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Abstract

Background: Cells operate in an uncertain environment, where critical cell decisions must be enacted in the
presence of biochemical noise. Information theory can measure the extent to which such noise perturbs normal
cellular function, in which cells must perceive environmental cues and relay signals accurately to make timely and
informed decisions. Using multivariate response data can greatly improve estimates of the latent information content
underlying important cell fates, like differentiation.

Results: We undertake an information theoretic analysis of two stochastic models concerning glioma differentiation
therapy, an alternative cancer treatment modality whose underlying intracellular mechanisms remain poorly
understood. Discernible changes in response dynamics, as captured by summary measures, were observed at low
noise levels. Mitigating certain feedback mechanisms present in the signaling network improved information
transmission overall, as did targeted subsampling and clustering of response dynamics.

Conclusion: Computing the channel capacity of noisy signaling pathways present great probative value in
uncovering the prevalent trends in noise-induced dynamics. Areas of high dynamical variation can provide concise
snapshots of informative system behavior that may otherwise be overlooked. Through this approach, we can examine
the delicate interplay between noise and information, from signal to response, through the observed behavior of
relevant system components.

Keywords: Information theory, Mutual information, Channel capacity, Stochastic modeling, Chemical langevin
equation, Glioma differentiation, k-nearest neighbors, k-means clustering

Background
Cells engage in dynamic interactions with their environ-
ment, from which they receive and transmit information
in the form of biochemical signals, in order to sense and
respond physiologically to changing conditions. However,
the normal propagation and processing of these signals
can be hindered by the presence of biochemical noise,
which can be decomposed into cell-to-cell variability
(extrinsic noise) and stochastic intracellular fluctuations
(intrinsic noise) [1, 2]. In spite of this noise, robust and
reliable information transmission is critical for directing
the cellular decisions necessary for environmental adap-
tation and survival [1, 3]. Therefore, it is beneficial to
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quantify the accuracy and efficiency by which a given
signaling pathway relays information from the external
environment into the cell interior.
Information theory was developed in the late forties by

Shannon to study information transmission across man-
made communication channels [4]. When applied to bio-
chemical signaling pathways, it can be used to determine
the number of physiologically distinct states necessary to
fully capture a distribution of responses, often sampled
from a population of genetically identical cells exposed
to the same stimulus. While conventional statistical mea-
sures, such as the mean and variance, may capture the
magnitude of noise, they do not reflect the degree to
which noise prevents discrimination of different stimuli
or the accuracy of information processing at the single
cell level [3]. On the other hand, information theoretic
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measures require no mechanistic knowledge [3], and have
been found to be less sensitive to network perturbations
than the mean signal intensity, at the population level [5].
Understanding biological information processing at the
molecular and cellular level requires the ability to evalu-
ate the efficiency of signal transduction processes, a task
information theory is uniquely suited for [1].
Mutual information specifies the statistical dependence

between two random variables by measuring how much
information is preserved from input (signal) to output
(response). In the context of cell populations, mutual
information can indicate the number of different signals
the cell response data can adequately resolve. Besides
describing the quality of information transfer within sig-
naling networks, mutual information has also been used
to reverse-engineer signaling networks [6], and design
optimal experiments for parameter inference [7]. Since the
mutual information of a pathway is rarely known in vivo,
it is customary to compute the maximum mutual infor-
mation value over all possible signal distributions, known
as the channel (or information transmission) capacity. The
channel capacity serves as a fundamental feature of the
signaling channel between signal and response. While it is
formulated as an upper bound on the amount of informa-
tion transmitted through a channel, the channel capacity
is practically considered a lower bound on information
content due to the presence of noise [3]. Themutual infor-
mation and channel capacity of a signaling pathway can
be useful in quantifying the information content in com-
plex processes, such as cancer, where the flow of normal
biological information is disrupted [8, 9].
In this study, we present an information theoretic

approach to evaluating the noise-induced dynamics of two
stochastic models of glioma differentiation, the additive
noise (AN) model and the chemical Langevin equation
(CLE)model [10]. By consideringmultiple input and noise
levels, we compute the channel capacities of the glioma
differentiation pathway using both summary descrip-
tors and multivariate vectors representing response data.
Weakening ultrasensitive, positive feedback mechanisms
of certain upstream components actually improves sig-
nal fidelity.We additionally explore strategies tomaximize
information transmission by prioritizing different aspects
of the differentiation response when computing the chan-
nel capacity. We increased the channel capacity of the
CLE model by selecting time points with maximum vari-
ance for inclusion in the multidimensional response vec-
tor. Clustering response dynamics based on their relative
activation to each signal reveals distinct classes of infor-
mation transfer. Through this case study, we demonstrate
applicability of information theoretic analysis to similar
models of signaling pathways using stochastic differential
equations (SDEs). While there have been previous appli-
cations of information theory to stochastic models [7, 11],

we present a comprehensive framework with which to
apply information theoretic measures to biologically rele-
vant systems and explore tuning algorithm parameters to
maximize channel capacity.

Methods
Glioma differentiation model
Glioma differentiation therapy is an alternative to surgery,
radiation, and chemotherapy in cancer treatment [12].
Cholera toxin (CT) was found to induce glioma cell differ-
entiation, producing non-cancerous glia-like cells [12]. A
deterministic model initially incorporated multiple inter-
acting pathways [13–15] involved with CT-induced dif-
ferentiation, in order to clarify the underlying molecular
mechanisms [16]. This integrated pathway is shown in
Fig. 1. An irreversible bifurcation switch controlling the
phenotypic transition from proliferation to differentiation
was discovered, attributed to the ultrasensitive response
of cyclin D1 to CT treatment. Cyclin D1 dynamics were
also found to be correlated with those of gilial fibrillary
acidic protein (GFAP), a cell differentiation marker. The
initial model accounted for these observations by inte-
grating a positive feedback loop of cyclin D1, which when
downregulated by cyclin D1 translocation and degrada-
tion, induces higher GFAP levels and differentiation.
The glioma differentiation models are Itô stochastic

differential equation-based models, each consisting of
10 model states, 41 model parameters, and 1-2 noise
parameters. They are described in Additional file 1. The
AN model introduced in [10] accounted for stochastic
interference in the signaling pathway by employing addi-
tive noise in the form of Brownian motion, resulting in
SDEs. Higher noise intensities reduced the differentiation
potential (defined as the percentage of the cell popula-
tion to reach GFAP values of 0.8), induced heterogeneity,
and enhanced drug resistance to differentiation-inducing
drugs like CT. The model reaffirmed the ultrasensitivity
of cyclin D1 to CT by fitting highly specific Hill coeffi-
cients in its response to CT induction. Inhibiting cyclin
D1 feedback was found to decrease the heterogeneous
response and improve anti-cancer drug efficacy. Noise-
mitigating interventions were recommended as an effec-
tive solution to promote glioma differentiation. However,
this model contains constant noise terms, which may not
fully resemble stochastic signal transduction processes, as
was pointed out [10].
The CLE model, also proposed in [10], included mul-

tiplicative noise terms for both extrinsic and intrin-
sic noise sources that relied on protein concentra-
tions. Based on the white-noise version of the chemical
Langevin equation, the model predicted reductions in
differentiation potential when at least one noise source
was increased above its baseline level. We also explore the
information transmission of amodified version of the CLE
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Fig. 1 Glioma differentiation signaling network. Cholera toxin (purple) acts as a principal input to the system, inducing glioma cell differentiation via
multiple pathways, the PKA/CREB [13], P13K/AKT/pGSK3β/cyclin D1 [14], and IL6/JAK2/STAT3 [15] pathways. GFAP (pink) serves as the
differentiation marker, measuring the extent to which glioma cells differentiate into normal glia-like cells

model that inhibits positive feedback of cyclin D1, which
we term CLE-. When compared to the CLE model, the
CLE- model enhanced differentiation outcomes for the
population by increasing GFAP activity and reducing het-
erogeneity, implicating the ultrasensitivity of cyclin D1 to
CT for therapeutic inefficacy [10].
In this work, we produced an ensemble of continu-

ous GFAP response data for analysis, corresponding to
a population of 500 glioma cells, simulated with each
of the three models. GFAP dynamics were simulated in
response to 16 specific signals for 48 hours. Each signal
was composed of a distinct CT dose and noise level. We
considered 4 discrete CT doses of 0, 5, 7.5, and 10 ng/ml,
previously explored in [10, 16]. These doses were applied
continuously from the start of the simulation. For the AN
model, noise intensities of 0.1, 1, 5, and 10% were applied.
For the CLE and CLE- models, we specified values for
both the intrinsic and extrinsic noise (Table 1). Mutual
information, in this context, characterizes how accurately
time-varying trajectories of downstream proteins, like
GFAP, can discern differences between concentrations of

Table 1 Noise Levels for CLE and CLE- Models. Noise levels
indicate standard deviations of intrinsic and extrinic noise

Noise Level Intrinsic Noise Extrinsic Noise

LL 0.001 0.001

HL 0.1 0.001

LH 0.001 0.1

HH 0.1 0.1

upstream ligands, like CT and noise. The entire algorithm
and models were coded and implemented in MATLAB.

Multivariate channel capacity algorithm
In order to quantify the information transmission capa-
bilities of the glioma differentiation pathway, as inter-
preted by our target models, we implemented a chan-
nel capacity algorithm, proposed by [17], which maxi-
mizes the mutual information between a vector (response
dynamics) and a scalar (signal values). The response
vector contains single cell responses at multiple time
points. Multivariate formulations of the channel capac-
ity were able to reduce information loss due to extrinsic
noise substantially by incorporating more information
from multiple time points, exploiting the dependency in
response dynamics [17]. This additional information suf-
ficiently resolved overlapping response distributions in
higher dimensions arising from different signals, reducing
the effects of extrinsic variability.
The algorithm first estimates the conditional probabil-

ity density for each cell’s response, characterized by a
multidimensional vector, using k-nearest neighbors den-
sity estimation. To form this response vector, continu-
ous response data are subsampled uniformly around the
middle time point to the desired resolution. Then, the
entropy of the response, and the conditional entropy of
the response given the signal, can be determined. The dif-
ference in these two terms gives the mutual information,
which can then be maximized over all possible probability
distributions of the signal, using the MATLAB optimiza-
tion function fmincon, to obtain the channel capacity.
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Channel capacities of scalar descriptors characterizing
each cell’s individual GFAP trajectory were also calculated
for comparison to those computed from the trajectories
themselves. We considered three different scalar descrip-
tors for this work:

1. the maximum GFAP level (max response),
2. the ratio of the maximum GFAP level to the initial

GFAP level (max fold change), and
3. the area under the curve (AUC), computed using the

MATLAB integration function trapz.

Summary descriptors contained lower information trans-
mission capacities compared to their multivariate coun-
terpart [17–19]. In addition, we explored normalizing
each cell’s time course by the initial GFAP level, a fold
transformation that improved channel capacities in other
signaling pathways [18].
As in previous implementations of the channel capac-

ity algorithm [17, 18], we had to first determine adequate
values for both k, the number of nearest neighbors to con-
sider for computing the conditional probability density of
the response, and d, the dimension of the multivariate
response vector. The search for these values is shown in
Additional file 1: Figures S5-8. Tuning the value of k did
not substantially alter channel capacity values, so we set
k = 5 in accordance with a previous study [18]. Channel
capacities for different values of d converged to a maxi-
mum when dynamics from 5-6 time points were sampled
for the response vector. As a result, we set d = 6.

Results
Changes in response dynamics are most distinguishable at
low noise levels
To obtain the response data, we simulate the dynamics of
each target model for different signal values, in order to
observe how dynamics vary across CT doses for a given
noise setting. Figure 2 features the response dynamics for
the CLE model, arranged by noise level and CT dose.
At a low intrinsic noise, low extrinsic noise setting (LL),
almost all cells have become differentiated as CT dose
gradually increases. Once the intrinsic noise is increased,
a dramatic decrease in the GFAP response is observed,
with a rapid decline in the differentiation potential. The
final two rows of Fig. 2 show how extrinsic noise defines
the response. These trajectories are seemingly invariant
to the presence of intrinsic noise, reacting more to the
external variability in seemingly identical cells. Increased
intrinsic noise only serves to quicken the ascent to a
plateauing of GFAP levels, but otherwise, the trajectories
appear identical. Extrinsic noise predominates intrinsic
noise when both are raised to higher levels. Summary
descriptors applied to the CLE model also confirm these
trends (Fig. 3). The mean max response, max fold change,

and AUC descriptors show the greatest sensitivity to CT
dose at the LL noise setting. Low levels of intrinsic and
extrinsic noise discriminate between competing CT doses
the best. However, this dose discrimination ability abates
as the noise levels increase. For the CLE model, increased
noise diminishes sensitivity to CT dose.
Noise has a more pronounced effect on the AN model

(Additional file 1: Figure S1). A spectrum of GFAP activity
was found, spanning from no GFAP activity to com-
plete differentiation. Higher noise intensities disordered
the GFAP distributions at earlier time points, resulting in
divergent segments of the population with both increased
and decreased activity. When cyclin D1 feedback was
strongly inhibited, CLE- model dynamics show increased
differentiation efficiency regardless of noise level and CT
dose (Additional file 1: Figure S3). Maintaining robust-
ness in the face of intra- and extracellular perturbations
is accomplished by elucidating the pathway from CT
to GFAP, resulting in increased GFAP activity. Both the
AN (Additional file 1: Figure S2) and CLE- (Additional
file 1: Figure S4) models show broader ranges of values
when summary descriptors are applied. The CLE- model
had higher average values for these descriptors compared
to the CLE model, whereas the AN model expressed a
broader range of descriptor values.

Differences in static and vector channel capacities can be
attributed to model structure
We then calculated channel capacities when the summary
descriptors were used to describe model dynamics, shown
in Fig. 4. The channel capacities for the three descriptors
computed across the threemodels estimate approximately
between 1.5 to 2.5 bits of information flow from signal to
response, meaning approximately 3-6 composite signals
could be derived from these descriptors. The maximum
response value transmitted more information on average
for the AN (2.59 bits) and CLE (2.09 bits) models, while
the AUC carried themost information for the CLE-model
(2.48 bits). For the max fold change, there was less than
2 bits of information available for resolving signals, pos-
sibly because these values showed fairly small variation
across signals. For each model, the channel capacities for
the max fold change were significantly lower than those
for max response and AUC (p < 10−4, t-test). Further-
more, for each descriptor, the CLE model contained a
lower channel capacity value compared to the other two
models (p < 10−4, t-test).
Multivariate calculations of the channel capacity using

both the original and fold-transformed response dynam-
ics demonstrated an increase in information transmission,
corroborating prior studies [17–19]. The AN (2.63 bits),
CLE (2.33 bits), and CLE- (2.75 bits) models showed
visible improvements in average channel capacity once
more time points were incorporated. For each model, the
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Fig. 2 CLE response dynamics. Time courses of GFAP level are shown, corresponding to 500 simulated cells exposed to different signals composed
of CT dose and noise (intrinsic & extrinsic noise). Dark blue lines represent average GFAP level, with shaded areas indicating 95% confidence
intervals. Noise levels are defined in Table 1

vector channel capacities were significantly higher than
the static values (p < 10−4, t-test). Again, the CLE- and
AN models outperformed the CLE model in transferring
more signal information onto the response. Weakening
a critical positive feedback in the glioma differentiation

model enhanced differentiation outcomes for the CLE-
model, thereby improving information transmission. Like-
wise, the AN model induced sufficiently heterogeneous
dynamics at each distinct noise level, enabling higher
levels of activation and channel capacity. Finally, Fig. 4

Fig. 3 Heatmaps for summary descriptors of CLE model. Average maximum response (left), maximum fold change (center), and area under the curve
(right) values were calculated for the simulated cell population exposed to each signal. Noise levels are defined in Table 1
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Fig. 4 Information transmission for static and dynamic response data. Channel capacity values were calculated for static summary descriptors (left)
and multivariate vectors representing GFAP dynamics (right), for all target models. Vector channel capacity values were calculated for both original
(Raw) dataset, and fold-transformed (Fold) dataset. Results represent mean and standard deviation of 10 replications

proves that, unlike [18], no significant differences were
observed by fold-transforming the response dynamics for
these models.

Asymmetric response vector sampling improves
information transmission
Previous computations of the multivariate dynamic chan-
nel capacity relied on sampling the response vector
symmetrically around the middle time point [17, 18].
Increases in the sampling rate improved information
transmission, and that the tradeoff between low sampling
rates (sampling dynamics that have already attenuated)
and high sampling rates (redundant information) could
reveal an optimal rate for maximizing channel capacity
[19]. However, instead of focusing on periodic, uniform
sampling techniques, we sought to determine whether
asymmetric sampling focused on dynamical regions with
maximum variation could improve the channel capacity.
Two asymmetric sampling techniques were devised for
comparison:

1. balanced sampling, in which dynamics from the time
point with maximum variance in each of d equally
sized subintervals were sampled, and

2. greedy sampling, in which dynamics from the d time
points with maximum variance from the entire time
interval were sampled.

Figure 5 highlights the results from comparing the default
symmetric sampling strategy with our asymmetric vari-
ants for the CLE model. Gains of 0.15 and 0.09 bits were

reported for the balanced and greedy sampling methods,
respectively. Both variants displayed a significant increase
in maximum information transmission compared to the
default (p < 10−4, t-test). Sampling dynamics that display
maximum variation appears to add more value in terms of
relaying information from signal to response. An increase
in noise produces more variability in the response, fur-
ther enabling differences in signals to be teased out from
the response data as compared to a uniform sampling
regime. Balanced sampling slightly edges out greedy sam-
pling, implying that equal consideration for the variability
across the entire time interval provides a greater channel
capacity.

Removal or partitioning of response data reveals
subpopulations with distinct channel capacities
Removal of cell subpopulations nonresponsive to input
stimulation were found to improve the channel capacity
[18]. Likewise, we removed cells from the CLE model that
failed to differentiate to determine their effect on chan-
nel capacity. That is, all cells whose GFAP levels failed to
reach the threshold value of 0.8 by the end of the time
interval were removed from the channel capacity calcu-
lations. However, the channel capacity of the terminally
differentiated subpopulation failed to match that of the
entire population, barely surpassing 2 bits (Fig. 7).
One of the issues in identifying a fully differentiated

subpopulation is that stochastic modeling may prevent
classification of a cell as fully differentiated due to the
stochastic fluctuations in the GFAP level of a single cell.
Cases of false positives (cells having little to no GFAP
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Fig. 5 Information transmission for different multivariate vector sampling strategies with the CLE model. The default symmetric sampling method
was compared against balanced (uniform sampling of maximum dynamical variation across time course) and greedy (non-uniform sampling)
asymmetric methods. Results represent mean and standard deviation of 10 replications

activity until the end of the time interval) and false neg-
atives (cells having high GFAP activity that decline below
the threshold at the last minute) may complicate identifi-
cation of the differentiated subpopulation and calculation
of its information transmission properties. Therefore, we
resorted to clustering cells based on their response val-
ues across the entire time course, rather than at a single
time point. We clustered the response trajectories corre-
sponding to each signal into three clusters using k-means
clustering. In order of descending average GFAP level, we
labeled clusters C1, C2, and C3. Figure 6 illustrates the
resulting clusters and their trajectories. When both the
extrinsic and intrinsic noise are low, the clusters were not
well separated. However, higher noise levels resolved the
clusters fairly well.
Separation of the original dataset also resulted in sepa-

ration of the channel capacities, into three distinct values.
C1, C2, and C3 possessed average information transmis-
sion capacity values of 2.57, 2.35, and 1.87 bits, respec-
tively. Figure 7 shows that C1 and C3 were found to have
significantly different channel capacities compared to the
original dataset (p < 10−4, t-test). C1 represents the sub-
population with the highest GFAP levels and most likely
to be fully differentiated, while C3 contains cells likely to
be nonresponsive to signal stimulation. Isolating divergent
cell dynamics facilitates increased knowledge of the signal
to be passed along to the response as the C1 cluster cap-
tures a unique set of cells based on their entire response
trajectory. On the other hand, the channel capacity of C2
was found to be statistically insignificant compared to that
of the original dataset (p > 0.05, t-test), implying that
while the other two clusters represent the extremes of the

differentiation spectrum, C2 is more representative of the
entire dataset at large.

Discussion
Noise distorts normal cell function and communica-
tion, confounding reliable signal resolution given response
data. Nevertheless, most signaling pathways have evolved
structurally and functionally to protect against noise to
ensure information is relayed accurately from the extracel-
lular environment to the cell nucleus. Furthermore, there
is even an evolutionary justification for the presence of
noise to expand the range of phenotypes in fluctuating
environments [20]. However, it is important to under-
stand the extent to which the underlying information
may be compromised by noise and to determine whether
a cell can communicate accurately in an unpredictable
environment. Information theory provides a simple and
straightforward approach to quantify the amount of infor-
mation transmitted through these signaling pathways.
Any complex system can be reduced to a black box com-
munications channel for a rigorous evaluation of how
information is encoded, transmitted, and decoded. Our
work presents a viable information theoretic framework
to analyze signaling network models, and can likewise be
applied to similar systems where noise plays an active role
in influencing the dynamics of key system components.
By treating noise as an element of a biochemical sig-

nal, we have normalized noise as a biological condi-
tion. Our in silico approach explicitly considered differ-
ent noise conditions in formulating these signals, allow-
ing for a comprehensive analysis of minimally to heavily
perturbed response data. There are scenarios where the
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Fig. 6 CLE response dynamics arranged by cluster. Time courses of GFAP level are shown, corresponding to 500 simulated cells exposed to different
signals composed of CT dose and noise (intrinsic & extrinsic noise). Dynamics are colored by cluster membership

Fig. 7 Information transmission for original and modified response data with CLE model. Channel capacity values were calculated for original (Raw)
dataset, dataset with cells that reached differentiation threshold at end of simulation (Final Differentiated), and datasets representing distinct
dynamical clusters (C1, C2, and C3). Results represent mean and standard deviation of 10 replications
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presence of noise may propagate through to the response
dataset implicitly, so such dynamics will always have to be
accounted for. The variation in a signal will always impact
the reliability of its transmission more than its intensity
[5]. From analysis of the response dynamics of the CLE
model, the combination of both intrinsic and extrinsic
noise is obviously non-additive. Extrinsic noise obfuscates
the interpretation of channel capacity as all dynamics
depend on model parameters perturbed by extrinsic noise
[11]. Undoubtedly, increasing the dimension of the mul-
tivariate vector when computing the channel capacity
alleviates the effects of intrinsic, and to a larger extent,
extrinsic noise [17, 19].
Considering all of our target models, the CLE model

transmitted the least information from signal to response
on average, regardless of what information was used to
compute the channel capacity. The CLE- model weakened
negative regulation of the differentiation marker GFAP,
relieving a de facto information bottleneck [21]. It is most
likely the case that the CLE model serves as a negative
feedback variant of the CLE- model. Negative feedback
was found to initially increase dynamical variation, and
channel capacity, but display the opposite patterns over
longer periods of time [21]. By inhibiting positive feed-
back of cyclin D1, higher degradation rates of cyclin D1 (a
consequence of the CLE- model) promote greater GFAP
activity and less uncertain GFAP distributions. Our results
underscore the importance of cyclin D1, an upstream
regulator of GFAP, in characterizing the differentiation
response and information flow in this signaling network.
Similarly, the AN model, with its generic treatment of
noise, also has a higher level of activation and informa-
tion capture. However, gains in information exhibited by
this model can be easily attributed to the disorganization
introduced by an artificial noise source that is harder to
actualize in a real-world setting. Furthermore, its predic-
tions were suspect when inhibition of cyclin D1 feedback
was implemented [10].
Sampling dynamics irregularly for inclusion in the

response vector improved information transfer mod-
estly. In particular, we found accounting for dynamical
variation evenly across time led to more information
being transferred. Our findings as it relates to asym-
metric sampling agree well with previous results that
suggest sampling dynamics in regions where they are
most receptive to the signal will increase the chan-
nel capacity [19]. In the future, we may consider fea-
ture selection or dimensionality reduction techniques
that identify optimal time points for better discrim-
ination of response dynamics arising from different
signals.
We segregated nonresponsive (potentially cancerous)

and responsive (differentiated) subpopulations on the
basis of their total response profile, observing significant

differences in channel capacity. Separating nonresponsive
(potentially cancerous) cells from responsive ones may
produce purified subpopulations that may respond differ-
ently to targeted anticancer therapies in the short-term
[22]. Clustering cells into similar response phenotypes
also serves to decrease extrinsic noise, but still renders
them susceptible to intrinsic noise [18]. Each subpopula-
tion has distinct information transmission capacities. As
evidenced by Fig. 7, mixing subpopulations understates
the network’s channel capacity.
The concept of mutual information is crucial to under-

standing the limits by which effective cell signaling can
translate to effective cell decision making, given uncer-
tainty in both the intracellular machinery and the extra-
cellular environment. It is often the case that relative
differences in concentrations between upstream compo-
nents of a pathway are discerned by downstream compo-
nents, not their absolute concentrations [2]. The accuracy
of this mapping between external signals and internal
states is a clear indicator of signal processing complexity
[1]. Mutual information and channel capacity, as con-
stituted in this work, may greatly oversimplify the myr-
iad of informational transactions occurring between and
within cells [23]. There may be more complex networks
of intracellular relationships beyond a given mathemati-
cal model that the mutual information may not account
for [2]. Furthermore, experimental noise may confound
key measurements of the underlying system. Maximiz-
ing signal distributions may be physiologically unreal-
istic and overly optimistic in comparison to the true
distribution [1].
All of the signals considered here could be encoded in

exactly 4 bits. The channel capacity values obtained in
this study varied between 1.5 and 3 bits. This may be due
to inclusion of noise in a theoretical-like analysis. Com-
mon signaling motifs were found to contain 4-6 bits of
information analytically, whereas the majority of biologi-
cal systems transmit less than 1 bit experimentally [24, 25].
This discrepancy was speculated to be attributed to the
functional necessity of real-world signaling networks and
the realization of extrinsic noise in signal transduction in
vivo.
The multivariate channel capacity algorithm provided

improved estimates of the information transmitted from
CT to GFAP in the presence of noise. However, it is
not without its drawbacks. The memory capacity of a
cell to store vector information over time is a limited
resource and can be subject to noise [19, 24]. The informa-
tion transmitted eventually saturates regardless of which
time points are memorized [19]. The k-nearest neigh-
bors density estimation method may misperform for cer-
tain response and signal distributions. Extrapolating the
channel capacity to an infinite sample size may introduce
some bias [3].
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Future work will expand on the findings presented in
this work. Alternative input stimulation types can be
examined for differences in information transmission,
like previous studies [11, 18]. The absence of explicit
cell-to-cell communication prevents a deeper analysis of
the interdependencies of a complex signaling system,
wherein cells would influence its nearby neighbors. How-
ever, heterogeneity at the single cell level was found to
occur through stochastic state transitions between cancer
cell phenotypes, not intercellular signaling [22]. Purified
cell subpopulations gradually revert to (mixed) equilib-
rium proportions over time, during which cells transition
stochastically between states. Modeling cell state transi-
tions in stochastic signaling networks may be a fruitful
avenue of research to elucidating the information con-
tent. The multiple signaling pathways that form a network
render it robust to information loss due to noise [21].
Isolating the parallel signaling pathways that contribute
to glioma differentiation may also shed light on which
pathways bear the weight of, and compensate for changes
in, information flow [5]. Information is often lost as it
traverses through the network, an example of the data
processing inequality [3, 5]. Cell-fate processes, such as
differentiation, entail a sequence of important intermedi-
ate steps where binary decisions take place [1].

Conclusions
We have proposed an information theoretic framework to
examine the information transmission properties of a sig-
naling pathway models related to glioma differentiation.
Inhibiting positive feedback mechanisms improved the
channel capacity. Increases in information transmission
were observed when areas of maximum dynamical vari-
ation and similar response dynamics were emphasized.
The channel capacity provides a suitable measure of the
efficiency of the information transmitted between signal
and response components in the glioma differentiation
pathway.
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