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This mini-review focuses on cognitive impairment in iNPH. This symptom is one of the

characteristic triad of symptoms in a condition long considered to be the only treatable

dementia. We present an update on recent developments in clinical, neuropsychological,

neuroimaging and biomarker aspects. Significant advances in our understanding have

been made, notably regarding biomarkers, but iNPH remains a difficult diagnosis.

Stronger evidence for permanent surgical treatment is emerging but selection for

treatment remains challenging, particularly with regards to cognitive presentations.

Encouragingly, there has been increasing interest in iNPH, but more research is required

to better define the underlying pathology and delineate it from overlapping conditions, in

order to inform best practise for the clinician managing the cognitively impaired patient.

In the meantime, we strongly encourage a multidisciplinary approach and a structured

service pathway to maximise patient benefit.
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INTRODUCTION

Idiopathic Normal Pressure Hydrocephalus (iNPH) is a clinical syndrome (1) derived by analogy
from NPH but in the absence of a preceding insult (2). iNPH is characterised by the clinical trial of
progressive and prominent decline in mobility, followed by less prominent but equally progressive
cognitive impairment and bladder disturbance. When supported by ventriculomegaly on brain
imaging, the diagnosis should be straightforward. In clinical practise, however, patients suspected of
having iNPH frequently present significant cognitive impairment, often preceding or starting at the
same time as the mobility disorder. This review focusses on such patients emphasising the clinical,
imaging and neuropsychological differential diagnosis, highlighting gaps in our understanding,
describing recent developments and making suggestions for future research.

CLINICAL

Cognitive impairment in iNPH is not universal but is frequently present. Insidious onset and more
prevalent causes of cognitive impairment, such as vascular dementia (VaD) and Alzheimer’s disease
(AD), make early diagnosis of iNPH challenging. Significant cognitive impairment in the absence
of an early, prominent and typical decline in mobility mandates consideration of other underlying
causes given their impact on prognosis and therapeutic decision making.
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The typical cognitive profile of iNPH is “subcortical” with
impaired attention, reduced psychomotor speed and inefficient
memory (3).

VaD results in a similar profile, making these two entities
difficult to separate on clinical grounds (4). Cerebrovascular
disease (CVD) is frequently present on routine MRI
scanning but unless severe its significance is often uncertain.
Furthermore, neuroimaging findings between iNPH and
CVD overlap.

The commonest cognitive profile of AD, that of progressive
amnesia (5), may not be detectable early on. Assessment beyond
the Mini-Mental State Examination (MMSE) is required and
may include cognitive batteries such as the CANTAB (6).
Imaging may identify typical patterns of brain volume loss. CSF
biomarkers and amyloid positron emission tomography (PET)
may demonstrate AD neuropathological change (ADNC) but
do not necessarily prove a causal link to the patient’s cognitive
impairment. Brain biopsies may be obtained at the time of shunt
insertion but are therefore only available for those patients who
have already been selected for surgery. Our understanding of the
role of those biomarkers in the diagnosis of AD has evolved,
recognising that they are increasingly prevalent with age and the
apoE4 genotype, even in asymptomatic individuals (7). There
is an association between CSF biomarkers and outcome (8, 9).
While this is not categorical; it seems most robust for Amyloid-
β (Aβ)-42 (10). To complicate matters, clinico-pathological
relationships in vascular cognitive impairment (VCI) (11) and
AD (12) are variable, co-pathology is common, and their
interaction on the phenotype remains poorly understood (13).

Typical presentations of Lewy body disease (LBD) (14),
progressive supranuclear palsy (PSP) (15) and corticobasal
degeneration (CBD) (16) should not pose differential diagnostic
difficulties. However, their combination of physical and cognitive
decline may be phenotypically similar to iNPH. In their early
stages, hallmark clinical features may not have emerged yet
and structural brain imaging can be equivocal. Therefore iNPH
has to be considered in the differential diagnosis, but co-
pathology and mimicry should not be excluded. In this scenario
biomarker findings of neurodegenerative disease are either
evidence of pathology or co-pathology. If the index of suspicion
for iNPH is high, such as after positive tap test, then shunting
should be considered. In the shunt responsive iNPH patient
neurodegenerative co-pathology seems to modify the clinical
phenotype (17). Abnormal DaT imaging is proof of impaired
dopaminergic function in the basal ganglia but is aetiologically
non-specific and has also been described in iNPH (18, 19). CSF
tau species in PSP and CBD have yielded conflicting results (20),
CSF RT-QuIC of alpha-synuclein in LBD and tau in PSP andCBD
(21) may be more promising.

Little has been published on frontotemporal dementia (FTD)
and iNPH. FTD should not cause differential diagnostic problems
as difficulties with mobility occur late in the course of the disease.
If present early, and typical for iNPH, co-pathology should be
suspected. A case report of a C9orf 72 positive patient, with
co-occurrence of typical features of FTD and iNPH, described
post-shunt improvements in gait and executive tests, while the
behavioural disorder remained unaffected (22).

The differential diagnostic assessment of patients suspected
of having iNPH, who have early and/or significant cognitive
impairment, requires clinical expertise in cognitive and atypical
movement disorders to delineate the presenting symptoms and
signs. The assessment should conclude with a probabilistic
diagnostic statement attributing the findings either to a single
(atypical) morbidity or postulating co-morbidity. Neuroimaging,
neuropsychology and CSF biomarkers all provide important
diagnostic information, emphasising that the best approach to
managing patients suspected of having iNPH with significant
cognitive impairment is the protocol-driven multidisciplinary
team assessment (23).

The existing evidence of cognitive outcomes after shunting
has recently been systematically reviewed. Improvement was
found in 61% of patients (24). The authors acknowledge
several limitations, including a lack of uniform and standardised
cognitive outcome measures, and rated the evidence as low
to medium.

Probable iNPH patients who also have clinical features or
biomarker evidence of CVD (25), AD (26), or LBD (17), if
carefully selected for shunt surgery in a tertiary, multidisciplinary
setting, have a good chance of improvement, in their gait
disorder. They may also experience partial and temporary
improvement of their cognitive impairment.

Long-term outcome studies of treated iNPH patients suggest
that the numbers developing dementia are significantly greater
than in the general population (27, 28). A longitudinal cohort
study applying disease modelling to shunted iNPH patients
found an overrepresentation of AD compared to the general
population after a medium follow up of 5.3 years. Significant
predictive factors were cortical biopsy, medial temporal atrophy
on MRI and clinical symptoms (29).

Neither aetiology nor pathogenesis of iNPH are well
understood (30). The potential role of a loss-of-function variant
in CFAP43 (recently described in a Japanese kindred of familial
iNPH and confirmed by a knocked out mouse model) in the
aetiology of “sporadic” iNPH is currently uncertain (31). Post
mortem studies do not go beyond case series and “definite”
iNPH, pathological findings remain non-specific (32, 33). There
is controversy over whether pathological findings of AD, CVD,
LBD and PSP, represent co-morbidity (17), wrong diagnosis (34–
36) or even subtype (26). Impaired glymphatic function has
been found in AD and iNPH [for a review see (37)] which is
probably mediated by aquaporin channels and represents the
putative underlying pathophysiology of hydrocephalus and its
compensation mechanisms [for a summary see (38)].

Experience from AD, may serve as a model for future
research (see Table 1): cooperation between basic science and
clinical researchers studying deeply phenotyped, multi-modality
assessed and post mortem verified patients has led to increased
understanding of aetiology and pathogenesis. These efforts have
defined pathological hallmarks and resulted in the development
of disease biomarkers. Amyloid PET and CSF amyloid and tau
are now available clinically. They have revolutionised clinical
treatment trials (39) and are used to screen for ADNC in patients
suspected of having iNPH but their role needs to be further
clarified. For iNPH, a better understanding of aetiology and
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TABLE 1 | The pathological basis of cognitive impairment in iNPH and the

treatment response to shunting of cognitive impairment in iNPH requires

further study.

Gaps Future research

Clinico-pathological relationships of

cognitive impairment in iNPH not well

understood

Longitudinal cohort studies using

“deep cognitive phenotyping”,

multimodal and novel biomarkers,

post-mortem

Treatment: only few high-level studies

with advanced cognitive outcome

measures controlling for confounding

factors (age, education, disease

duration, co-morbidities, and

cognitive practise effects), cognitive

outcome secondary

Multicentre RCTs using composite of

detailed cognitive and social outcome

measures in addition to multimodal

biomarkers

pathogenesis, definition of pathological hallmarks and discovery
of iNPH specific biomarkers would transform the field. Yet
clinical treatment trials in Alzheimer’s disease illustrate the
challenges of RCT designs in a cognitive disorder. Using multiple
modalities and complex sets of cognitive and social outcome
measures, they remain in search of the best combination for
providing high sensitivity and specificity to reliably demonstrate
cognitive change over short time frames (40, 41).

IMAGING

Since the delineation of iNPH as a clinical syndrome, imaging has
been needed to demonstrate ventriculomegaly and help evaluate
differential diagnoses, including alternative or co-existing causes
for cognitive impairment (42). Here, we review the role of
imaging in assessing the cognitive aspects of iNPH, focussing on
the more recent developments in the evaluation of brain/CSF
morphology, diffusion tensor imaging, resting state functional
MRI, amyloid PET, and imaging targeting glymphatic clearance.

Morphology: DESH
In the context of iNPH a widely studied pattern of CSF space
morphology is the combination of (i) hydrocephalus (Evans
index ≥0.3), (ii) high-convexity/midline tightness and (iii)
Sylvian fissure enlargement. This “disproportionately enlarged
subarachnoid-space hydrocephalus” (DESH) (43, 44) is found
in many but not all (45) cases of iNPH, and as a potential
marker of response to shunt surgery (44, 46, 47), some centres
have incorporated it into management pathways (30). The
pathophysiological mechanisms underlying DESH are unclear
but it is likely to be associated with disrupted CSF dynamics (48).

A number of recent studies have now investigated the presence
of DESH in the wider population, where it is found in 1–7%
and associated with poorer cognition (49–52). A study examining
over a thousand participants with either no or onlymild cognitive
impairment found that DESH was a predictor of progressive
cognitive decline independent of established features including
age, cortical thickness, or APOE status (48). There is also
evidence that in some cases DESHmay be a marker of preclinical
iNPH: a long term follow up study of asymptomatic individuals

with DESH imaging features found that approximately 17% per
year subsequently progressed to symptomatic iNPH (53).

Structural Connectivity: DTI
Diffusion tensor imaging (DTI) is an MRI technique which
measures orientation-specific water diffusivity to interrogate
brainmicro-structure and characterise white matter tracts.White
matter injury and dysfunction are proposed components of
iNPH pathogenesis and DTI has demonstrated differences in
white matter when compared to healthy controls, particularly
the corticospinal tract (54) and corpus callosum (55). In several
recent studies measures of cognitive impairment in iNPH have
been correlated with abnormalities in specific neuroanatomical
regions of interest: the forceps minor (56), frontal subcortical
white matter (57), right cingulum-hippocampus (58), internal
capsules and centrum semiovale (59); these findings are
suggestive of the circuits involved in cognitive impairment
although study samples are relatively small and patient
populations are at risk of other causes of dementia such as
AD and VaD. Interestingly, there is evidence that DTI white
matter abnormalities can respond to shunt surgery (55, 60)
and are potentially partially reversible. Most investigations in
iNPH patients have relied on conventional DTI but a few
have applied more advanced techniques to further probe tissue
microstructure, including kurtosis DTI (57), q-space imaging
(61) and neurite orientation dispersion and density imaging
(60). There are known technical challenges with comparing DTI
datasets between different scanners, however recent experience
has confirmed that repeatability and cross-scanner comparability
is possible across differing sites (62), allowing future multicentre
longitudinal trials.

Functional Connectivity
Whilst DTI provides measures of structural brain connectivity,
MRI techniques are also able to probe functional connectivity.
Resting state functional MRI (rsfMRI) examines correlations
in brain activity, identifying sets of brain regions that activate
simultaneously in the absence of a specific cognitive task. One
such set, known as the default mode network (DMN) (63), has
been widely studied and changes in DMN connectivity have
been associated with cognitive dysfunction across a range of
different pathologies (64–66). Altered DMN connectivity has
been found in iNPH patients where it is associated with executive
dysfunction (67, 68) and poorer cognitive outcomes after shunt
placement (68).

Moreover, further studies suggest that the dysfunction seen in
iNPH may involve multiple networks in addition to the DMN
(69, 70) and can partially normalise after a CSF tap test (70).

Glymphatic Imaging
There has been increasing interest in imaging targeting the
“glymphatic system”: the glia-lymphatic structures which allow
the interchange between cerebrospinal fluid and the interstitial
space (71–73); this interchange is critical in maintaining
interstitial homeostasis and glymphatic dysfunction has been
implicated in a range of neurological diseases (74). Multiple in
vivoMR imaging techniques have been explored (75), particularly
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those which directly follow the transport of gadolinium
based contrast agents (GBCA) after intrathecal administration
(76–79). A number of other pilot studies have used MR
techniques which do not require an exogeneous tracer: intravoxel
incoherent motion MRI (80), DTI (81), chemical exchange
saturation transfer imaging (82) and visualisation of lymphatic
channels (83).

When applied in iNPH patients, intrathecal GBCA studies
have demonstrated differences in CSF redistribution of tracer
compared to controls, with significantly more ventricular
reflux (77–79)–a finding consistent with previous radionuclide
cisternographic studies (84). Interestingly, there also appears to
be delayed clearance of GBCA within brain parenchyma (77, 79),
including the entorhinal cortex of the mesial temporal lobe
(85). It must be noted, however, that the control populations
for the above studies were significantly younger than the iNPH
group, and increasing age is known to be associated reduced
glymphatic function in animal studies (86). Moreover, in the
control population the rate of clearance appears to vary widely
(77). Further investigation will be required to confirm these
findings. The challenges associated with these techniques are well
known (75, 87) and, although none are currently suitable for
clinical implementation, this is an area of active development.

Amyloid PET Imaging
Recent work has highlighted the potential of PET imaging
for the in vivo assessment of amyloid deposition. Amyloid-
β (Aβ) is the main component of the plaques found in AD,
a frequent co-morbidity in iNPH patients that contributes to
cognitive decline (42, 88, 89). Cortical biopsies in iNPH patients
frequently detect Aβ, a finding which confers a tenfold increase
in the risk of subsequent Alzheimer’s disease (90). The PET
radiopharmaceutical [11C] Pittsburgh Compound B and newer
[18F]-labelled tracers (flutemetamol, florbetapir, florbetaben)
now offer the ability to identify Aβ non-invasively (91–94).
Multiple studies have demonstrated strong concordance between
histopathology for Aβ and amyloid PET imaging in iNPH
patients (91, 95–98), offering a new window on the assessment
of this significant pathology.

NEUROPSYCHOLOGY

Individuals with iNPH perform significantly worse than controls
on various cognitive measures (6, 99–101). Poorer baseline
cognitive status is associated with older age, longer disease
duration, worse motor performance (100), and increased
mortality after shunt surgery (28). However, variable cognitive
patterns have been reported in the literature. Many studies
demonstrate early executive dysfunction and psychomotor
slowing (102), followed by more widespread cognitive decline
at later stages (103). Yet others report early and diffuse
cognitive changes, including visuospatial dysfunction and
memory impairments (99).

Some studies report post-tap test improvements using
either cognitive screens (104) or more comprehensive
neuropsychological testing (101). Benefits to cognition have
also been reported 3, 12 months (105, 106), and 1–3 years after

shunt surgery (107). One meta-analysis (108) reported robust
improvements in memory and executive function after shunt
surgery. However, post-treatment cognitive outcomes can be
variable, and their relationship to other iNPH symptoms remains
unclear. Bugalho et al. (99) found no relationship between
cognition and gait. Yasar et al. (109) found no improvement
in cognitive status after shunt surgery, but an improvement in
balance and gait; and Grasso et al. (107) found cognition was not
maintained alongside gait improvements at 10 year follow up.

Cognitive screens, such as the MMSE (110), are
commonly used in assessment, but may be inadequate
for differentiating iNPH from other neurodegenerative
disorders (3, 6). Furthermore, practice effects are an important
consideration when quantifying true change in cognitive
performance across serial assessments (111). Significant practice
effects are seen in healthy participants (112) and in post-surgical
patients (113) within the first 3 months of serial testing, but were
not evident in a sample of iNPH patients over 4 consecutive
days (114). It is likely that practice effects differ based on a
variety of factors, including age, disease status, test selection, and
test-retest interval (111). Interestingly, Duff (111) suggests that
practise effects themselves may be important predictors of future
cognitive status and treatment outcomes.

Even studies that control for practice effects show variable
outcomes. Kambara et al. (115) showed that MMSE scores
improved at 3 and 6 months post-surgery, but declined in
association with age and poorer scores on an iNPH grading
scale. In a large, well-designed study, Solana et al. (116) reported
improvements in all cognitive domains 6 months after shunt
surgery in group analysis, but only 50% of their participants
showed significant improvements on individual analysis.

Another reason for variability in cognitive outcomes may
be the presence of alternative or co-morbid neurodegenerative
diseases. In one study with a median follow up of 4.8 years,
80% of a shunt responsive group demonstrated cognitive decline,
and 46% met the criteria for dementia, with the most common
diagnoses being AD and VaD (117). The best predictor of
dementia was having memory problems as the first symptom
(117). Detailed neuropsychological testing comparing iNPH
and Parkinson’s disease (PD), in their first year of symptom
onset, found more frequent (65% iNPH vs. 25.5% PD) and
diffuse cognitive deficits in iNPH (118). Laidet et al. (119)
reported that iNPH “mimics” – including PD, atypical PD,
VaD, and FTD – failed to demonstrate cognitive improvements
after CSF tap test, and that verbal fluency scores distinguished
iNPH from this mixed-diagnosis group. Similarly, Liouta et al.
(120) used comprehensive neuropsychological tests to show
that an iNPH group demonstrated post-tap test and post-
shunting cognitive improvements (86 and 97%, respectively),
while none of a group including VaD, atypical PD, and FTD
showed improvements.

In studies examining neurodegenerative biomarkers, the
results are also mixed. A higher incidence of AD biomarkers
has been reported in iNPH compared with controls, and
was associated with cognitive decline at 2 years (121).
While individuals with pathological levels of biomarkers
on CSF analysis may show cognitive improvements after
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tap test (26) and shunt surgery (122, 123), others show less
improvements in cognition (122–124). Nerg (6) examined
biopsy-acquired AD biomarkers alongside cognition, and
found poorer verbal fluency and clock drawing in iNPH,
and worse word list learning and picture naming in
AD, but little relationship between AD biomarkers and
cognitive results.

Specific neuropsychological markers can aid in
distinguishing iNPH from other neurodegenerative disorders
(6, 117, 125–127), but a discussion of their relative
merits is beyond the scope of this review. Therefore,
detailed cognitive analysis by a trained neuropsychologist
is essential.

Summary of Neuropsychology
Cognitive impairments in iNPH typically involve executive
dysfunction, but may be accompanied by more widespread
deficits. Poorer cognition is associated with older age, longer
disease duration, co-morbidity, variable outcomes after shunt
surgery, and increased mortality.

Variable outcomes may be due to inadequate control
for confounding factors, inadequate cognitive measures,
or whole-group analyses which average-out individual
variability (see Table 1). Where significant cognitive
improvements are reported, effect sizes tend to be small,
and hence their clinical relevance to individual patients
remains uncertain.

Robust neuropsychological methods that control for practice
effects in serial testing are needed (128). Detailed cognitive
analysis by a trained neuropsychologist is a crucial part of a wider
multidisciplinary consensus diagnosis.

DISCUSSION

We have presented evidence to inform patient management
for practitioners confronted with cognitively impaired patients
in whom a suspicion of iNPH has been raised. Recent
developments have helped to improve differential diagnosis and
patient selection for treatment. Neuropsychological differential
diagnosis, advanced imaging, and CSF biomarkers are powerful
tools starting to enter mainstream clinical use. We encourage
active management of these patients through the optimal
use of these tools within a structured clinical service. Hence
the complex needs of patients with iNPH are best met
within a multidisciplinary team. The nosology requires further
clarification in prospective cohort studies in cooperation with
basic science. An iNPH specific biomarker would revolutionise
the field. However, agreement needs to be reached on
standardised assessment methods and outcome measures of gait
and cognition, where advanced neuropsychological batteries may
serve to stratify clinical populations by cognitive features in
future RCTs.
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