinib treatment. (D) PFS and (E) OS in patients who were previously treated
with or without bevacizumab. mCRC = metastatic colorectal cancer, OS = overall survival, and
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Table 2. Low-dose apatinib treatment-related adverse events.

Adverse Events All Grades Grade 3 to 4

Hypertension 16 (32%) 4 (8%)

Hand–foot skin reaction 15 (30%) 3 (6%)

Proteinuria 17 (34%) 1 (2%)

Dysphonia 6 (12%) 0

Diarrhea 3 (6%) 0

Mucositis oral 4 (8%) 0

Decreased appetite 10 (20%) 0

Platelet count decreased 2 (4%) 0

Neutropenia 2 (4%) 0

Anemia 3 (6%) 0

Fatigue 8 (16%) 0
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3.2. Global Analysis of Gene Expression and Fold Change Analysis for the Anti-CRC Activity
of Apatinib

The comparable effects of low-dose apatinib in treating colorectal cancers might
suggest some novel mechanisms involved besides angiogenesis. Our other studies also
indicated that low-dose apatinib enhanced the efficacy of anti-PD-1 treatment in colon
cancers (unpublished data), which further suggests apatinib’s potential novel roles. There-
fore, we next carried out an RNA-seq study to explore the possible novel roles of apatinib
in colon cancer. RKO cells with apatinib treatment were analyzed by RNA-seq, and we
analyzed the gene expression profiles of the 20 µM apatinib-treated group and untreated
control group. Seven hundred and fifty-five differentially expressed genes (DEG) were
found, and we selected the biologically meaningful genes from differentially expressed
gene (DEG) following apatinib treatment according to the criteria of log2 fold changes
(FCs) > 2 and a false detection rate (FDR) of less than 0.05. Among the 755 DEGs, apatinib
upregulated 454 genes and downregulated 301 genes in the RKO cell (Figure 2A). Figure 2B
showed the heatmaps of the distributions of the DEGs. Figure 2C,D presented the top 50
downregulated and top 50 upregulated genes. To confirm the results of the RNA-seq, we
performed real-time PCR assays. Consistent with RNA-seq data, the mRNA expressions of
AP3S2 (adaptor related protein complex 3 subunit sigma 2, p = 0.000), YPEL4 (yippee-like 4,
p = 0.007), and SULT1A3 (sulfotransferase family 1A member 3, p = 0.009) were upregulated
significantly in RKO cells (Figure 2E). The mRNA expressions of TCEAL7 (transcription
elongation factor A-like 7, p = 0.000), TRIM59 (tripartite motif containing 59, p = 0.000), and
CCR4 (C–C motif chemokine receptor 4, p = 0.000) were reduced significantly in RKO cells
after apatinib treatment, compared to untreated cells (Figure 2F).

3.3. GO and KEGG Analyses of Degs Mediated by Apatinib

To characterize the potential functional pathways altered by apatinib, GO and KEGG
pathway enrichment analysis were performed. The GO analysis identified 20 GO terms
that were significantly enriched (q-value < 0.05, Figure 3A), including terms related to the
molecular function, biological process, and cellular components. The molecular function
analysis showed that the top 20 terms of DEGs were related to nucleosome, endoplasmic
reticulum–Golgi intermediate, transcription factor TFIIIB complex, Golgi cis cisterna, Golgi
membrane, exocyst, ubiquitin ligase complex, protein phosphatase type 1 and 2A complex,
exosome, tRNA–intron endonuclease complex, nuclear chromosome, mitochondrial proton-
transporting ATP synthase, storage vacuole, transcription factor TFIIH core complex,
proteasome complex, kinetochore, etc. There were 20 pathways with a q-value < 0.05
figured out by the KEGG pathway analysis of the DEGs shown in Figure 3B. Among them,
the ten most significantly enriched pathways were viral carcinogenesis, steroid biosynthesis,
biosynthesis of antibiotics, PI3K-Akt-signaling pathway, human papillomavirus infection,
alcoholism, biosynthesis of secondary metabolites, metabolic pathways, synthesis and
degradation of ketone bodies, and mTOR signaling pathway.

3.4. Apatinib Inhibits Secretion of Exosomes in CRC Cells

The results of the DEGs analysis suggested that exosomes are related to the anti-CRC
activity of apatinib. To study whether apatinib inhibit exosome secretion, RKO and HCT116
cells were treated with 20 µM apatinib for 48 h. Then, exosomes from the supernatant of
apatinib-treated RKO and HCT116 cells were isolated, and exosomes from wild-type RKO
and HCT116 cells were used as the controls. The TEM analysis showed that these purified
vesicles samples were oval and globular (Figure 4A). The total exosomal protein was signifi-
cantly decreased in apatinib-treated RKO cells (average 2.40 ± 0.06 vs. 0.77 ± 0.09 mg/mL,
p = 0.0001, apatinib vs. control) and HCT116 cells (average 1.87 ± 0.09 vs. 0.53 ± 0.08 mg/mL,
p = 0.0004, apatinib vs. control) compared with the control cells (Figure 4B). Nanoparticle
tracking analyses (NTA) revealed that apatinib-treated Exo-RKO and Exo-HCT116 had a
more significant decrease in the total number than the untreated controls: Exo-RKO (average
6.90 ± 0.59 vs. 3.20 ± 0.42 × 108 particles/107 cells, p = 0.0068, apatinib vs. control) and
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Exo-HCT116 (average 6.27 ± 0.37 vs. 3.2 ± 0.38 × 108 particles/107 cells, p = 0.0044, apatinib
vs. control) (Figure 4C). The NTA revealed that apatinib-treated Exo-RKO and Exo-HCT116
have a slightly bigger size than the untreated controls (Exo-RKO: 70.0 ± 2.9 vs. 108.3 ± 4.4 nm,
p = 0.0019, apatinib vs. control; Exo-HCT116: 64.3 ± 4.7 vs. 98.3 ± 4.3 nm, p = 0.0062, apatinib
vs. control) (Figure 4D,E). As the exosomes were isolated from equivalent numbers of cells,
the intensity of the exosomal markers reflected the ability of cells to secrete exosomes. The
exosome markers (Alix, CD63, and Tsg101) were highly abundant in the exosomes from
the RKO and HCT116 cells. However, apatinib-treated cells led to a significant decrease of
Alix, Tsg101, and CD63 in Exo-RKO and Exo-HCT116, suggesting that the differences in the
secretion levels were due to the impaired secretion of exosomes (Figure 4F and Figure S1).
These data indicate that apatinib is able to decrease the secretion of exosomes from CRC cells
and that the apatinib-treated cells can secrete slightly larger exosomes.
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Figure 2. Transcriptional profiles of apatinib−treated RKO cells. (A) The number of genes upregu-
lated and downregulated by apatinib. (B) Heatmap of differentially expressed genes between the
normal group and CRC group. (C,D) Bar graphs showing the top 50 upregulated genes and top
50 downregulated genes in apatinib-treated RKO cells. (E) RKO cells were treated with apatinib
at 20 µM for 48 h, and the mRNA expression of upregulated genes AP3S2, YPEL4, and SULT1A3
was examined by real−time PCR assays. (F) RKO cells were treated with apatinib at 20 µM for 48 h,
and the mRNA expression of downregulated genes TCEAL7, TRIM59, and CCR4 was examined by
real-time PCR assays. ** p < 0.01, and *** p < 0.001.
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Figure 3. Functional analysis of the differentially expressed genes. (A) Gene ontology (GO) enrich-
ment and (B) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of
differentially expressed genes between the control group and apatinib group.

3.5. Apatinib Inhibits Exosome Secretion of CRC through the Regulation of MVB Biogenesis and
Targeted Transport

MVBs contained intraluminal vesicles (ILVs). When MVBs fused with the plasma
membrane, ILVs were released to form exosomes. To study the molecular mechanism for the
impaired exosome secretion of apatinib in CRC cells, we performed an electron microscopic
analysis to investigate the number and morphology of ILVs and MVBs. We investigated
whether apatinib changed the number and distribution of MVBs in CRC cells. The TEM
experiments showed that the number of MVBs per cell dramatically decreased compared
with the control cells: MVB per cell in RKO cells (1.667 ± 0.333 vs. 4.0 ± 0.577 nm, p = 0.0249,
apatinib vs. control) and in HCT116 (1.333 ± 0.333 vs. 3.333 ± 0.333 nm, p = 0.0132, apatinib
vs. control) (Figure 5A,B). However, the number of ILVs per MVB did not show any apparent
alterations: ILVs per MVB in RKO cells (17.33 ± 0.881 vs. 18.00 ± 1.155 nm, p = 0.071,
apatinib vs. control) and in HCT116 (16.00 ± 0.577 vs. 15.00 ± 0.647 nm, p = 0.067, apatinib
vs. control) (Figure 5C). This data indicated that apatinib treatment may inhibit exosome
biogenesis through regulating MVB but not through mediating ILV formation. CD63, a
tetraspanin protein that marks the intraluminal vesicles (ILVs) of MVBs, was increased upon
apatinib treatment (Figure 5D). Meanwhile, the immunofluorescence analysis demonstrated
the perinuclear clustering of CD63+ MVB in RKO cells (p = 0.0036, apatinib vs. control) and in
HCT116 cells (16.00 ± 0.577 vs. 9.00 ± 0.577 nm, p = 0.072, apatinib vs. control) (Figure 5E–G).
These results suggest that apatinib treatment in CRC cells significantly inhibits the targeted
transport of MVB, which, in turn, further inhibits exosome secretion.
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Figure 4. Apatinib inhibited exosome secretion in CRC cells in vitro. (A) Isolated exosomes from
RKO and HCT116 cells were assessed by transmission electron microscopy. (B) Quantification of
the exosomal protein levels obtained from control and apatinib treatment cells. (C–E) NTA and
NTA analysis of the effect of apatinib on exosome release in RKO and HCT116 cells. (F) Western
blot analysis of exosome purified from equal numbers of the control and apatinib treatment cells.
Data are reported as the mean ± standard error (SD) from three independent experiments, t-test,
** p < 0.01, and *** p < 0.001.
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3.6. Apatinib Promotes Degradation of MVBs via Regulating LAMP2 

The increased number of MVBs could be due to either a massive increase in the bio-

genesis of MVBs or the inhibited transport and degradation of MVBs. To investigate the 

basic molecular mechanisms of how apatinib regulates MVB and exosome release, firstly, 
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Figure 5. Apatinib inhibited the transport of MVBs towards the plasma membrane in CRC cells.
(A) Representative electron microscopic images of control and apatinib treatment cells. (B) The
number of MVBs per cell profile. (C) The number of ILVs per MVB. (D) Immunofluorescence of the
control and apatinib-treated cells stained with CD63. (E) Quantification of CD63+ vesicle distribution
within the cell. (F,G) Quantification of CD63 intensity within the perinuclear region of RKO and
HCT116 cells. * p < 0.05, ** p < 0.01.

3.6. Apatinib Promotes Degradation of MVBs via Regulating LAMP2

The increased number of MVBs could be due to either a massive increase in the
biogenesis of MVBs or the inhibited transport and degradation of MVBs. To investigate the
basic molecular mechanisms of how apatinib regulates MVB and exosome release, firstly,
we compared the expression of the early endosome marker EEA1 in apatinib treatment cells
and control cells. Western blot and RT-PCR analyses did not show any apparent alteration
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of EEA1 in both RKO and HCT116 cells (Fiigures 6A–D and S1), which may rule out the
influence of apatinib in the formation of MVB. Secondly, MVBs can either be directed to
lysosomes, where their content is degraded, or be transported to the plasma membrane
for exosome release. After apatinib treatment, Western blot analyses showed a significant
increase in the protein levels of LAMP2 (a marker of lysosomes) both in RKO (p = 0.0027,
apatinib vs. control) and HCT116 cells (p = 0.0161, apatinib vs. control). The RT-PCR
analyses also showed that a significant increase in the mRNA levels of LAMP2 in both RKO
(p < 0.0001, apatinib vs. control) and HCT116 cells (p = 0.0032, apatinib vs. control). The
immunofluorescence analysis in the RKO and HCT116 cells demonstrated an apparent
increased expression of LAMP2 and the perinuclear clustering of LAMP2 after apatinib
treatment (Figure 7A,B). Taken together, these data suggested that apatinib promoted the
lysosomal degradation of the MVBs.
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Figure 6. Apatinib regulated the expression of related molecules that were involved in the release
of exosomes. (A–C) Western blotting analysis of exosome-releasing protein levels from the control
and apatinib treatment cells. (D) Real-time PCR analysis of the mRNA expression of the exosome-
releasing protein in the control and apatinib treatment cells. * p < 0.05, ** p < 0.01, and *** p < 0.001,
ns: no significance.
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Figure 7. Apatinib regulates the localization of LAMP2 and colocalization of Snap23 with CD63.
(A,B) Immunofluorescence of the LAMP2 (red) distribution in RKO and HCT116 cells with or without
apatinib treatment. (C) Confocal colocalization analysis of CD63 (red) and SNP23 (green) in RKO
and HCT116 cells with or without apatinib treatment.

3.7. Apatinib Regulates MVB Transport through the Rab11-Dependent Trafficking Pathway

Previous studies showed that several Rab GTPases play a vital role in regulating MVB
transport and influence the docking process. The first Rab GTPase shown to be involved
in exosome secretion was Rab11. Figure 6 showed that apatinib decreased the levels of
Rab11a, 11b, and 11c in both the mRNA and protein levels in HCT116 and RKO cells. The
effects of Rab27a and Rab27b on exosome release have been reported in several studies
using different cell lines. However, the Western blot and RT-PCR analyses did not show any
apparent alterations of Rab27a in both the RKO and HCT116 cells after apatinib treatment
(Figures 6 and S1).
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3.8. Apatinib Inhibited MVBs Membrane Tethering by Targeting Expression of Snap23
and VAMP2

The final and key step of exosome secretion is that MVBs fused with the plasma
membrane and then released ILVs as exosomes. The final step of exosome secretion is
mediated by key Soluble N-ethylmaleimide-sensitive fusion factor attachment protein
receptor (SNARE) proteins. The SNARE complex comprises v-SNAREs (vesicle-associated
membrane protein (VAMP)2, VAMP3, VAMP7, and VAMP8) on membranes of the MVBs
and t-SNAREs (synaptosome-associated protein 23 (Snap)23) on the cell membrane. They
form a stable ternary complex that mediates exosome secretion.

After apatinib treatment, Western blot analyses showed a significant decrease in the
protein levels of Snap23 both in RKO (p = 0.0056, apatinib vs. control) and HCT116 cells
(p = 0.004, apatinib vs. control). RT-PCR analyses also showed a significant decrease in
the mRNA levels of Snap23 in both RKO (p = 0.0007, apatinib vs. control) and HCT116
cells (p = 0.0024, apatinib vs. Control) (Figure 6). Immunofluorescence in the RKO and
HCT116 cells investigated the colocalization of Snap23 with CD63, the marker of MVB.
Distinct colocalization signals between Snap23 and CD63 were significantly weakened after
apatinib treatment (Figure 7C).

We also wanted to investigate if the other core family members of the SNAREs and
VAMPs were involved in the MVB trafficking pathway of apatinib-functioned exosome
release in CRC. Firstly, the RT-PCR analyses did not show any apparent alteration of
sytaxin4 in both RKO and HCT116 cells after apatinib treatment. The sytaxin4 protein level
(p = 0.013, apatinib vs. control) increased in apatinib-treated HCT116 cells, with no apparent
alteration in the apatinib-treated RKO cells. Western blot analyses showed a significant
decrease in the protein levels of VAMP2 in both RKO (p = 0.0018, apatinib vs. control)
and HCT116 cells (p = 0.0004, apatinib vs. control). The RT-PCR analyses also showed
a significant decrease in the mRNA levels of VAMP2 in both RKO (p = 0.0001, apatinib
vs. control) and HCT116 cells (p = 0.0004, apatinib vs. control). The RT-PCR analyses
did not show any apparent alterations of sytaxin4 in both RKO and HCT116 cells after
apatinib treatment. The sytaxin4 protein level (p = 0.013, apatinib vs. control) increased
in apatinib-treated HCT116 cells, with no apparent alteration in the apatinib-treated RKO
cells (Figure 6). Taken together, these data suggested that apatinib inhibited the expression
and function of Snap23 and VAMP2 during the apatinib-functioned exosome release.

3.9. Treatment of Apatinib Exerted Exosome Inhibition and Antitumor Efficacy for CRC Cells
In Vivo

To study the therapeutic efficacy of apatinib, an orthotopic murine colon cancer model
was established. The tumors were detected in the colon and other organs of the mice by
in vivo bioluminescent images. As shown in Figure 8A, the fluorescence intensity increased
in the control group, along with a larger tumor volume (p = 0.0003, Figure 8B) and higher
tumor weight (p = 0.0121, Figure 8C). Meanwhile, the fluorescence intensity of primary
and metastatic tumors, including the liver, lymph nodes, and peritoneum metastasis, also
significantly decreased in the apatinib treatment group (p = 0.04, Figure 8D). Moreover,
the concentration of serum exosomes (p = 0.0007, Figure 8E) and total exosomal protein
(p = 0.005, Figure 8F) were significantly higher in the control mice than apatinib-treated
mice, indicating that apatinib inhibited the secretion of exosomes.
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Figure 8. The antitumor efficacy of apatinib and exerted exosome inhibition in vivo. (A) Biolumines-
cent imaging for RKO-luc orthotopic xenograft colon tumors in the control vs. apatinib group (n = 5
per group). (B–D) Comparison of the tumor volume, tumor weight, and bioluminescence between
the control and apatinib group. (E) NTA showed the concentrations of serum exosomes isolated from
the control and apatinib group. (F) Quantification of the serum exosomal protein levels obtained
from the control and apatinib treatment mice. * p < 0.05, ** p < 0.01, and *** p < 0.001.

4. Discussion

Angiogenesis plays a key role in colorectal cancer development, and antiangiogenic
therapies have improved the colorectal cancer prognosis within the past 15 years. In China,
fruquintinib and regorafinib are approved as third-line standard treatments for advanced
colorectal cancer. However, other antiangiogenic TKI drugs also show good efficacy, which
can provide more choices for the systematic treatment of colorectal cancer patients after
drug resistance. Apatinib monotherapy has shown therapeutic efficacy in the posterior
line of colorectal cancer in previous studies. However, the incidence of treatment-related
adverse events (TRAE), especially those TRAE ≥ G3, is high, which reduces the quality
of life and treatment compliance of patients. In this retrospective study, we assessed the
efficacy and safety of low-dose apatinib monotherapy as a third-line treatment in patients
with metastatic colorectal cancer. It was found that the ORR and DCR of patients after
low-dose apatinib monotherapy treatment were 4.0% (2/50) and 70% (35/50), respectively.
According to the follow-up results, the median mPFS and mOS were 4.7 months and
10.1 months, respectively, which demonstrated comparable survival outcomes.
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Small-cellular multi-kinase inhibitors have been investigated in multiple randomized
controlled trials (RCTs) for the role of ≥third-line therapies in mCRC. Nowadays in China,
regorafenib and fruquintinib were approved as the standard third line treatment for mCRC.
CORRECT and CONCOUR studies showed that the PFS and OS improved by using
regorafenib compared to the placebo (median PFS and OS, 3.2 vs. 1.7 and 8.8 vs. 6.3 months,
respectively) or BSC (median PFS and OS, 1.9 vs. 1.7 and 6.4 vs. 5.0 months, respectively)
in third-line therapies in mCRC [23]. In China, fruquintinib was approved as an standard
third-line treatment based on superior survival compared to the placebo, with a PFS
(3.7 months) and OS (9.3 months) [24].

Although the ORR of low-dose apatinib, 250 mg was lower than that of 500 mg apatinib,
the survival results and DCR were consistent with those of recently published studies of
500 mg apatinib in a similar population of patients with mCRC conducted by MM et al. (ORR:
8.51%, DCR 72.34%, PFS: 3.7 months, and OS:7.3 months) [11]; Wang et al. (ORR: 8.3%, DCR
68.8%, PFS: 4.8 months, and OS:9.1 months) [25]; and Liang et al. (ORR: 11.1%, DCR 77.8%,
PFS:4.8 months, and OS: 10.1 months) [9]. Adverse events were the most common reason for
dose modification, including dose reduction and interruption [26,27]. The adverse event data
of low-dose apatinib in our study, including hypertension, hand–foot syndrome, proteinuria,
dysphonia, mucositis oral, decreased appetite, fatigue, diarrhea, neutropenia, anemia, and
platelet count, decreased. No patient discontinued the apatinib treatment due to adverse
reactions, and none of the patients died of drug-related causes. Sixteen percent of all the
patients developed grade 3 adverse events. Grade 4 toxicity was not observed in all patients.
The incidence and grade of adverse reactions of low-dose apatinib were significantly lower
than those of 500 mg apatinib [28–30]. In conclusion, low-dose apatinib treatment is effective
in the third-line treatment of advanced colorectal cancer, which significantly improves the
patient quality of life and causes tolerable adverse reactions. However, the clinical study
of this paper is a retrospective study. The retrospective case series study has no premade
scientific research design, so there is a lack of corresponding data in many aspects, such as an
analysis, and has no control group. In the future, we hope to conduct prospective research
and parallel controlled research.

Apatinib is a highly selective tyrosine kinase inhibitor to VEGFR-2, which exerts a
promising antitumor effect in various tumors. Previous studies have shown that blocking
ER stress-involved autophagy could significantly enhance apatinib-induced CRC cell
line apoptosis both in vitro and in vivo [31], indicating that apatinib might have other
anticancer mechanisms besides angiogenesis. Therefore, we performed a RNA-seq, and the
transcriptomic analysis suggested that apatinib has other potential antitumor mechanisms
in CRC through multiple pathways, including the regulation of exosomes secretion.

Exosomes are nanovesicle-shaped particles secreted by various cells, including cancer
cells. Recently, the interest in exosomes among cancer researchers has grown enormously
for their many potential roles in promoting cancer development and progression [32]. In
our study, apatinib inhibited the secretion of tumor exosomes from CRC cells in vitro.
Moreover, the treatment of apatinib exerted exosome inhibition and antitumor efficacy
for CRC cells in vivo. Exosomes originate from the endosomal system as ILVs and are
released via the fusion of MVBs with the cell membrane [33]. Our study showed that
apatinib significantly inhibited the targeted transport of MVB in CRC cells, which then
further inhibited exosome secretion.

It is interesting that apatinib regulates many proteins related to MVB transport, such
as the downregulation of Rab11s, VAMP2, and Snap23, which are closely related with MVB
transport and membrane fusion, and up-regulation of LAMP2, which is related to MVB
lysosomal degradation. Taken together, apatinib inhibits MVB transporting and accelerates
MVB degradation, which, in turn, attenuates exosomes secretion. The mechanisms involved
in apatinib’s effects on those protein regulations need to be further studied, especially the
downstream pathways of VEGFR-2.
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5. Conclusions

In conclusion, our retrospective study firstly showed that low-dose apatinib (250 mg
once daily) monotherapy treatment is effective in the third-line treatment of advanced
colorectal cancer, significantly improves the patient’s quality of life, and causes tolerable
adverse reactions. Notably, our study first confirmed that apatinib treatment inhibited
exosome secretion through the regulation of MVB biogenesis; transport and fusion by
regulating LAMP2; RAB11 (RAB11a, RAB11b, and RAB11c); Snap23; and VAMP2. This
novel regulatory mechanism provides a new perspective for the antitumor effect of apatinib
in CRC treatment.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/cancers14102492/s1: Table S1: Sequences of the primers for
real-time PCR. Figure S1. Original blots of western blot analyses in this paper Figure 4F (machine
reading blots) and Figure 6A (original films).
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