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Post-GWAS analysis, in many cases, focuses on fine-mapping targeted genetic
regions discovered at GWAS-stage; that is, the aim is to pinpoint potential causal
variants and susceptibility genes for complex traits and disease outcomes using
next-generation sequencing (NGS) technologies. Large-scale GWAS cohorts are
necessary to identify target regions given the typically modest genetic effect
sizes. In this context, two-phase sampling design and analysis is a cost-reduction
technique that utilizes data collected during phase 1 GWAS to select an informa-
tive subsample for phase 2 sequencing. The main goal is to make inference for
genetic variants measured via NGS by efficiently combining data from phases 1
and 2. We propose two approaches for selecting a phase 2 design under a bud-
get constraint. The first method identifies sampling fractions that select a phase
2 design yielding an asymptotic variance covariance matrix with certain opti-
mal characteristics, for example, smallest trace, via Lagrange multipliers (LM).
The second relies on a genetic algorithm (GA) with a defined fitness function
to identify exactly a phase 2 subsample. We perform comprehensive simulation
studies to evaluate the empirical properties of the proposed designs for a genetic
association study of a quantitative trait. We compare our methods against two
ranked designs: residual-dependent sampling and a recently identified optimal
design. Our findings demonstrate that the proposed designs, GA in particular,
can render competitive power in combined phase 1 and 2 analysis compared
with alternative designs while preserving type 1 error control. These results
are especially evident under the more practical scenario where design values
need to be defined a priori and are subject to misspecification. We illustrate the
proposed methods in a study of triglyceride levels in the North Finland Birth
Cohort of 1966. R code to reproduce our results is available at github.com/egosv/
TwoPhase_postGWAS.
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1 INTRODUCTION

Genome-wide association studies (GWASs) have become well-established untargeted approaches for identifying genetic
loci that influence the etiology of complex diseases and traits. Single-nucleotide polymorphisms (SNPs) genotyped using
GWAS arrays typically lack any known biological function. Consequently, in post-GWAS studies, identifying causal
variants and susceptibility genes in GWAS-identified regions of association is the next important step for researchers.
Identified variants and genes can become instrumental in personalized medicine from diagnosis and intervention to drug
development and other forms of therapy.

Recent advances in next-generation sequencing (NGS) technologies allow investigators to sequence the entire human
genome at the base-pair level, but, the costs of whole genome sequencing are relatively high in comparison to GWAS
analysis. Targeted sequencing, which identifies all variants in a region with high-confidence, can be cost effective when
fine mapping a genetic region identified at GWAS stage. Indeed, high-density sequence variants in the targeted region are
typically in linkage disequilibrium (LD) with strongly associated SNPs from GWAS, making the latter good candidates
as auxiliary covariates for subsample selection. Thus, two-phase sampling design and analysis1,2 emerges as a suitable
cost-reduction technique in the post-GWAS context. The main goal of this strategy is to make inference on incompletely
observed sequencing data. At phase 1, GWAS data are collected for everyone in the study. At phase 2, sequencing data
are collected only in a subsample of the phase 1 sample. The subsample is selected based on phase 1 information alone
(outcome, auxiliary SNPs), making the sequence data missing-by-design in the nonselected individuals.

While the majority of the literature in two-phase sampling designs concentrates on effect estimation and hypothesis
testing, relatively less attention has been paid to phase 2 sample selection. Specifically, most of the work examining optimal
designs has focused on case-control studies,3,4 in which for example, a balanced design (equal sample distribution across
strata) has been recommended as near optimal.5 Typically, in the design of case-control studies, optimization is performed
to determine sampling fractions across predefined strata subject to a budget constraint on the phase 2 sample size.6-8

Another approach, described in Zhao et al, seeks to optimize the sampling fraction (𝜌) under simple random sampling con-
sidering asymptotic relative efficiency of the maximum likelihood estimators from the one- vs two-phase designs.9 More
recently, Tao et al derived general optimal designs of two-phase studies paying special attention to continuous, binary,
and time-to-event outcomes.10 Specifically, Tao et al demonstrate the relationship between their optimal design (here-
after referred to as TZL) and previously proposed (ranked) designs such as outcome-dependent and residual-dependent
sampling (ODS and RDS, respectively).

In this report, we propose two approaches for two-phase sample selection in post-GWA fine-mapping studies. Our
previously described methods,11 when paired with the resulting sample designs, preserve type I error control and are
applicable for all distributions in the exponential family. The first approach, LM, extends and adapts previous work pri-
marily developed for case-control studies by solving a constrained optimization problem via Lagrange multipliers using
numerical methods. The second approach, GA, exploits the advantages of genetic algorithms (GAs) for discrete optimiza-
tion with fixed-subsets. To the best of our knowledge, this work introduces a novel usage of GAs in the context of selecting
phase 2 designs.

In the next section we introduce a maximum likelihood framework for design and analysis of two-phase studies, and
define the two approaches to select a phase 2 subsample. In addition, we contrast the proposed designs (LM and GA) with
ranked designs (ODS, RDS, and TZL). In Section 3 we conduct simulation studies of a quantitative trait (QT) to evaluate
the performance of the proposed designs against ranked designs under the ideal scenario in which all design quantities
are known in advance. In Section 4, we assess a more practical scenario where the design values are misspecified using
simulated data with realistic LD patterns from the 1000 Genomes Project. Our results show that the proposed designs, GA
in particular, achieve competitive power against alternative designs under various scenarios. Additionally, in Section 5,
we illustrate these methods in an application to the North Finland Birth Cohort of 1966. We conclude with a discussion
of the advantages and challenges of the studied approaches as well as potential avenues of future research.

2 PHASE 2 SAMPLE SELECTION UNDER MAXIMUM LIKELIHOOD

2.1 Two-phase designs in fine-mapping studies

Let Y be the trait of interest and G be a (potentially causal) sequence variant located in a genomic region identified
by GWAS test results. By design, variants in the region of interest are ascertained in only a fraction of individuals.
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Consequently, two-phase studies consist of a GWAS in phase 1 from which a subsample of individuals is selected; in
phase 2, fine-mapping sequence data are collected for the subsample and combined analysis is performed using infor-
mation from phases 1 and 2. In this post-GWAS setting, the trait data (Y ) and the GWAS-SNP (Z), are observed for every
subject in the study. The two-phase design aims to select a subset of informative subjects based on available data in the
GWAS, namely, (Y ,Z). Of note, Z can be either an observed or imputed genotype, in the latter case the purpose might be
to verify the association with sequencing data. Inference on the missing-by-design sequence variants is conducted using
all available data. We define the missing indicator Ri = 1{i ∈ S2}, i = 1, … ,N where N is the number of individuals in
the entire phase 1 cohort and S2 represents the set of n =

∑N
i=1Ri subjects selected into the phase 2 subsample. We let S2

denote the set of (N − n) subjects in the GWAS study who were unselected for phase 2. We specify the selection model
for the ith subject as 𝜋i(𝝍) = 𝜋(Yi,Zi;𝝍) = Pr(Ri = 1|Yi,Zi;𝝍), where 𝝍 is a vector that characterizes the distribution of
the inclusion probabilities. To operationalize the selection, (Y ,Z) can be stratified into K disjoint groups, {1}, … , {K},
such that 𝜋i(𝝍) = 𝜋k(𝝍) for all (Yi,Zi) ∈ {k}; that is, all subjects in the kth stratum have equal selection probabilities. Ri
is designed to be conditionally independent of Gi given Yi and Zi, that is, the phase 2 selection mechanism dictated by Ri
is completely determined by Yi and Zi, making Gi missing at random.12

2.2 Maximum likelihood formulation

Let f𝛽(y|g, z) be the parametric relationship between (G,Z) and Y indexed by 𝜷. Here, f𝛽(y|g, z) corresponds to a proba-
bility function in the exponential family with E[Y |g, z; 𝜷] = 𝜇(g, z; 𝜷) = h−1(𝛽0 + 𝛽1g + 𝛽zz), where h(⋅) denotes the link
function. We denote ,  as the sets of uniquely observed values of G (in S2) and Z (in S2 ∪ S2). Let Pr(G,Z) be the joint
probability function of G and Z given by the discrete probabilities pg,z, g ∈  and z ∈ , which is left unspecified and
define p = {pg,z}g∈,z∈. We consider here the nonparametric estimation of the joint distribution of G and Z, with sup-
port on the Cartesian product between  and . Considering the above, we define the observed-data likelihood following
previous literature13-15 as

L(𝜷,p) =
N∏

i=1

[
𝜋if𝛽(yi|gi, zi)Pr(G = gi,Z = zi)

] Ri

[
{1 − 𝜋i}

∑
g∈

f𝛽(yi|g, zi)Pr(G = g,Z = zi)

]
1−Ri

∝
N∏

i=1

[
f𝛽(yi|gi, zi)pgi,zi

] Ri

[∑
g∈

f𝛽(yi|g, zi)pg,zi

]
1−Ri
. . (1)

In (1), the proportionality arises since estimation of (𝜷,p) does not involve 𝜋i’s. Thus the log-likelihood is

𝓁(𝜷,p) ∝
N∑

i=1

[
Ri ×

(
log

{
f𝛽(yi|gi, zi)

}
+ log

{
pgi,zi

})
+ (1 − Ri) × log

{∑
g∈

f𝛽(yi|g, zi)pg,zi

}]
.

For simplicity, the formulation above considers G as a single variable, however, this can be extended to a vector with
the respective considerations as illustrated in Section 4 below. We also note that additional phase 1 covariates X can
be introduced into the parametric model, that is, f𝛽(yi|gi, zi, xi) with corresponding 𝜇(g, z, xi; 𝜷) = h−1(𝛽0 + 𝛽1g + 𝛽zz +
𝜷′

xxi), by assuming G and X are conditionally independent given Z. In the case of covariates such as genomic principal
components to account for population stratification, conditional independence is a working assumption, which does not
negatively affect the model performance as shown in Section 5.

If we denote 𝜃 = (𝜷′,p′)′, then, under regularity conditions, the limiting distribution of the maximum likelihood
estimator (�̂�) follows asymptotically

√
N(�̂� − 𝜃) ∼  (0, J(Φ)−1),16 where Φ = (𝜷′,p′,𝝍 ′)′ and J(Φ) is the expected infor-

mation matrix, which is a function of the full parameter set Φ as the expectation is taken with respect to (R,Y ,G,Z);
note that G is observed in S2 and missing by design in S2.8 The derivation of the expected information matrix is shown in
Appendix A.

2.3 Post-GWAS analysis under maximum likelihood

Note that the likelihood in Equation (1) is most useful at the design stage when no phase 2 subsample has been identified
nor have any data been collected. However, once these items are available, the following reexpression is typically used:
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L(𝜃) ∝
∏
i∈S2

f𝛽(yi|gi, zi)p(gi, zi)
∏
i∈S2

∑
g

f𝛽(yi|g, zi)p(g, zi). (2)

The formulation above has been amply studied.11,14,15,17 Estimates can be obtained via the EM algorithm18-20 and the
corresponding asymptotic variance covariance matrix is computed via the Louis’ method.21 In fine-mapping, the aim is
to identify and prioritize potential causal variants in a genetic region of interest to allow for follow-up replication and
functional studies.22 This can be achieved under the proposed maximum likelihood (ML) as follows: first, the genetic
effect of each variant in the targeted region is estimated and tested individually (single-variant analysis); second, genetic
effects are estimated and tested in multivariable models (conditional on strongest single-variant signals). Conditional
analysis serves to identify independent signals in the region and to unmask associations that may have been missed in
single-variant analysis. These steps are detailed in Section 4.

2.4 Selecting phase 2 designs

In post-GWAS fine-mapping studies that target an identified genomic region, the costs of sequencing can make it unfea-
sible or inefficient to sequence all subjects available in phase 1, restricting the number of individuals in S2 (n). Here we
propose two approaches to select a phase 2 design under a budget constraint and flexible optimality criteria using Lagrange
multipliers or genetic algorithms. In addition, we discuss the specification of such optimality criteria and compare the
proposed methods against another class of widely used phase 2 sample selection strategies, the so-called ranked designs.

2.4.1 Lagrange multipliers (LM)

Following previous ideas,8,23,24 we first propose to obtain a phase 2 design for regional fine-mapping studies by minimizing
the following expression

Λ
(
J(Φ)−1) − 𝜆N−1

[ K∑
k=1
𝜋k(𝝍)Nk − n

]
, (3)

whereΛ(⋅) is an optimality criterion, 𝜆 is a Lagrange multiplier accounting for the budget constraint, and Nk is the number
of subjects in phase 1 belonging to the kth stratum.

Here, we formulate the approach specifically for the ML framework described in Sections 2.2 and 2.3. For our purposes,
𝜷 and p are design quantities, thus, they need to be specified a priori leaving the 𝜋s to be determined from phase 1
data alone. Note that this approach aims to find selection probabilities, 𝜋∗

k , that minimize equation (3) for allocating
the phase 2 sample across strata {k}, k = 1, … ,K. The vector p can be interpreted in terms of the (joint) genotyping
distribution between G and Z, which can be easily specified according to well-established genetic principles, for example,
Hardy-Weinberg equilibrium (HWE), or by external data such as the 1000 Genomes Project. Thus, the expected effect size
of the sequence variant, 𝛽1, becomes the primary parameter to specify.

2.4.2 Genetic algorithms (GA)

Genetic algorithms are designed to mimic nature’s evolutionary process, in which the fittest members of a population are
selected to pass on their genetic information. GAs are powerful tools to optimize a fitness measure/objective function,
Λ(⋅); overviews can be found in Holland25 and Whitley.26 This optimization technique is suitable for a discrete solution
space and is performed through a stochastic search by building an initial population of candidate solutions that evolves
generationally through pairing, mating, recombining and mutating the candidate solutions. In our case, these candidate
solutions correspond to vectors of the form R = (R1, … ,RN) with

∑N
i=1Ri = n and Ri ∈ {0, 1} for all i, that is, vectors of

indicator variables denoting whether the ith subject is selected for phase 2. The reasoning behind GA implementation
in the context of phase 2 sample selection is twofold: 1) it provides a suitable framework for discrete optimization, and
2) it has proven to be an efficient strategy to find a fittest member in large search spaces (2N possibilities in this case).26

These appealing features of GAs come along with some challenges, namely, that there are no clear convergence criteria,
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tuning parameters need to be specified, and they can be computationally expensive when the objective function is hard
to calculate.

Nevertheless, the GA approach brings novelty to the field as it nullifies the uncertainty brought by the sampling
variability introduced when utilizing stratum-specific selection probabilities. This is achieved by selecting a vector R∗ that
characterizes a unique phase 2 subsample and optimizes the fitness measure. Furthermore, GA can forgo strata definition
since the search can be agnostic to specific strata configurations. In GA, the budget constraint can be introduced by a
so-called cardinality constraint, which consists of selecting a subset of a required size (n).27 This constraint guarantees
that the phase 2 sample is exactly of size n as opposed to methods that depend on selection probabilities, which introduce
some variation into the achieved phase 2 sample size.

To date, there are several implementations for GAs available in the R statistical language28 namely packages GA,
genalg, kofnGA, mcga, mco, and NMOF. Of these, only kofnGA is specifically designed for fixed-size subset selection
with a flexible specification of the objective/fitness function, see Wolters for a detailed explanation of the package.29 In
any GA, it is important to consider the set of control parameters necessary to implement decision rules at each step.
Specifically, kofnGA requires the user to specify the objective/fitness function (ie,Λ(⋅)), the subset size (n), and the number
of candidates (N) while additional control parameters related to algorithmic design have default (but adjustable) settings.
These control parameters are: population size (ℳ), number of generations (ℋ ), size of selection tournament (𝒯 ), mutation
rate (𝓇), and number of elites (ℰ ). A pseudo-algorithm relating standard GA terminology with the two-phase design along
with a description of the steps where the control parameters are used is presented in Algorithm 1.

Algorithm 1. Pseudo-algorithm of the implemented genetic algorithm

procedure Genetic Algorithm description (under kofnGA)
Generate an initial population of size ℳ, i.e. pop0 = (R0

(1),… ,R0
(ℳ)), a set of vectors of size N, each representing a

single design
Compute fitness for each member of pop0 (Λ{J−1(R0

(𝓂))}, 𝓂 = 1,… ,ℳ)
for 𝒽 = 1,… ,ℋ (the number of generations) do

Selection (draw pairs of candidate solutions from pop𝒽−1)
⊳ this is achieved through a tournament strategy in which members with higher fitness have a higher chance

to be chosen into one of the two sets of size 𝒯 . Pairs of candidate solutions are then taken at random from these sets
Crossover (combine paired candidate solutions at random → pop𝒽)

⊳ after combining unique elements of both parents, n of them are selected at random
Mutation (swap indices from elements in pop𝒽 at random with probability 𝓇)
Fitness (compute Λ{J−1(R𝒽

(𝓂))}, 𝓂 = 1,… ,ℳ)
Elitism (replace the ℰ least fit members from pop𝒽 with the ℰ fittest members from pop𝒽−1 )

end for
Select the phase 2 subsample corresponding to min

𝓂∈1,…,ℳ
Λ{J−1(Rℋ

(𝓂))}
end procedure

The population is the pool of candidate solutions at each iteration from which the fittest members, that is, members
with optimal Λ(⋅) values, will be ultimately selected. The number of generations denotes the number of iterations the
algorithm will run for. The size of selection tournament determines the number of members of the population selected
to produce the next generation. The mutation rate determines the probability at which random swaps in the indexes of
the candidate solutions occur in the population. Lastly, elites are the fittest members in a given generation that get to be
kept in the next generation.

The algorithm parameters can be tuned by the user in accordance with the problem at hand. For simplicity, parameters
ℋ and ℰ can be reformatted as proportions of the population size (ℳ). Because kofnGA does not implement a stopping
rule, the algorithm iterates for as many times as specified by the provided number of generations (ℋ ). To accelerate
convergence, we set 𝒯 and ℰ at high levels (= 0.90 ×ℳ) as suggested by Walters.29 This approach may diminish the
search improvements derived from mutations, relying more heavily on the initial population and number of generations.
Therefore, instead of setting a completely random initial population (pop0 in Algorithm 1), we initialize it with an equal
number of samples with top 20 performers (based on Λ(⋅)) out of 100 draws of each of the balanced, combined, and LM
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T A B L E 1 Description of the three optimality criteria evaluated. J(Φ)−1 denotes the variance-covariance matrix.

𝜦(⋅) Formula Description

A-optimality
∑

diag(J(Φ)−1) Minimizes the average variance of the parameter estimates

D-optimality det(J(Φ)−1) Minimizes the product of the variances for diagonal matrices

Parameter-specific J(Φ)−1
[𝛽1 ,𝛽1]

Minimizes the variance of a particular entry in the VCM

sampling designs plus the RDS design. This strategy guarantees that GA has at least the same performance as the RDS
design.

Additional considerations for the optimization strategies in LM and GA as well as further details on the balanced
and combined designs can be found in Sections S2 and S3, respectively (Online Supplementary Material). It is also worth
noting that the proposed approaches are feasible in any context where Y |G,Z can be modeled within the exponential
family, and both G and Z are discrete (or easy to discretize) covariates.

2.4.3 Specifying an optimality criterion

There are several ways to define a functional Λ(⋅) as the optimality criterion/fitness measure, mostly grounded in exper-
imental design.30 In this report, we explore three criteria: A-optimality, D-optimality, and parameter-specific. Each
criterion focuses on different features of the variance-covariance matrix (VCM), J(Φ)−1 (Table 1). The parameter-specific
criterion is optimal to identify designs with minimum variance when testing a single parameter. Similarly, A- and
D-criteria would be optimal to identify designs with minimum average variance across all parameters and minimum
volume of the confidence ellipsoid, respectively.

In the outlined post-GWAS setting, the focus lies on testing a single parameter, 𝛽1. Thus, the parameter spe-
cific criterion is the most natural choice. However, when multiple parameters are of interest, that is, 𝛽1 is a vector,
A-optimality may be preferred if the parameters of interest are loosely correlated, whereas D-optimality may be pre-
ferred when the parameters are strongly correlated. This makes intuitive sense when there are two (or more) estimators,
for example, 𝛽11 and 𝛽12 but �̂� = G1𝛽11 + G2𝛽12 is of interest. Then V(�̂�) = G2

1V(𝛽11) + G2
2V(𝛽12) + 2G1G2Cov(𝛽11, 𝛽12),

thus, involving off-diagonal elements of the VCM. We evaluate potential differences in the choice of optimality criterion
in Section 4.

2.4.4 Ranked designs

Recently, Tao et al proposed general optimal designs for phase 2 studies.10 In this section, we aim to describe their
approach, summarize their findings, and draw comparisons with the proposed designs: LM and GA.

Despite their names, the outcome-dependent sampling (ODS) and residual-dependent sampling (RDS), as defined
by Tao et al, are not sampling designs in the classical sense given the fact that their specification is independent of
any sampling mechanism.10 Indeed, this is also true for the TZL design. We refer to them as ranked designs because
they are defined in terms of ordered quantities: outcome/residuals/scaled residuals for ODS, RDS, and TZL, respec-
tively. Tao et al show that the scaling factor in TZL is given by Var(G|Z)1∕2, which is unknown at design stage and thus
needs to be specified prior to phase 2. An intuition on why this scaling factor is important for the optimal design, pro-
vided by Tao et al, is that G is harder to be retrieved by Z when Var(G|Z) is large and thus these subjects need to be
oversampled.10

The ranked designs achieve a given phase 2 sample size by selecting an equal number of subjects from each of the
top and bottom rankings of the outcome/residuals/scaled residuals. This particularity makes them appealing for a few
reasons: 1) the ranked designs are unique, 2) the selection is intuitive and can be performed quickly, and 3) for QTs, no
stratification on the outcome is required. Tao et al show that the TZL design reduces to the RDS design when G and Z are
independent (and RDS reduces to ODS when Y and Z are independent); in Sections 4 and 5, we investigate the effect of
misspecifying Var(G|Z).

There are five main underlying differences between the proposed designs (LM and GA) and the ranked designs,
particularly TZL:
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1. LM depends on the stratification strategy undertaken for the outcome while none of the ranked design depends directly
on outcome stratification for QTs. On the other hand, GA can, in principle, be performed without defining any strat-
ification; however, selection of initial values may depend on values drawn from LM or other designs to accelerate
convergence, which could introduce some dependency on a chosen stratification.

2. LM provides optimal sampling fractions and thus a sample must be drawn accordingly, subjecting this design to sam-
pling variability. GA selects a unique solution, R∗, with optimal Λ(⋅) value, but, given the stochastic nature of the
genetic algorithm, this solution is approximate and varies at each run unless a random seed is specified. In contrast,
the ranked designs are not subject to sampling variation.

3. TZL and the proposed designs (under the parameter-specific criterion) seek to minimize the variance of 𝛽1. In the case
of TZL, this is achieved by maximizing the inverse of the efficiency bound for estimating 𝛽1 with one observation in
theorem 1 of Tao et al. Note that the proof of this theorem relies on the assumption that Y and G are approximately
independent given Z, which is justified when the effect of G on Y is small, that is, 𝛽1 = o(1). LM and GA, on the other
hand, do not depend on the small 𝛽1 assumption and can be thus implemented in more general settings.

4. Related to the point above, LM and GA rely on an empirical approximation to the information matrix whereas the vari-
ance considered in TZL uses an exact expected information under the working assumption of 𝛽1 = o(1). This defines a
trade-off between the generality of LM and GA and the increase in efficiency of TZL when the assumption is justified.

5. LM and GA can optimize general functions beyond J(Φ)−1 through Λ(⋅), whereas the results in TZL are mostly
concerned with Var(𝛽1) (or functions thereof).

It remains unclear what constitutes a good stratification for LM; intuitively, LM should approximate TZL as the num-
ber of strata approaches the phase 1 sample size. However, a theoretical proof is beyond the scope of this paper. To
circumvent the sampling variability issue in LM, one could draw a predetermined number of subsamples and select the
one with optimal Λ(⋅) value. Regarding whether restricted/unrestricted values of 𝜃 are preferred, Tao et al show that TZL
performs well for alternatives close to the null. Although these alternatives are typical for genetic studies, a more compre-
hensive comparison for alternatives farther away for the null is warranted. Lastly, LM and GA can, in fact, approximate
the optimization strategy in TZL by utilizing V−1

1 instead of J(Φ)−1 in the objective function, where V1 = F11 − F10F
−1
00 F01

and F = J(Φ) is partitioned with respect to 𝛽1 as
[
F11 F10
F01 F00

]
. It is worth noting that the dimension of V1 corresponds to

that of the subspace determined by the null hypothesis of interest. In the simplest case of 𝛽1 being a scalar, V1 is also a
scalar. In LM and GA, higher dimensions can be easily accommodated by specifying a different Λ(⋅) on V1, to obtain say
A- or D-optimal designs.

3 SIMULATION STUDIES

In this section, we describe the data generation steps, analysis plan, and report the results of an initial set of simulations.
The main objective is to compare the statistical power of the proposed phase 2 designs, LM and GA, in a post-GWAS
fine-mapping scenario by testing for the effect of G (the missing-by-design variable), that is, H0 ∶ 𝛽1 = 0. In addition, we
compare LM and GA against two ranked designs: TZL and RDS. Of note, we exclude ODS from these studies given the
known indirect association between Z and Y at GWAS stage. Estimates and standard errors are constructed following
Equation (2) in Section 2.3. For comparability with RDS and TZL, we use V −1

1 in the parameter-specific optimality crite-
rion for LM and GA as described in Section 2.4.4 given that this variance estimate does not depend on the assumption of
𝛽1 = o(1). Additional numerical studies comparing LM and GA against alternative heuristic designs utilizing J(Φ)−1 in
the optimization are found in Section S3, Online Supplementary Material.

3.1 Data generation

We assume a data generating mechanism similar to Espin-Garcia et al.11 Briefly, for a phase 1 sample size (N), and
given values for minor allele frequencies (MAFs), qG and qz and the linkage disequilibrium (LD), quantified through
the Pearson correlation coefficient, r, we simulate two variants on the same haplotype under Hardy-Weinberg equilib-
rium (HWE): G1 and Z. Here, qG and qZ are the frequencies of the less common allele in the population for G1 and Z,
respectively, whereas LD is the level of correlation between them. Notably, since the actual allele frequencies cannot be
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negative and the additive linkage disequilibrium coefficient D is constrained, not all combinations of r, qG and qZ can
occur.

The trait of interest is then generated as Y = 𝛽0 + 𝛽1G1 + 𝜀, where 𝜀 ∼  (0, 𝜎2). We note that in this setting, as opposed
to Section 2.2, Z is assumed to be conditionally independent of Y given G. This simulation setup aims to resemble a more
realistic scenario in which the GWAS-SNP, Z, is not causal itself but rather is in linkage disequilibrium with the causal
variant, G.

To imitate the GWAS setting in each dataset, we test 𝛾z, the genetic effect of Z, for association in the regression model
Y = 𝛾0 + 𝛾zZ and only keep replicates that meet a suggestive genome-wide significance criterion of p < 1 × 10−5 for the
hypothesis H0 ∶ 𝛾z = 0. Lastly, to study type 1 error (T1E) under this data-generation mechanism, we simulate another
SNP, G0 independently from Z and G1 with MAF qG.

Strata for Y are defined by discretizing the trait values into a three-category variable, Yst = {T1,T2,T3}, according to
fixed cut points (C1,C2) as the percentiles (40, 60) of a normal distribution with mean 𝜇 = 2 and variance 𝜎2 = 1, so that
under the null, Pr(Y < C1) = Pr(Y > C2) = 0.4. Strata for the biallelic GWAS SNP, Z, are defined by considering Z as a
three-category variable corresponding to genotypes, (AA,Aa, aa) and coded by the number of copies of the minor allele
(a), that is, Z = 0, 1, 2 (additive association).

Of note, stratification by Yst and Z is only employed for optimization in LM and for visualization to compare the
distribution of selected individuals under other designs.

3.2 Assessing the phase 2 designs

The first set of evaluations consists of the following. We specify a phase 1 sample size of N = 5000 and a phase 2 sam-
ple size of n = 540, 1500, 2500, that is, 0.108, 0.25, and 0.50 of the phase 1 data, respectively. We draw 1250 replicates for
each combination of simulation parameters qG = 0.2, qZ = 0.3, r = 0.75, 𝛽0 = 2, 𝜎2 = 1, and 𝛽1 ∈ ⟨0.1 + 0.2j|j = 0, … , 3⟩.
We evaluate the performance of the proposed designs against two ranked designs, RDS and TZL, across three statistical
tests (Wald, likelihood ratio [LR] and score). Since 𝛽1 is a scalar, the comparison against ranked designs only exam-
ines a parameter-specific criterion as a consequence from considering V−1

1 in the objective function, as mentioned in
Section 2.4.4.

To compare power, we assess the ratio of the empirical power of each design over that of the complete data case (relative
empirical power, rEP). In addition, estimation efficiency is compared via relative asymptotic and empirical standard error
(rASE and rESE, respectively) of 𝛽1 for each design over that of the complete data. We deem these measures to provide
a better reflection of the design performance compared with studies that benchmark against simple random sampling.
Note that the closer these ratios are to 1 (100%), the better the studied designs are able to recover the performance of the
complete data analysis.

The specification of 𝜷des, the design regression parameters, corresponds to (�̂�0, 0, �̂�z)′. Here �̂�0 and �̂�z denote the max-
imum likelihood estimates (MLEs) from GWAS, that is, the MLEs for Y = 𝛾0 + 𝛾1Z. Similarly, we specify pdes, the design
haplotype distribution between G and Z, under HWE by estimating qZ from the phase 1 sample and designating qG and
r to be the equal to their generating values. These design values are used to determine LM, GA, and TZL designs but not
RDS, which is agnostic to these design quantities.

Although correct specification of the design quantities is hardly ever attainable, the settings above allow us to evaluate
the true type 1 error/power of the studied designs. We discuss in the next section how to proceed in practice when the
true design values are unavailable. Moreover, by specifying the regression parameters under the null hypothesis, that is,
𝜷des = (�̂�0, 0, �̂�z)′, the design problem greatly simplifies to only specify values for pdes.

3.3 Results

The ranked designs can be specified without strata definitions, however, for visualization and comparison purposes, we
plot the distribution of RDS and TZL according to the predetermined strata. When comparing LM and GA against the
ranked designs for the smallest and largest studied genetic effects (𝛽1 = 0.1 and 𝛽1 = 0.7), we observe: (1) LM, GA and
TZL vary considerably across values of 𝛽1 and n, (2) LM displays more unstable strata distribution when compared against
GA and ranked designs, especially for the smaller phase 2 sample sizes (n = 540, 1250), (3) GA follows closely the RDS
design especially when n = 540, 1250, (4) LM and GA reach an approximately equal strata distribution when n = 2500,
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F I G U R E 1 Mosaic plots with the average strata sizes across replicates for the proposed designs against ranked designs across phase 2
sample sizes, n = 540, 1250, 2500, under the parameter-specific criterion. Averages were taken from the resulting designs in the main
simulation study for the two most extreme values of 𝛽1 (0.1, 0.7)

and (5) as expected, the strata distribution of the RDS design remains practically unchanged between genetic effect sizes
and phase 2 sample sizes (Figure 1).

At 𝛼 =1%, type 1 error (T1E) rates demonstrate well controlled values across the three tests in most cases. For LM,
the observed T1E of the Wald test are slightly anti-conservative when n = 540 and stabilize around the nominal rate as n
increases (Table 2). Closer inspection of the p-value distribution under LR displays no gross departure from the expected
uniform distribution (Figure S1). Overall, we observed the LR statistics showed better behavior compared with score and
Wald statistics even under small sample sizes specially under LM design (Table 2). Empirical bias (𝛽1 − 𝛽1) is well centered
around zero overall and decreases as n increases for all designs when the true value for 𝛽1 is small (< 0.3) (Figure 2).
However, for larger values of 𝛽1 (≥ 0.5), LM and TZL show biased estimates when n = 540, 1250 and deteriorate as 𝛽1
increases (Figure 2). All designs show relatively close agreement between (r)ASE and (r)ESE across values of 𝛽1 and n
(Tables S1 and S2). TZL shows values of rASE and rESE closer to 1, with GA second, RDS third, and LM coming last.
GA, RDS designs exhibit adequate coverage while the coverage for LM and TZL worsens as 𝛽1 increases for n = 540, 1250
(Table S3).



ESPIN-GARCIA et al. 6801

T A B L E 2 Type 1 error (T1E) rates along with their corresponding 99% Clopper-Pearson confidence intervals
(𝛼 = 1%) across studied designs, phase 2 sample sizes (n = 540, 1250, 2500) and statistical tests under a
parameter-specific criterion

n Test LM GA RDS TZL

540 Wald 1.45 (1.23-1.70) 1.17 (0.97-1.40) 1.10 (0.91-1.32) 1.01 (0.83-1.22)

LR 1.02 (0.84-1.24) 1.14 (0.94-1.36) 1.10 (0.90-1.32) 0.97 (0.79-1.17)

Score 0.94 (0.76-1.14) 1.10 (0.90-1.32) 1.07 (0.88-1.29) 0.95 (0.77-1.15)

1250 Wald 1.06 (0.87-1.28) 1.15 (0.95-1.37) 1.12 (0.93-1.34) 1.02 (0.84-1.24)

LR 0.94 (0.76-1.14) 1.14 (0.95-1.37) 1.12 (0.93-1.34) 0.99 (0.81-1.20)

Score 0.90 (0.72-1.10) 1.13 (0.94-1.35) 1.10 (0.90-1.32) 0.96 (0.78-1.17)

2500 Wald 1.00 (0.82-1.21) 1.08 (0.89-1.30) 1.08 (0.89-1.30) 1.09 (0.89-1.30)

LR 0.97 (0.79-1.18) 1.06 (0.87-1.27) 1.07 (0.88-1.29) 1.07 (0.88-1.29)

Score 0.96 (0.78-1.17) 1.05 (0.86-1.27) 1.07 (0.88-1.29) 1.06 (0.87-1.27)

Note: Each entry represents 17 500 replicates pooled across empirical null scenarios. The rest of the simulation parameters correspond
to qG = 0.2, qZ = 0.3, r = 0.75, 𝛽0 = 2, 𝜎2 = 1, N = 5000. The complete data T1E rate is 1.16 (0.97-1.37) for Wald/LR tests and 1.14
(0.95-1.35) for the score test. To further evaluate test validity under the studied sample sizes, we plot histograms of the observed LR test
p-values in Figure S1.

T A B L E 3 Relative empirical power (rEP), calculated as the ratio of the empirical power of each
studied design over that of the complete data, across studied designs, phase 2 sample sizes, and effect
sizes under the LR test (𝛼 = 1 × 10−8) for the ideal scenario of correctly specifying Var(G|Z)

Relative empirical power (rEP)

n 𝜷1 Complete (EP) LM GA RDS TZL

540 0.225 58.1 2.9 9.2 6.7 32.5

0.250 80.6 4.5 14.8 11.7 40.4

0.300 98.2 15.0 38.7 35.5 74.2

0.400 100.0 69.2 94.2 91.8 99.6

0.500 100.0 97.1 100.0 99.9 100.0

1250 0.225 58.1 36.0 44.1 45.5 82.1

0.250 80.6 44.4 57.5 56.0 87.4

0.300 98.2 77.0 85.7 84.9 97.0

0.400 100.0 99.6 99.9 99.9 100.0

0.500 100.0 100.0 100.0 100.0 100.0

2500 0.225 58.1 96.0 96.1 86.4 95.9

0.250 80.6 96.8 97.1 90.8 98.6

0.300 98.2 99.3 99.2 98.2 99.6

0.400 100.0 100.0 100.0 100.0 100.0

0.500 100.0 100.0 100.0 100.0 100.0

Note: Column “Complete” corresponds to the estimated power of the complete data (ie, the denominator of the rEP
ratio). Phase 1 sample size is N = 5000 whereas phase 2 sample size is n = 540, 1250, 2500. These results exclude
values of 𝛽1 lower than 0.225 and greater than 0.5 since the power of the complete data was less than 50% for the
former and had already reached 100% for latter. The rest of the simulation parameters correspond to qG = 0.2,
qZ = 0.3, r = 0.75, 𝛽0 = 2, and 𝜎2 = 1.
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F I G U R E 2 Boxplots for the distribution of the bias across genetic effect estimates (𝛽1 − 𝛽1) in the studied designs under a
parameter-specific criterion. Row facets denote different true 𝛽1 values (0, 0.1, 0.3, 0.5, 0.7) [Colour figure can be viewed at
wileyonlinelibrary.com]

Power curves under the LR test at 𝛼 = 1 × 10−8 level, show that TZL consistently demonstrates the highest power
across values of n with GA second, RDS in the third place and LM having the lowest power. Notably, all designs reach
similar power when n = 2500 (Figure S2). Interestingly, not all methods show power increases at the same rate due to the
differences in efficiency across designs. Additional simulations for larger phase 1 sample size (N = 10 000) and similar
selection fractions (n∕N = 0.10, 0.25, 0.50) result in analogous type 1 error and power results among designs, suggesting
that testing performance is contingent upon sampling fraction and not phase 2 sample size (Section S4.1, Online Supple-
mentary Material). Under the LR test, the rEP is highest for the TZL across values of 𝛽1 and n. GA shows higher power
than RDS across virtually all scenarios while LM comes last when n = 540, 1250 but reaches similar power to GA when
n = 2500 (Table 3).

http://wileyonlinelibrary.com
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Besides the additional simulations on different phase 1 and 2 sample sizes, we also studied the influence of different
specifications of the joint distribution of G and Z. In summary, these results are analogous to what was reported above
with GA showing competitive power when compared against alternative designs (Section S4.2, Online Supplementary
Material).

4 TWO-PHASE STUDY DESIGN IN PRACTICE

For LM, GA, and TZL designs, specifying different design quantities, 𝜃des = (𝜷′
des,p

′
des)

′, will lead to different phase 2 sub-
samples. Little attention has been paid to the practical considerations entailed in choosing a study design. One practical
strategy is to make an educated guess for the design quantities; another is to consider a range of plausible values. Though
adaptive/sequential designs may be feasible in some circumstances,31 in the post-GWAS setting processing data by batch
may be operationally inefficient. In addition, although the sequential strategy will provide more precise design parame-
ters, it will not necessarily aid in solving the withstanding issue of selecting a unique phase 2 sample given that multiple
more precise estimates will be potentially identified. Therefore, we propose a strategy that relies only on phase 1 data to
select a unique phase 2 sample when a range of effect sizes, allele frequencies, and LD values can be considered at design
stage.

4.1 A grid search procedure to select a unique phase 2 subsample

It is likely that there will be uncertainty about the specification of the effect size (𝜷des) and haplotype distribution (pdes)
at design stage, so we must consider a range of probable values and define a grid of intermediate points inside this range.
Let {𝜃h}, h = 1, … ,H be the set of probable values or design quantities of interest. Each design quantity 𝜃h will yield an
optimal phase 2 subsample, P2S(h), for the second stage. Thus, to select an unique design under the set {𝜃h}h=1,… ,H we
propose the following procedure, which is motivated by robustness considerations.

1. Given an optimality criterion, Λ(⋅), for each h

- obtain a phase 2 subsample, namely, P2S(h), via LM/GA or otherwise by optimizing Λ(𝜃h).
- given P2S(h), calculate Λ(h)

h′ = Λ(h)(𝜃h′ ) for h′ = 1, … ,H

- compute 𝜅(h) = κ
h′∈1,… ,H

{
Λ(h)

h′

}
, where κ is a summary function, for example, mean or median

2. select the P2S(h) with minimum 𝜅(h)

This procedure will identify a unique design from the ones generated using alternative specifications {𝜃h}. To better
understand the proposed procedure, let us assume that we are interested in comparing two designs, PS2(1) and PS2(2)
which are optimal when the design values are 𝜃1 or 𝜃2, respectively. In order to select the best design, we adopt a criterion
based on robustness. In other words, we are interested in determining which one of these two designs exhibits an overall
superior performance when 𝜃 differs from its generating design value. To this end, we compute the fitness function for
each design and each 𝜃h′ with h′ ≠ h and select the design that achieves the best average (or median) performance. The
formal description simply extends this principle to comparing H designs and selecting the most robust one. Ultimately,
regional sequencing data will be collected for the subsample from the resulting design alone. Once data are collected,
statistical fine-mapping can be conducted following the analytic strategy described in Section 2.3.

4.2 Simulation under realistic LD patterns

The purpose of this simulation study is to evaluate the studied designs when the values of 𝜃 = (𝜷′,p′)′ are unknown
and a range of values for 𝜃des is considered instead. In this study, we generate data under a scenario where multi-
ple “causal variants” and a realistic LD structure from a targeted region were considered. Specifically, we select four
loci in chromosome 16 as causal variants, G = (G1, … ,G4) with corresponding effect sizes 𝜷1 = (𝛽1G1 , … , 𝛽1G4)

′ =
(−0.200, 0.125, 0.250,−0.150)′ in hg19 positions 56989830, 56993324, 56994990, 56995236, and designate rs247617 (pos.
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56990716) as the GWAS SNP (hereafter all positions are truncated to the last five digits). We then generate a QT, Y , across
500 replicates following Y = 𝛽0 + 𝜷′

1G + 𝜀, where 𝛽0 = 2, and 𝜀 ∼  (0, 𝜎2 = 1). Details of the data generation are provided
in Section S4.5, Online Supplementary Material.

4.3 Selecting phase 2 samples under prespecified sets of design quantities

Since multiple causal variants are assumed in this section, we ascertain the performance of the studied designs under
alternative optimization criteria in addition to the parameter-specific criterion, specifically under A- and D-optimality.
This allows 𝛽1 to be treated as a vector at design stage, that is 𝜷des = (�̂�0, 𝜷1 = 0, �̂�z)′, with 0 being a zero vector. As before,
(�̂�0, �̂�z)′ correspond to the MLEs of the regression model Y = 𝛾0 + 𝛾zZ, that is, GWAS MLEs. In the simulated data, ̄̂𝛾0 =
1.73 range (1.68-1.78), ̄̂𝛾z = 0.116 range (0.097-0.176) across the 500 replicates.

As mentioned in Section 2.4.4, it is straightforward to modify the optimality criterion for LM and GA. For TZL, no
specific results were provided under alternative optimality criteria. However, Tao et al discussed that since Var(G|Z)
is a matrix when 𝜷1 is a vector, it was sufficient to replace the scaling factor Var(G|Z)1∕2 (when 𝛽1 is a scalar) with
Λ[Var(G|Z)].10

Additionally, for LM and GA, the optimization is performed using V−1
1 , as this approach showed best performance

in the first simulation study when the true values are close to the null hypothesis (Section 3.2). A unique design is then
selected for LM, GA, and TZL considering multiple (misspecified) values of pdes following Section 4.1. We also considered
RDS in this simulation study, however, since RDS does not depend on 𝜃des in any way, it was not determined using the
outlined procedure 4.1. For each replicate, we select a phase 2 data of size n = 1250, 2500. The specification of pdes under
parameter-specific, A-, and D-optimality criteria is described below.

4.3.1 Parameter-specific criterion

Under this criterion, 𝛽1 is a scalar. Thus, we specify pdes = P(G,Z) = pgz assuming each of the resulting combinations
between the following:

- qG =
{

qQ11
G , qQ2

G , q
Q3
G

}
, and rZ,G = {rQ1 , rQ2 , rQ3},

where Q1,Q2,Q3 denote the first, second, and third quartiles of qG (MAF) or rZ,G (LD between Z and G) across the 29
sequence variants in the region, for example, qQ2

G is the median MAF value across seq-SNPs in the fine-mapped region
while rQ1

Z,G denotes the 25th percentile across correlation values between the GWAS-SNP, Z, and the seq-SNPs, G.

4.3.2 A- and D-optimality criteria

Under these criteria, 𝜷1 is assumed to be a vector of size 2. Thus, we specify pdes = P(G1,G2,Z) = pg1g2z assuming each of
the resulting combinations between the following:

- qG1
=
{

qQ1
G , q

Q3
G

}
, qG2

=
{

qQ1
G , q

Q3
G

}
, rZ,G1 =

{
rQ1

Z,G, r
Q3
Z,G

}
, rZ,G2 =

{
rQ1

Z,G, r
Q3
Z,G

}
, and rG1,G2 =

{
rQ1

G,G′ , r
Q3
G,G′

}
,

as before, Q1 and Q3 denote the first and third quartiles of qG (MAF), rZ,G (LD between Z and G), or rG,G′ (LD between G
and G′) across the 29 sequence variants in the region.

In the simulated data, qG = {qQ1
G , q

Q2
G , q

Q3
G } = {0.167, 0.232, 0.294}; rZ,G = {rQ1

Z,G, r
Q2
Z,G, r

Q3
Z,G} = {−0.229,−0.173, 0.942};

and rG1,G2 = {rQ1
G,G′ , r

Q2
G,G′ , r

Q3
G,G′ } = {−0.207,−0.119, 0.306}. The average sample distribution of the resulting phase 2 designs

across the 500 replicates is portrayed via mosaic plots (Figures S4 and S5). GA, RDS, and TZL designs show rather similar
distributions across optimality criteria especially when n = 2500. LM, on the other hand, selects only from the extremes
of the distribution for common heterozygous (Z = 0) for n = 1250. In addition, the intersection of the subsamples taken
across each design/optimality criterion combination is presented via upset plots for a single replicate (Figures S3 and 3).
These plots show that almost a third of the phase 2 subsamples are common among GA, RDS, and TZL designs and
optimality criteria when n = 1250. Notably, the number of common subsamples jumps to about a half among GA, RDS,
and TZL and optimality criteria when n = 2500.
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F I G U R E 3 Upset plot for a single replicate in the realistic simulation to quantify the intersection sizes across studied designs and
optimality criteria when n = 2500. Each bar denotes the size of a given intersection highlighted in the x-axis, that is, the number of subjects
common among designs. The matrix in the x-axis corresponds to each optimality criterion (parameter-specific/A-/D-optimality) and design
(LM/GA/TZL) combination as well as RDS

4.4 Single-variant fine-mapping analysis

Once the phase 2 sample is selected in a given replicate, we perform a region scan using the 29 variants, that is,
we test for association one variant at a time, across each phase 2 sample size (n = 1250, 2500). To decrease the
collinearity between G and Z in the model, we treat the GWAS SNP, Z (rs247617), as a (three-level) categorical
covariate at design and analysis stages. We summarize the point estimates, asymptotic standard errors, and empir-
ical power rates (under the LR test) for the region scans across replicates for each design and optimality criteria
(Tables S4 and 4).

GA, RDS, and TZL show similar results in terms of estimation and power across different values of n and optimality
criteria (for GA and TZL) whereas LM exhibits considerably lower power (Tables S6 and 4). We observe similar distribu-
tions of the LR test p-value (in − log10 scale) across replicates for the studied designs with the exception of some outliers;
LM shows the smallest (− log10) p-values compared with the other designs (Figures S6 and 4). Lastly, no optimality cri-
terion shows consistently best estimation nor power, suggesting that no specific criteria substantially improves overall
performance when the design values, 𝜃des, are misspecified.

It is obvious that in most cases the mean of the estimate for causal sequence variants does not correspond with
its true value being both over- and underestimated (Tables S4 and S5). In fact, this discrepancy occurs even for the
complete data case, which is unsurprising considering the unaccounted variation resulting from the single-variant
analysis.

The power to detect association (at 𝛼 = 0.05∕29) is above 80% in the complete data for three out of four causal variants:
89830, 94990, 95236. The power for the remaining causal variant (93324) is almost zero (Table S6). This decrease in power
is likely due to the high LD between this variant and the GWAS SNP, Z (r = 0.94 and D′ = 0.95) which is already included
in the regression, thus, diluting its signal. Moreover, there are additional noncausal variants that display power above
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T A B L E 4 Empirical power rates at significance level 𝛼 = 0.05∕29 for causal variants only and n = 2500 across 500 replicates
in realistic fine-mapping simulation single-variant analysis, that is, misspecified Var(G|Z)

Par-spec A-opt D-opt

G pos. 𝜷1G Complete RDS LM GA TZL LM GA TZL LM GA TZL

85805 0.00 8.4 8.6 6.6 8.4 8.0 6.0 8.6 8.2 6.2 8.6 8.8

86045a 0.00 76.4 72.4 60.4 72.0 73.0 56.4 72.2 72.6 56.4 72.4 72.2

86762a 0.00 100.0 100.0 99.4 100.0 100.0 99.2 100.0 100.0 99.0 100.0 100.0

86914 0.00 8.6 7.2 5.6 7.0 8.0 5.0 7.6 7.6 5.8 7.0 7.8

87015 0.00 0.2 0.2 0.2 0.2 0.2 0.4 0.2 0.0 0.4 0.2 0.0

87765 0.00 0.4 0.4 0.0 0.4 0.4 0.0 0.2 0.2 0.2 0.4 0.2

88044 0.00 0.4 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

88958a 0.00 83.6 78.8 62.0 79.2 81.4 59.4 78.6 78.4 60.2 78.8 78.0

89015 0.00 5.4 4.8 2.4 4.8 5.6 4.2 4.8 5.8 3.8 5.0 5.0

89830b -0.20 100.0 100.0 99.6 100.0 100.0 99.8 100.0 100.0 99.6 100.0 100.0

90803a 0.00 77.2 74.2 61.8 74.0 74.6 58.2 73.6 74.8 57.4 73.4 74.6

91143a 0.00 67.4 63.6 49.2 63.4 64.8 48.0 63.0 64.4 44.8 63.4 62.6

91524 0.00 6.0 5.2 4.4 5.0 6.0 4.6 5.0 5.8 3.6 5.2 5.4

92017 0.00 7.0 5.6 4.8 5.8 6.0 4.6 6.0 6.2 4.2 5.4 5.8

93161 0.00 0.8 0.4 0.2 0.4 0.4 0.0 0.4 0.6 1.0 0.4 0.2

93211 0.00 7.0 6.8 2.4 6.6 7.0 3.2 7.0 6.4 3.4 6.8 6.4

93324b 0.12 3.0 2.4 1.0 2.4 2.2 1.2 2.4 2.2 1.4 2.4 2.0

93886 0.00 0.2 0.2 0.0 0.2 0.0 0.0 0.2 0.2 0.2 0.2 0.2

93897 0.00 20.0 17.6 9.2 17.8 16.2 10.2 17.6 16.6 9.6 17.4 17.2

93901 0.00 18.0 16.0 10.4 16.0 15.4 9.8 16.2 16.4 8.2 16.0 17.4

93935a 0.00 80.6 76.0 62.6 75.6 75.6 61.4 75.8 76.4 60.2 76.0 75.4

94192a 0.00 80.6 76.4 63.2 76.0 75.8 61.8 75.8 75.8 61.6 76.2 75.8

94212 0.00 3.8 2.8 1.8 2.8 2.8 1.0 2.6 2.8 1.4 3.0 2.8

94244 0.00 0.2 0.2 0.0 0.2 0.0 0.0 0.2 0.2 0.2 0.2 0.2

94528 0.00 0.2 0.2 0.0 0.2 0.0 0.0 0.2 0.2 0.2 0.2 0.2

94990b 0.25 84.4 82.0 65.8 82.0 81.8 66.2 81.4 81.6 65.8 81.0 80.4

95038a 0.00 79.6 74.6 62.2 74.6 75.0 60.4 74.2 74.8 60.2 74.6 74.0

95234 0.00 0.2 0.6 0.2 0.6 0.2 0.0 0.6 0.4 0.8 0.8 0.4

95236b -0.15 95.2 93.0 77.8 92.8 92.4 79.0 93.0 92.0 78.4 93.0 92.4

Note: Base pair positions (pos.) marked with “b” denote causal variants whereas ”a” denote hitchhikers. The remaining are noncausal. Positions
are truncated to the last five digits.

80% in the complete data analysis (Table S6). These so-called “hitchhiker variants” achieve significant association as a
consequence of their LD with causal variants. The performance of the studied designs for the hitchhiker variants resem-
bles the complete data analysis and its ranking is similar to the one shown with the causal variants. These results indicate
that single-variant analysis does not distinguish well between causal and hitchhiker SNPs in complete nor two-phase
analysis.

A common strategy to identify potential causal variants from hitchhikers consists of adjusting for the most significant
variant (or variants) in the region and performing a new–conditional—scan (ie, one variant at a time) fitting the following
model: Y = 𝛽0 + 𝛽1G + 𝛽2Gtop + 𝜷′

zZ, where G denotes a variant in the region, Gtop is the most significant locus from
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F I G U R E 4 Boxplots of the (− log10) p-values across 500 replicates in the fine-mapping simulation single-variant analyses for a phase 2
sample size of n = 2500 across optimality criteria (for LM, GA, and TZL only): parameter-specific, A- and D-optimality in each row facet.
Each column facet corresponds to the complete data analysis and studied designs respectively. The dashed line corresponds to a
Bonferroni-corrected significance threshold of 𝛼 = 0.05∕29 [Colour figure can be viewed at wileyonlinelibrary.com]

the single-variant analysis, and Z is the GWAS SNP treated as a (three-level) categorical variable. This approach aims
to discover independent signals in the region. Results for this conditional analysis can be found on Section S6, Online
Supplementary Material.

5 APPLICATION IN THE NORTHERN FINLAND BIRTH COHORT OF 1966

We illustrate the methods outlined in Sections 2.4 and 4 using the Northern Finland Birth Cohort of 1966 (NFBC1966),
which is a longitudinal, prospective birth cohort consisting of women and their offspring from the two northernmost
provinces in Finland: Oulu and Lapland. Comprehensive phenotypic, lifestyle, and demographic data were collected after
birth via questionnaires and clinical evaluations on the offspring at years 1, 7, 14-16, and 31. The NFBC1966 aims to study
genetic, biological, social, or behavioral risk factors associated with the onset of different diseases as well as morbidity
and mortality derived from adverse events such as preterm birth and intrauterine growth retardation.32,33 In particular, as
part of an NHLBI-sponsored project designed to characterize the genetic determinants of metabolic and cardiovascular
diseases, special attention was paid to a selected list of heritable quantitative traits related to cardiovascular diseases or
type 2 diabetes. These traits are body mass index (BMI), high density lipoproteins (HDL), low density lipoproteins (LDL),
triglycerides (TG), glucose (GLU), insulin (INS), C-reactive protein (CRP), systolic blood pressure (SBP), and diastolic
blood pressure (DBP).

We focus on 5402 subjects for which genotype information was collected using the Illumina Infinium platform, which
is comprised by 346 590 SNPs (after standard quality control). In addition to the genotype information, custom targeted
sequencing (CTS) was collected for 4511 of them (83.5%) as part of a series of resequencing studies to deepen the under-
standing of genotypic variation on metabolic traits.34 The CTS data contain the coding sequence and 5′ and 3′ untranslated
regions of 78 genes, which were selected based on previous GWAS meta-analyses of cardiovascular diseases. Details of
these regions can be found in Service et al.34 The purpose of this illustration is to optimally select a subsample of subjects

http://wileyonlinelibrary.com
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for targeted sequencing study (phase 2) and fine-mapping to locate potential causal variants using the methods outlined
in the previous sections.

5.1 Phase 2 subsample selection

We first identify GWAS-SNPs by performing genome-wide associations on the available quantitative traits. Although
genome-wide scans on these very same metabolic traits for the NFBC1966 have been previously carried out in Sabatti et al,
our analyses differ in a couple of aspects: (1) the sample size we utilized is slightly larger because additional subjects were
genotyped at a later time and (2) we perform multiple linear regression adjusting by the SexOCPG covariate described
in Sabatti et al, which is a composed categorical variable determined by sex, oral contraceptive use, and pregnancy
status.33

We center attention on one trait, log-transformed TG (Y ), as its GWAS has few peaks that identify only two
genetic regions for further study: GCKR in chromosome 2 and LPL in chromosome 8 (Figure S7). We comment on
the challenges of more complex GWAS scenarios in the discussion. We locate one SNPs in each of these regions that
meet the usual genome-wide significance threshold (5 × 10−8): rs1260326 (chr2:27730940, �̂�1 = 0.0614, s.e.(�̂�1) = 0.0093,
p = 5.67 × 10−11, MAF= 35.7%), and rs10096633 (chr8:19830921, �̂�1 = −0.0897, s.e.(�̂�1) = 0.015, p = 3.24 × 10−9, MAF=
9.7%). Due to missing data on the TG values, the available subjects for the genome scan was 5300. Of these, the number of
subjects with both GWAS and CTS data is N = 4493, which is the phase 1 sample size considered for phase 2 analyses. In
addition to the GCKR and LPL regions used in the phase 2 selection, we consider another region for analysis: APOA5, to
illustrate the correspondence of the two-phase design and analysis with the complete data approach pursued in Service
et al.34

Using the two identified GWAS-SNPs, we select phase 2 subsamples under three of the previously described designs:
GA, RDS, and TZL. We drop LM as it showed the worst performance in simulations. The phase 2 sample size is
specified to be approximately 25%, or 50% of the phase 1 sample size (n = 1123, 2246). To define Z, we use all allele
combinations of the GWAS-SNPs rs1260326 and rs10096633, which results in a nine-category variable. Considering
that no optimality criterion performed best in Section 4, we deem it appropriate to assume 𝛽1 is a scalar and use a
parameter-specific criterion, which greatly simplifies the specification of the design quantities, particularly pdes. Phase
2 subsample selection is performed separately per each phase 2 sample size. In each case, a set of design quanti-
ties is defined as follows: First, 𝜷des = (�̂�0, 𝛽1 = 0, �̂�′)′, where �̂�0 and �̂� = (�̂�1, �̂�2, �̂�

′
x)′ correspond to the MLEs from the

following regression model based on phase 1 data: Y = 𝛾0 + 𝛾1rs1260326+𝛾2rs10096633+𝜸′xX, where X is a vector of
additional covariates including SexOCPG and the first four genetic principal components (PC1-4). Second, for pdes
and given that MAF and LD values are unavailable a priori, we postulate the following ranges for these design quan-
tities: qG ∈ ⟨0.05 + 0.05j|j = 0, 1, … , 6⟩ and r = {0.0,±0.17,±0.33,±0.50}. We use a categorical coding to define Z in
the ML analysis because it reduces the potential collinearity with G, whereas there is no such issue at subsample
selection stage, where the typical GWAS analysis involves additive coding for Z (rs1260326 and rs10096633 in this
case).

For visualization purposes, we categorize TG (Yst) into three groups corresponding to commonly used blood test
ranges, that is, normal (<150 mg/dL), borderline high (150-199 mg/dL), and high (≥200 mg/dL). Notably, the groups in
Yst are asymmetrical with respect the middle Yst stratum. On the other hand, the distribution of the nine-category vari-
able determined by the two GWAS-SNPs (rs1260326 and rs10096633) has a small number of subjects for some categories
due to the relatively low MAFs of SNPs rs10096633, which differs largely from the simulations (Figure S8). Consequently,
the phase 2 subsample distributions tend to not select subjects from those categories. Notably, GA, RDS, and TZL show
similar category distribution across phase 2 sample sizes (Figure S9). The proportion of subjects that are common among
designs in the phase 2 subsamples is above 95% between pairs of GA, RDS, and TZL across phase 2 sample sizes (Figure
S10).

5.2 Fine-mapping analysis

CTS data for genes GCKR, LPL, and APOA5 were downloaded from the NCBI’s dbGAP repository according to
their GRCh37.p13 location ±5kbps. Since aligned reads were available, we performed variant calling using the Got-
Cloud pipeline developed by the Center for Statistical Genetics at the University of Michigan.35 Sequence data were
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F I G U R E 5 Region plots of the NFBC1966 CTS data for the ML analyses under the studied designs compared with the complete data
analysis across phase 2 sample sizes (n = 1123, 2246). Column facets denote each of the studied designs plus the complete data analysis
whereas row facets show each loci of interest

analyzed in two ways. First, we used linear regression with complete data, that is, subjects with both genotyping and
CTS data (N = 4493), and second via the ML approach described above for each studied design: GA, RDS, and TZL
(n = 1123, 2246). For the ML analysis, the nine-category variable defined by the GWAS SNPs was used as auxiliary variable
Z. All analyses were adjusted by the GWAS-SNPs (rs1260326 and rs10096633), SexOCPG and PC1-PC4 as covariates.

Our main interest lies in gauging the performance of the two-phase designs with respect to the complete data analysis,
evaluating both estimation and hypothesis testing. For estimation, we focus on three sequence variants reported in table
2 of Service et al:34 rs268, rs2266788, and rs3135506 (Table 5). For these variants, GA, RDS, and TZL show similar results
with improving performance as n increases. Comparisons of association estimates in Beta-Beta plots show similar spread
estimates across designs (Figure S11). Similarly, region plots of association signals for complete data and ML analyses
across the studied designs indicate that all designs tend to display results closer to those of the complete data case as
n increases with no overwhelmingly better design (Figure 5). In addition to the region scans performed for analyzing
common variants, we demonstrate that rare variants can be investigated under a two-phase design via burden tests in
Section S7, Online Supplementary Material.

6 DISCUSSION

In this report, we propose and evaluate state-of-the-art sample selection strategies for two-phase designs in the context
of post-GWAS fine-mapping studies. We pay special attention in the comparison against a recently proposed optimal
design, TZL. Our first set of simulations, considering a parameter-specific criterion, shows a clear advantage of TZL
under the strong assumption of correctly specified design values (pdes or Var(G|Z)). On the other hand, TZL demonstrates
biased estimation when the phase 2 sample size/nonmissing fraction is small (n∕N = 0.10, 0.25) and the effect sizes are
farther from the null 𝛽1 ≥ 0.5, with improvements noticed when n increases. These results are aligned with those obtained
under LM, which reinforces our initial belief that LM is a crude approximation to TZL. Moreover, LM is only competitive
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when n = 2500, suggesting that the sampling variability introduced by this method can only be overcome under larger
nonmissing fractions. In contrast, GA demonstrates unbiased estimation and competitive power (often larger than RDS)
across all simulation settings. The appeal of GA lies in its generality as it can be extended to other settings beyond linear,
logistic and Cox models while also avoiding uncertainty associated with sampling. Thus, GA provides an alternative
approach to obtain efficient and robust two-phase designs across a wider range of settings, including large effect sizes.

Additionally, we investigate the use of different variances considered in the optimization: J−1, and V−1, which are,
respectively, the inverse of the Fisher information matrix and the variance-covariance matrix of the most powerful test
under the null hypothesis (Sections 3.2 and S3, Online Supplementary Material). The results support the use of V−1 for
the parameter-specific criterion when the effect size is close to the null, as expected.

Correct design values specification is never attainable in practice. Hence, our second set of simulations evaluates a
more realistic setting for which we propose a grid search approach to select a unique phase 2 design assuming a set of (mis-
specified) design values is available. In this scenario, GA, RDS, and TZL have comparable performance with LM falling
behind. GA is advantageous as it can be easily applied to general Λ(⋅) functions. Thus, apart from the parameter-specific
criterion, we examine two additional criteria to select a phase 2 design: A- and D-optimality. Notably, based on our simula-
tions we found no evidence in favor of any particular optimality criterion. However, the parameter-specific criterion may
be preferred as designating its design values requires fewer assumptions. A- and D-optimality criteria were chosen because
they have been amply explored in the literature, possess solid roots in experimental designs, and have natural connection
with hypothesis testing. Nonetheless, other criteria may be better suited for optimizing power, for instance, maximizing
the noncentrality parameter of the likelihood ratio or score test 𝜒2 statistic may improve the power performance of the
phase 2 designs.

An important observation from the simulations is that although the best performing designs have higher relative
efficiency compared with less favorable designs (eg, combined or simple random sampling) across all phase 2 sample
sizes, this improvement does not automatically translate to a closer agreement with the complete data analysis. That is,
power performance is contingent upon nonmissing fraction and not necessarily phase 2 sample size itself. This finding is
consistent throughout our investigations, where both parameter estimates and p-values achieve similar values as in the
complete data analysis only when the phase 2 sample size is half of the phase 1 sample size (n∕N = 0.5). Thus, careful
evaluation of the statistical power of the phase 2 design needs to be considered in advance.

The competitive performance of GA notwithstanding, there are other considerations in implementing this algorithm.
For instance, we provide in all simulations an ad-hoc approach to initialize the population of possible solutions to accel-
erate convergence. In general, giving a particular initialization is not necessary, however, a completely random initial
population may need a larger number of generations (ℋ ) to achieve good performance. In addition, given the stochastic
nature of the search, there are few guarantees that the final solution has indeed reached a global as opposed to a local
optimum. It is also worth mentioning that the tuning parameter settings for the proposed GA are intended as a guideline
only and do not replace a more careful evaluation in specific problems. Walters suggests iterative calls,29 which consist
of running the GA multiple times, so that the final population in each run serves as the initial population in subsequent
runs.

The budgetary constraint implicitly assumes that the cost of sequencing samples is the same for all study samples.
This assumption may be relaxed as sequencing costs may vary due to location, tissue availability or number of samples.
Thus, extensions to consider differential costs are yet to be considered; one example of such approach under tracing study
designs can be found in Moon et al.36 Another important issue that deserves further investigation in terms of budget
constraints (or otherwise) is use of differential sequencing depths across samples.

Further investigation regarding selection of optimal phase 2 subsample under a set of loosely defined design values,
𝜃 = (𝜷′,p′)′ ∈ Θ, is warranted. Indeed, beyond the proposed grid search approach, alternative means to select a phase 2
subsample across ranges of 𝜃 are possible, for example, via min-max approaches.37 However, this selection problem may
also be addressed under a Bayesian framework for which a prior (joint) distribution for 𝜷 and p needs to be specified.3,38-40

The appeal of this approach is that it may better incorporate the uncertainty in the design values for selecting an phase 2
subsample although at the expense of computational complexity.

Beyond the feasibility and applicability of the proposed methodologies in practice, the illustration on the amply
studied NFBC1966 raises some additional questions on considerations posed in the design and analysis of two-phase
post-GWAS fine-mapping studies. First, our rare-variant analysis shows no association in either of the studied regions.
This result is not that surprising for a couple of reasons: the limited sample size in the NFBC1966 and the low correla-
tion between the GWAS SNPs and the computed genetic score. Additionally, the burden test assumes the same direction
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across all variants, which is a limitation in various settings. Thus, further investigations are required for variance com-
ponent tests under the proposed post-GWAS scenario, potentially by extending ideas from extreme-phenotype sampling
designs for cross-sectional association studies.41 Second, current practice in the field involves the imputation of GWAS
data using high-quality reference panels such as the TOPMed Imputation Panel.42 In principle, one can use the imputed
variants to construct a suitable auxiliary variable, Z, to select a phase 2 subsample using the proposed framework. Alter-
native methods that accommodate differences between genotyped and imputed data for subjects not selected for phase 2
sequencing have been discussed.43,44 Hence, comparisons between these methods and the approach undertaken in this
article can be also evaluated. Lastly, in a similar vein, methodological extensions for situations when multiple loci are pin-
pointed by GWAS and/or multiple traits of equal interest are collected remain as topics of future work. A starting point
in this direction may involve the calculation and application of polygenic risk scores to inform the phase 2 subsampling.

Another issue deserving further investigation is the influence of the phase 2 sample selection in the variant calling
pipeline. For simplicity, in this application, variant calling was performed per each locus on all available CTS samples.
However, even though genotype likelihoods are typically inferred by sample, population-specific filters such as MAF may
change with the design. Thus, sensitivity analyses of these filters can be additionally explored.

We emphasize that although this report focuses on a normally distributed continuous trait, all the derivations apply
in the context of generalized linear models within the exponential family. For instance, we include an example on how
to obtain the GA design when the response variable is a count and can be modeled using Poisson regression as part of
the accompanying Github repository. Furthermore, we are engaged in the development of an R package for this general
case. Results of this research and the accompanying software aim to support investigators decision-making pertaining to
study design, evaluation, and analysis of two-phase studies. These tools can serve to make more efficient use of limited
budgetary resources for data acquisition and analysis.

Two-phase study designs can be sought in other contexts. In particular, their use in a variety of ’omics problems is
broadly relevant as new and more costly technologies continue to arise. Beyond the case of fine-mapping where causal
variants from GWAS-identified regions can be pinpointed at a fraction of the cost, this approach can be extended for
phase 2 variables that are not categorical, for example, methylation, gene expression, or other ’omics measurements.
Additionally, methods that introduce functional knowledge to further inform the inference (possibly through Bayesian
methods) deserve further investigation.
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APPENDIX . DERIVATION OF THE INFORMATION MATRICES

This section derives the observed and expected information matrices, which allow us to compute the optimality criterion.
The expected information matrix in particular is called repeatedly during the optimization performed in both LM and
GA approaches.

A.1 Log-likelihood
Considering the observed-data likelihood in (1), the log-likelihood takes the form
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where p = (p1, … , pJ) is the vector of probabilities corresponding to the J unique pairs (g, z) in  × using similar
notation as in Reference 17 and gj is the value g′ ∈  indexed by (g′, zi) = j.

A.2 Score equations
Taking the first derivative of (A1) with respect to 𝜷 and p for a single observation, we have

𝜕𝓁i(𝜷,p)
𝜕𝜷

= Ri
𝜕 log

{
f𝜷(yi|gi, zi)

}
𝜕𝜷

+ (1 − Ri)
𝜕 log

{∑J
j=1f𝜷(yi|gj, zi)pj

}
𝜕𝜷

= RiS𝜷(yi|gi, zi) + (1 − Ri)
J∑

j=1
𝜔i,gj S𝜷(yi|gj, zi),

𝜕𝓁i(𝜷,p)
𝜕pj

= Ri

𝜕 log
{∑J

j=11{(gi, zi) = j}pj

}
𝜕pj

+ (1 − Ri)
𝜕 log

{∑J
j=1f𝜷(yi|gj, zi)pj

}
𝜕pj

= Ri
1{(gi, zi) = j}∑J

m=11{(gi, zi) = m}pm
+ (1 − Ri)

f𝜷(yi|gj, zi)∑J
m=1f𝜷(yi|gm, zi)pm

= Ri
1{(gi, zi) = j}

pj
+ (1 − Ri)

𝜔i,gj

pj
j = 1, … , J,

for the exponential family case, S𝜷(yi|gi, zi) = (yi − 𝜇i) 1
V(𝜇i)a(𝜙)

𝜕𝜇i
𝜕𝜷

, where V(𝜇i) is the variance function, a(𝜙) is the

dispersion parameter and 𝜔i,gj = f𝜷 (yi|gj,zi)pj∑J
j′=1f𝜷 (yi|gj′ ,zi)pj′

= Pr(G = gj|yi, zi) is the profile weight.

A.3 Observed information matrix
The second derivatives with respect to 𝜷 and p for a single observation are as follows

𝜕𝓁2
i (𝜷,p)
𝜕𝛽q𝜕𝛽l

= Ri
𝜕S𝛽l (yi|gi, zi)
𝜕𝛽q𝜕𝛽q

+ (1 − Ri)
J∑

j=1

{
𝜔i,gj

𝜕S𝛽l (yi|gj, zi)
𝜕𝛽q

+ S𝛽l (yi|gj, zi)
𝜕𝜔i,gj

𝜕𝛽q

}

= Ri
𝜕S𝛽l (yi|gi, zi)

𝜕𝛽q
+ (1 − Ri)

{ J∑
j=1
𝜔i,gj

[
𝜕S𝛽l (yi|gj, zi)

𝜕𝛽q
+ S𝛽l (yi|gj, zi)S𝛽q (yi|gj, zi)

]

−

( J∑
j=1
𝜔i,gj S𝛽l (yi|gj, zi)

)( J∑
j=1
𝜔i,gj S𝛽q (yi|gj, zi)

)}
,

= Ri
𝜕S𝛽l (yi|gi, zi)

𝜕𝛽q
+ (1 − Ri)

{ J∑
j=1

𝜔i,gj

f𝜷(yi|gj, zi)
𝜕2f𝜷(yi|gj, zi)
𝜕𝛽q𝜕𝛽l

−

( J∑
j=1
𝜔i,gj S𝛽l (yi|gj, zi)

)( J∑
j=1
𝜔i,gj S𝛽q (yi|gj, zi)

)}
,

𝜕𝓁2
i (𝜷,p)
𝜕pm𝜕pj

= −Ri
1{(gi, zi) = j}1{j = m}

p2
j

− (1 − Ri)
𝜔i,gj𝜔i,gm

pjpm
,

𝜕𝓁2
i (𝜷,p)
𝜕𝜷𝜕pj

=
𝜕𝓁2

i (𝜷,p)
𝜕pj𝜕𝜷

= (1 − Ri)
[

1
pj

𝜕𝜔i,gj

𝜕𝜷

]
= (1 − Ri)

J∑
m=1

S𝜷(yi|gm, zi)
𝜕𝜔i,gm

𝜕pj

= (1 − Ri)

[
𝜔i,gj

pj

(
S𝜷(yi|gj, zi) −

J∑
m=1

𝜔i,gm S𝜷(yi|gm, zi)

)]
.

For the generalized linear model with covariates xi = (xi0, … , xip),
𝜕S𝛽l

(yi|xi)

𝜕𝛽q
= (yi − 𝜇i) 𝜕

𝜕𝛽q

(
1

V(𝜇i)a(𝜙)
𝜕𝜇i
𝜕𝛽l

)
− xiqWixil,

where Wi =
(𝜕𝜇i∕𝜕𝜂i)2

V(𝜇i)a(𝜙)
; in this case xi = (1, gi, zi).
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A.4 Expected information matrix
The expected information matrix is obtained by taking the expectation of the expressions above with respect to (R,Y ,G,Z).

Note that

ER,Y ,G,Z
[
R × h(Y ,G,Z)

]
= ∫

∑
g,z

h(y, g, z)Pr(R = 1,Y = y,G = g,Z = z)dy

= ∫
∑
g,z

h(y, g, z)Pr(R = 1|y, g, z)Pr(Y = y,G = g,Z = z)dy

= ∫
∑
g,z

h(y, g, z)Pr(R = 1|y, z)Pr(Y = y,G = g,Z = z)dy MAR assumption

= ∫
∑
g,z

h(y, g, z)𝜋(y, z;𝜓)Pr(Y = y,G = g,Z = z)dy,

where the sums are taken with respect to all observed values of (g, z) and Pr(Y = y,G = g,Z = z) = Pr(y, g, z) =
f𝛽(y|g, z)pg,z.

Analogously,

ER,Y ,G,Z
[
(1 − R) × h(Y ,G,Z)

]
= ∫

∑
g,z

h(y, g, z)Pr(R = 0,Y = y,G = g,Z = z)dy

= ∫
∑
g,z

h(y, g, z)Pr(R = 0|y, g, z)Pr(Y = y,G = g,Z = z)dy

= ∫
∑
g,z

h(y, g, z)Pr(R = 0|y, z)Pr(Y = y,G = g,Z = z)dy

= ∫
∑
g,z

h(y, g, z)[1 − 𝜋(y, z;𝜓)]Pr(Y = y,G = g,Z = z)dy.

Thus,

ER,Y ,G,Z

[
𝜕𝓁2

i (𝜷,p)
𝜕𝛽q𝜕𝛽l

]
= ∫

∑
g,z
𝜋(y, z;𝜓)

𝜕S𝛽l (y|g, z)
𝜕𝛽q

Pr(y, g, z)dy

+ ∫
∑
g,z

[
1 − 𝜋(y, z;𝜓)

] J∑
j=1

pj
𝜕2f𝜷(y|gj, z)
𝜕𝛽q𝜕𝛽l

dy

− ∫
∑
g,z

[
1 − 𝜋(y, z;𝜓)

]( J∑
j=1
𝜔gj S𝛽l (y|gj, z)

)( J∑
j=1
𝜔gj S𝛽q (y|gj, z)

)
Pr(y, z)dy,

ER,Y ,G,Z

[
𝜕𝓁2

i (𝜷,p)
𝜕pm𝜕pj

]
= −∫

∑
g,z
𝜋(y, z;𝜓)

1{(g, z) = j}1{j = m}
p2

j

Pr(y, g, z)dy

− ∫
∑

z

[
1 − 𝜋(y, z;𝜓)

]𝜔gj𝜔gm

pjpm
Pr(y, z)dy,

ER,Y ,G,Z

[
𝜕𝓁2

i (𝜷,p)
𝜕pj𝜕𝜷

]
= ∫

∑
z

[
1 − 𝜋(y, z;𝜓)

]𝜕f𝜷 (y|gj, z)
𝜕𝜷

dy

− ∫
∑

z

[
1 − 𝜋(y, z;𝜓)

]
f𝜷(y|gj, z)

J∑
m=1

𝜔gm S𝜷(y|gm, z)dy,

where Pr(y, z) =
∑

g Pr(y, g, z) and 𝜔gj = f𝜷 (y|gj,z)pj∑J
j′=1f𝜷 (y|gj′ ,z)pj′

.

However, the expressions above can be computationally challenging especially when called multiple times to find
the optimal design. Instead, considering that Y ,Z are observed for all subjects in phase 1, we propose the following
approximation by noting that ER,Y ,G,Z[⋅] = EY ,Z[ER,G|Y ,Z[⋅]], which showed adequate results in practice.
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First, observe that

ER,G|Y ,Z
[
𝜕𝓁2

i (𝜷,p)
𝜕𝛽q𝜕𝛽l

]
= 𝜋(yi, zi;𝜓)

∑
g

𝜕S𝛽l (yi|g, zi)
𝜕𝛽q

Pr(g|yi, zi)

+ [1 − 𝜋(yi, zi;𝜓)]
J∑

j=1

𝜔i,gj

f𝜷(yi|gj, zi)
𝜕2f𝜷(yi|gj, zi)
𝜕𝛽q𝜕𝛽l

− [1 − 𝜋(yi, zi;𝜓)]

( J∑
j=1
𝜔i,gj S𝛽l (yi|gj, zi)

)( J∑
j=1
𝜔i,gj S𝛽q (yi|gj, zi)

)
,

ER,G|Y ,Z
[
𝜕𝓁2

i (𝜷,p)
𝜕pm𝜕pj

]
= −𝜋(yi, zi;𝜓)

∑
g

1{(g, zi) = j}1{j = m}
p2

j

Pr(g|yi, zi)

− [1 − 𝜋(yi, zi;𝜓)]
𝜔i,gj𝜔i,gm

pjpm
,

ER,G|Y ,Z
[
𝜕𝓁2

i (𝜷,p)
𝜕pj𝜕𝜷

]
= [1 − 𝜋(yi, zi;𝜓)]

𝜔i,gj

pj
S𝜷(yi|gj, zi)

− [1 − 𝜋(yi, zi;𝜓)]
𝜔i,gj

pj

J∑
m=1

𝜔i,gm S𝜷(yi|gm, zi).

Second, we approximate the expected information matrix,, by averaging across all observed values of (yi, zi) as follows

[𝛽l,𝛽q]
.
=

N∑
i=1

Pr(yi, zi)
[
𝜋(yi, zi;𝜓)

∑
g

𝜕S𝛽l (yi|g, zi)
𝜕𝛽q

Pr(g|yi, zi)

+ [1 − 𝜋(yi, zi;𝜓)]
J∑

j=1

𝜔i,gj

f𝜷(yi|gj, zi)
𝜕2f𝜷(yi|gj, zi)
𝜕𝛽q𝜕𝛽l

− [1 − 𝜋(yi, zi;𝜓)]

( J∑
j=1
𝜔i,gj S𝛽l (yi|gj, zi)

)( J∑
j=1
𝜔i,gj S𝛽q (yi|gj, zi)

)]
,

[pm,pj]
.
=

N∑
i=1

Pr(yi, zi)
[
− 𝜋(yi, zi;𝜓)

∑
g

1{(g, zi) = j}1{j = m}
p2

j

Pr(g|yi, zi)

− [1 − 𝜋(yi, zi;𝜓)]
𝜔i,gj𝜔i,gm

pjpm

]
,

[pj,𝜷]
.
=

N∑
i=1

Pr(yi, zi)
[
[1 − 𝜋(yi, zi;𝜓)]

𝜔i,gj

pj
S𝜷(yi|gj, zi)

− [1 − 𝜋(yi, zi;𝜓)]
𝜔i,gj

pj

J∑
m=1

𝜔i,gm S𝜷(yi|gm, zi)
]
.

Moreover, since 𝜋(yi, zi;𝜓) = 𝜋i(𝜓) = 𝜋k(𝜓) for all (yi, zi) in the kth stratum, k = 1, … ,K. The expressions above can
be calculated separately per each group, simplifying the computations.


