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Abstract

The infant gut microbiome progresses in composition and function during the introduction of

solid foods throughout the first year of life. The purpose of this study was to characterize

changes in healthy infant gut microbiome composition, metagenomic functional capacity,

and associated metabolites over the course of the complementary feeding period. Fecal

samples were obtained at three ‘snapshot’ timepoints from infants participating in the ‘Nour-

ish to Flourish’ pilot study: before the introduction of solid foods at approximately 4 months

of age, after introducing solid foods at 9 months of age, and after continued diet diversifica-

tion at 12 months of age. KEGG and taxonomy assignments were correlated with LC-MS

metabolomic profiles to identify patterns of co-abundance. The composition of the micro-

biome diversified during the first year of life, while the functional capacity present in the gut

microbiome remained stable. The introduction of solid foods between 4 and 9 months of age

corresponded to a larger magnitude of change in relative abundance of sequences assigned

to KEGG pathways and taxonomic assignments, as well as to stronger correlations with

metabolites, compared to the magnitude of changes and number of correlations seen during

continued diet diversification between 9 and 12 months of age. Changes in aqueous fecal

metabolites were more strongly correlated with KEGG pathway assignments, while changes

in lipid metabolites associated with taxonomic assignments, particularly between 9 and 12

months of age. This study establishes trends in microbiome composition and functional

capacity occurring during the complementary feeding period and identifies potential metabo-

lite targets for future investigations.

Introduction

The infant gut microbiome undergoes dramatic shifts in composition from the unstable neo-

natal microbiome towards a more stable microbiome throughout the first year of life [1]. This
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progression has been characterised as non-random in response to life events and environmen-

tal exposures, such as diet [2]. Because the introduction of solid foods is a disruptive event for

the infant gut ecosystem, it provides an opportunity to understand how the early infant gut

microbiome adapts in both composition and function over time [3]. It is accepted that the

composition of microbial species diversifies throughout the first year of life. However, it is less

clear how the functional capacity of the microbiome changes in response to complementary

feeding: the addition of solid foods to the milk-based diet.

At the phylum level, the gut microbiome of neonatal infants is dominated by approximately

70% Actinobacteria and Proteobacteria and approximately 30% Firmicutes, Bacteroidetes, and

Verrucomicrobia [4]. By adulthood, the microbiome is composed of approximately 90% Fir-

micutes and Bacteroidetes, and approximately 10% Actinobacteria, Proteobacteria, and Verru-

comicrobia. The majority of this transition occurs within the first two to three years of life [5].

Actinobacteria are efficient utilizers of oligosaccharides, one of the primary components of

breastmilk, and thrive in the infant gut [6]. Proteobacteria and Bacteroidetes utilize proteins

and saccharides, substantial components of breastmilk and infant formula, which may allow

members of these families to persist throughout the transition to diverse substrates from solid

food [7]. The Firmicutes phylum encompasses a diversity of families and species of microbes

that collectively provide the enzymatic capability to utilize carbohydrates, proteins, saccha-

rides, and fermentative by-products of other microbes such as formate, lactate, succinate, ace-

tate, and various gases [8]. This metabolic diversity allows Firmicutes to fill new resource

niches that are created during dietary diversification. Collectively, the gut microbiome of

milk-fed infants adapts to a rapidly changing diet during the complementary feeding period

through shifts in populations of microbial species with a vast enzymatic capacity.

This is a secondary analysis of a pilot study. The pilot study was designed to pilot the meth-

odologies required for a randomized control trial (RCT). In this study we hypothesised that

changes in the composition, rather than function, of the gut microbiome of infants, are more

significant during the time-period when infants are introduced to solid foods (between 4 and 9

months of age), compared to approximately 3 months later (between 9 and 12 months of age),

when the diet has continued to diversify. Shotgun metagenomics and Liquid Chromatogra-

phy-Mass Spectrometry (LC-MS) based metabolomics were carried out on fecal samples col-

lected from infants at three different time points to characterise changes in the microbiome

and metabolome following a period of dietary diversification. The ‘snapshot’ time points were

at 4.1 months of age ± 31 days (before the introduction of solid foods), at 8.7 months of

age ± 18 days, and at 11.7 months of age ± 18 days (subsequently referred to as 4, 9, and 12

months of age respectively). Sequences assigned to taxonomy and gene functions (KEGG path-

ways), and metabolomic data were integrated into a longitudinal analysis to identify key asso-

ciated features.

Materials and methods

Ethics approval and consent to participate

Ethics approvals were granted by the New Zealand Health and Disability Ethics Committee

(Ref: 17/NTA/239). Written informed consent was obtained from parents on the infant’s

behalf.

Data collection and analysis will not be performed blind to the conditions of the experi-

ments. Forty infants who primarily consumed breastmilk and had not yet begun consuming

solid foods were recruited from the Auckland Metropolitan area between January and

December 2018. The participants were part of the ‘Nourish to Flourish trial’, a pilot study

designed to assess the feasibility of conducting nutrition research and systems biology analyses
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in weaning infants. Trial registration: Australia New Zealand Clinical Trials Registry,

ANZCTR12618000157279. Registered February 1, 2018, http://www.anzctr.org.au/. Infants

were randomised by numbers 1–10 and 11–40 into either of two intervention groups, one con-

suming a daily dose of commercially available probiotics (1 billion CFU of Bifidobacterium
animalis ssp lactis) (n = 10), and the other consuming 5 grams of lyophilised kumara (a variety

of New Zealand sweet potato, including the skin) daily (n = 30) (Fig 1). Throughout the study

six infants withdrew, five were excluded from the analysis for incomplete sample sets, two

were excluded from analysis for incomplete diet data records, and two were excluded due to

oral antibiotic prescription within 21 days of sample collection (Fig 1). The remaining 25

infants were included in the subsequent analyses presented here.

Sample collection

Stool samples were collected by parents from nappies during the three days before clinic visits.

At the 4 months of age clinic visit, before the introduction of solid foods, a nappy liner was

provided to accommodate the liquid consistency of infant stools. Samples at later time points

were scooped into collection pottles. Parents were asked to store samples in the home freezer

(-20˚C) and were provided with Styrofoam boxes and ice packs for transport to the clinic.

Stool samples were subsequently stored at -80˚C until processed for microbiome and metabo-

lome analyses (Fig 2). Analyses were conducted in two batches: batch 1 included samples from

all 25 infants at 4 months of age, approximately half of the 9 month old samples, and 6 of the

Fig 1. CONSORT flow of Nourish to Flourish pilot study (ANZ Clinical Trials Registry number 12618000157279).

https://doi.org/10.1371/journal.pone.0270213.g001

PLOS ONE Adaptation of the infant gut microbiome during the complementary feeding transition

PLOS ONE | https://doi.org/10.1371/journal.pone.0270213 July 14, 2022 3 / 21

http://www.anzctr.org.au/
https://doi.org/10.1371/journal.pone.0270213.g001
https://doi.org/10.1371/journal.pone.0270213


12 month old samples. Batch 2 included the remaining 9 and 12 month old samples as well as

a repeated 4 month old sample from batch 1 for quality control.

Fecal microbiome

A single fecal aliquot was vortexed, centrifuged at 3,000 rcf for 15 min to separate the bacterial

pellet from the supernatant, and the supernatant was removed. This process was repeated for

low volume samples to achieve approximately 100 mg to carry out DNA isolations DNA was

isolated from fecal samples using a Macherey-Nagel DNA isolation kit, quantified using a

Nanodrop Spectrophotometer (Thermo Fisher Scientific), and the approximate degree of deg-

radation and fragmentation of DNA was visualised by gel electrophoresis.. The APC Micro-

biome Institute, Teagasc, part of the Agricultural and Food Development Authority in Cork,

Ireland carried out the shotgun metagenomic sequencing using Illumina NextSeq paired-end

150 bp x 2 sequencing. Libraries were prepared using the Illumina Nextera XT kit. Paired

sequences were joined with PEAR version 0.9.6 [9]. Host sequences were detected and

removed using the bbduk.sh function from the BBMAP package version 38.22–0 [PM2], with

the human genome (Human GRCh38) as reference. Metaxa2 version 2.1.3a [10] was used to

identify SSU ribosomal DNA and taxonomy was assigned using the Silva 128 database [11].

The "blastx" function of DIAMOND version 0.9.22 [12] was used to map the reads against the

"nr" NCBI database. Megan version 6 ultimate edition [13] was used to assign putative func-

tions to the DIAMOND alignment files against the KEGG database [14–16].

Phylum and species-level taxonomic compositions were used for downstream analyses

(Fig 2). Composition tables were filtered to exclude rare species, defined here as species present

Fig 2. Diagram of the analytical approach for elucidating the shifts in microbiome composition and function over time in the Nourish to Flourish

cohort. Specific analyses are in bold italic.

https://doi.org/10.1371/journal.pone.0270213.g002
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at< .001% in fewer than three samples. KEGG pathways are structured into levels with level 1

grouped into seven; metabolism, genetic information processing, cellular processes, organis-

mal systems, human diseases and drug development. Level 2 further stratifies the grouping

with each having several sub groupings down to level 3 which then identifies the specific gene

pathway involved (glycan biosynthesis for example). A total of 116 level 6 Metaxa2 assign-

ments and a total of 184 KEGG pathway assignments (Level 3) were included in subsequent

analyses. Total sum scaling within individual samples was used to indicate relative abundances

of species and KEGG pathways.

Fecal metabolome

The normalisation of fecal samples by weight was carried out by lyophilising and homogenis-

ing samples. Biphasic extraction of 50 mg fecal sample was performed with methanol:water:

methyl tert-butyl ether (6:7:10v/v). An aliquot of the methanol:water phase containing the

aqueous metabolites, and an aliquot of the methyl tert-butyl ether phase containing the lipids,

were subsequently dried on a heating block (30˚ C) under a continuous stream of nitrogen.

Lipid extracts were reconstituted with chloroform:methanol (2:1 v/v) with a deuterated

phosphatidylethanolamine internal standard. Aqueous samples were reconstituted with aceto-

nitrile:water (1:1 v/v) with deuterated amino acid internal standards. Instrument methods,

including columns, solvents, gradients, and spray voltage, were the same for both LC-MS anal-

ysis batches. LC-MS metabolomics was performed using a high-resolution Orbitrap (Thermo)

system, with polar metabolites separated using HILIC chromatography and lipids separated

using a CSH-C18 reversed-phase separation [17–19]. Both polar metabolite and lipidomic

LC-MS analyses were performed in both positive and negative ionisation modes.

The MSConvert function of ProteoWizard™ was used to convert Thermo RAW data files to

mzML files. Peak detection, retention time alignment, grouping and gap filling were carried

out using XCMS [20] and in-house scripts in R version 3.6.2 [21]. The ‘diffreport’ function of

XCMS was used to carry out a two-group comparison between (1) pooled quality control

(QC) samples from Batch 1 and blank samples and (2) QC and participant samples. The QC vs

blanks comparison was used to identify non-significant (α = 0.05) m/z features that corre-

spond to background noise contributed by blanks, which were subsequently removed from

the QC vs samples list of features. The feature list generated by comparing QC vs samples

was further cleaned by browsing extracted ion chromatograms generated by the diffreport

function in XCMS and deleting low quality m/z features that represented background noise.

The filtered data matrices were then subjected to Lowess normalisation using Workflow4Me-

tabolomics (Galaxy) and subsequent filtering based on the coefficient of variance (>30% CV

removed).

The resultant data matrix was used for downstream statistical analyses and identification by

LipidSearch™, based on comparison of the ddMS2 data obtained from selected samples from in
silico calculations and database. The Q-Exactive database with the product search option was

selected. Default parameters were used for LipidSearch™ quantitation. For this study, [M-H]-

and [M+HCOO]- adducts, and [M+H]+, [M+NH4]+, [M+Na]+ adducts were selected for nega-

tive and positive ionisation modes, respectively. A retention time tolerance of 0.01 min and

mass error tolerance of ± 5 ppm was allowed. Results and identifications from individual MS2

files (LipidSearch™ results) were concatenated into a single table (one each for positive and

negative ionisation modes) and matched with the respective, normalised, peak intensity table

(XCMS results). Identification of water-soluble (aqueous) metabolites was carried out by align-

ing unique m/z and retention times with an in-house library of metabolites specific to the

instruments and columns used at AgResearch, which has been compiled and tailored from
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external reference libraries. Concentrations of metabolites were log-transformed for subse-

quent analyses.

Statistical and bioinformatic analyses

Statistical analyses were carried out in R version 4.0.2 on total sum scaled taxonomy and meta-

genome datasets, and log-transformed metabolome data. These methods maintain positive val-

ues, which is critical when assessing the direction of change in abundance or concentration.

Ordination analyses, including sparse Principle Component Analysis (sPCA) and sparse Par-

tial Least Squared Discriminant Analysis (sPLSDA) and regularised Canonical Correlation,

were carried out using the MixOmics package version 6.1.1 in R version 4.0.2 after filtering

low-abundance reads and total sum scaling [22]. Further identification of variables important

to projection (VIPs) was identified using MixOmics, and a variable’s scores from each compo-

nent were combined into a sum VIP score to better understand the contribution of a variable

to the given model. Regularised canonical correlations were based on Pearson’s correlations of

the delta (change) between time points and were carried out on 3 components using the clus-

tered image heatmap function in MixOmics before filtering significant correlation coefficients

from the resulting matrix. A correlation cut-off of 0.6 was used for the KEGG pathway correla-

tions, whereas a correlation cut-off of 0.5 was used for species correlations, based on differ-

ences in the significance of correlations between the given datasets. Permutational analysis of

variance (PERMANOVA) was carried out in the RVAideMemoire package version 0.9–7.8 at

2000 permutations per time point comparison, and Benjamin-Hochberg false discovery rate

(FDR) corrected p-values used to determine significance. Non parametric one way ANOVA

was used to identify whether groups were different and then this was followed up with post

hoc testing (Tukeys).

Results

As a pilot investigation, the Nourish to Flourish study demonstrated the safety and feasibility

of conducting nutritional systems biology research in infants during complementary feeding.

Results presented here will focus on the changes in microbial composition and predicted func-

tional capacity over the complementary feeding period, and associated changes in metabolite

concentrations.

Broad trends in the gut microbiome composition and function

Before the introduction of solid foods, Actinobacteria, such as Bifidobacterium, were the most

abundant (Fig 3A). Firmicutes gradually increased in abundance from approximately 25% at 4

months of age to approximately 53% of sequences assigned to phyla at 12 months of age (Fig

3A). Both Actinobacteria and Proteobacteria decreased in relative abundance (by 10% and

20% respectively), and members of the Bacteroidetes phylum increase by 8% over time (Fig

3A). Species belonging to Verrucomicrobia, Fusobacteria, Cyanobacteria, Saccharibacteria

and Tenericutes phyla were present in much lower proportions at all time points (Fig 3A).

Metagenomic sequences were predominantly annotated to “signalling and cellular pro-

cesses” KEGG pathways at Level 2 classification at 4 months of age and decreased over time

from approximately 19.4% to 17.1% of total sequences annotated (Fig 3B). Genes assigned to

“genetic information processing” increased from approximately 15.1% at 4 months of age to

17.2% by 12 months of age (Fig 3B). Sequences assigned to “metabolism of carbohydrates”,

“proteins” and “amino acids” remained at approximately 9%, 8%, and 6%, respectively, of total

sequences annotated to level 2 KEGG pathway classifications over time (Fig 3B). The variation

in the relative abundance of sequences assigned to level 2 KEGG pathways was smaller than
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the differences in the relative abundance of sequences assigned to dominant phyla, shown by

the shaded areas around trend lines, and the relative abundances were smaller for functional

groups than for phyla (Fig 3A and 3B).

The diversity of species in the infant gut microbiome increased significantly with the addi-

tion of solid foods to the milk-based diet (Fig 3C). However, the diversity of functional genes

Fig 3. Panels A and B show trends in sequences assigned to phyla and level 2 KEGG pathways at 4 months of age, 9 months of age, and 12

months of age. Panels C and D show Shannon alpha diversity index at each time point with significant differences evaluated by post hoc testing

between sampling time points for sequences assigned to level 7 Metaxa2 species and sequences assigned to level 4 KEGG pathways, respectively. The 4

month old time point is shown in blue, 9 months in orange and 12 months in grey. The shading around the lines in A and B indicate minimum—

maximum values.

https://doi.org/10.1371/journal.pone.0270213.g003
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remained, on average, the same, as measured by Shannon alpha diversity index in the R pack-

age “vegan” at level 7 of Metaxa 2 taxonomic assignments and level 4 KEGG pathway assign-

ments (Fig 3D). The increase in taxonomic alpha diversity was more significant between 4 and

9 months of age than between 9 and 12 months of age (Fig 3C). The alpha diversity scores for

relative abundances of sequences assigned to KEGG pathways were more variable at 4 months

of age, but the difference narrowed at 9 and 12 months of age (Fig 3D).

Shifts in the fecal microbiome and metabolome between time points

Both sPCA and sPLS-DA were carried out on genus level Metaxa2 assignments, level 3 KEGG

pathway assignments, and both aqueous and lipid metabolites to visualise the changes in the

infant gut microbiome throughout the complementary feeding period (Fig 4).

The sPCA did not show any obvious separation between groups. Application of sPLS-DA, a

supervised ordination analysis, also did not increase the separation between time points,

although the overlap between time point clusters was reduced in the sPLS-DA models of

sequences assigned to KEGG pathways, aqueous metabolites, and lipid metabolites (Fig 4D).

The percentage of explained variance was lower at 12 months of age than 9 months of age for

Metaxa2 assignments, KEGG pathway assignments, and metabolites (Fig 4). KEGG pathway

assignments had the highest percentage of explained variance at both timepoints, followed by

aqueous metabolites (Fig 4).

The taxonomic composition was most similar between individual infants at 9 months of

age, compared to at 4 or 12 months of age (Fig 4A). Sequences assigned to KEGG pathways

became increasingly similar between individuals over time (Fig 4C), in agreement with the

alpha diversity patterns shown in Fig 3D. Sequences assigned to Metaxa2 classifications and

KEGG pathways separated into two distinct clusters at 4 months of age in both sPCA and

sPLS-DA models (Fig 4C and 4D). This separation was predominantly associated with mode

of birth (i.e. caesarean section vs vaginal delivery), but the influence of other factors such as

early-life environmental, genetic, and dietary factors could not be ruled out. The differences

between these infants diminished at 9 and 12 months of age.

Metabolite profiles were more variable between infants at all time points than microbiome

taxonomy or KEGG pathway assignments, as shown by the scales on which the sPCA ordina-

tions were cast (Fig 4). Supervision by time point in sPLS-DA models led to the separation of

the 4 months of age samples, but the 9 and 12 months of age metabolite profiles were similar

in these models (Fig 4F and 4G). Aqueous metabolite profiles became more similar between

infants at the 9 month time point, compared to infants at either 4 or 12 months of age (Fig 4E).

Lipid metabolite profiles of 4 month old samples were similar among infants in the sPCA

model (Fig 4G). These similarities diminished at 9 and 12 months (Fig 4G).

Separate sPLS-DA models were carried out to compare taxonomy assignments and KEGG

pathway assignments between 4 and 9 months of age and 9 and 12 months of age. VIPs impor-

tant to sPLS-DA were selected from these two-time point models and importance was derived

by adding variables’ VIP scores from each of the three components, thus indicating how that

variable contributed to the separation of each time point. PERMANOVA was used to compare

the significance of the difference between the means and spread of relative abundance of indi-

vidual taxonomic assignments and individual sequences assigned to KEGG pathways between

time points. Variables considered significantly different by PERMANOVA, or which consti-

tuted a substantial proportion of the overall abundance, are shown in Figs 5 and 6 along with

cumulative VIP scores, relative abundances, and log2 fold change between time points. Mean

relative abundances of 0 for any given time point were imputed with a value 10−6. Considering
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Fig 4. Ordination analyses of taxonomic assignments are shown in panels A and B, KEGG pathway assignments are shown in panels C and D,

aqueous metabolites in panels E and F, and lipid metabolites in panels G and H. Sparse Principle Component Analyses are shown in the left hand

column (A, C, E, and G) and sparse Partial Least Squared Discriminant Analysis plots supervised by time point, and cast on 3 components are

shown in the right hand column (B, D, F, and H). Four month old samples are depicted in blue, 9 month old samples in orange, and 12 month old

samples in grey with individuals marked in circles, triangles, and crosses respectively. Ellipses depict 95% confidence of clustered samples. The

explained variance (%) is listed in parenthesis on each axis.

https://doi.org/10.1371/journal.pone.0270213.g004
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the small sample size, high variability, and semi quantitative nature of non-targeted metabolite

profiling, metabolite data was omitted from this analysis.

Between 4 and 9 months of age, most species of Actinobacteria and Proteobacteria

decreased in relative abundance, replaced by increasing relative abundance of species of Firmi-

cutes. An apparent increase in relative abundance of Bacteroidetes was not significant. Within

the Firmicutes phylum, the 4 to 9 months of age comparison was characterised by significant

increases in sequences assigned to species belonging to the Ruminococcaceae, Lachnospiraceae,

Fig 5. Taxonomic changes grouped by phylum and direction of change in relative abundance that were significantly different in either time point

comparison by PERMANOVA analysis. Taxa with an FDR corrected p-value of>0.05 at either time point were omitted, apart from 1 which was not

significant by PERMANOVA but constituted a large proportion of the microbiome indicated by ��. Log2 fold change (Log2FC) between mean relative

abundances at each time point are colored in orange for increasing fold change, and blue for decreasing fold change. Shading in the variable important

to projection (VIP) column indicates the most important variables to the sPLS-DA projections in Fig 2 with darker shading indicating higher

cumulative VIP scores. Trend arrows indicate the direction of change in abundance between time points; bent arrows show the direction of change

between the first and second time points, followed by the change from the second to third time points. Additional data for species not included above is

available in S1 Table in S3 File.

https://doi.org/10.1371/journal.pone.0270213.g005
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Peptostreptococcaceae, Clostridiales, Veillonellaceae, and Erysipelotrichaceae families (Fig 5).

Some species of Rumincococcus, Erysipelotoclostridium, Bacillaceae, and Christensenellaceae
decreased in relative abundance at 9 months of age, before recovering and surpassing prior

abundances at 12 months of age, which strongly influenced the separation of clustering

between 9 and 12 months of age in sPLS-DA (Fig 5). With the exceptions of Clostridium neo-
natale, which was not detected at 12 months of age, and Clostridium sensu stricto, species

belonging to the Firmicutes family were detected at higher relative abundance at 12 months of

age compared to at 4 months of age (Fig 5). Populations of some Peptostreptococcaceae subspe-

cies and Veillonellaceae increased significantly during the 4 to 9 month of age comparison

before decreasing at 12 months of age (Fig 5).

Most species of Actinobacteria and Proteobacteria significantly decreased over time. How-

ever, the apparent decrease in the most abundant taxonomy assignment, Bifidobacteriaceae,

Fig 6. Changes in KEGG pathway assignments over time. Grouping is by parent pathways. The table is filtered to include KEGG pathway

assignments that were significantly different in either time point comparison by PERMANOVA analysis and had a log2 fold change>|0.2|. Log2 fold

change (Log2FC) between mean relative abundances at each time point are colored in orange for increasing fold change intensity, and blue for

decreasing fold change intensity. Shading in the variable important to projection (VIP) column indicates the most important variables to the sPLS-DA

projections in Fig 2 with darker shading indicating higher cumulative VIP scores. Trend arrows indicate the direction of change in abundance between

time; bent arrows show the direction of change between the first and second time points, followed by the change from the second to third time points.

Additional data for species not included above is available in S2 Table in S3 File.

https://doi.org/10.1371/journal.pone.0270213.g006

PLOS ONE Adaptation of the infant gut microbiome during the complementary feeding transition

PLOS ONE | https://doi.org/10.1371/journal.pone.0270213 July 14, 2022 11 / 21

https://doi.org/10.1371/journal.pone.0270213.g006
https://doi.org/10.1371/journal.pone.0270213


was not significant by PERMANOVA, and this remained the single most abundant taxonomic

assignment at 12 months of age (Fig 5). Whereas some Gammaproteobacteria, including the

Enterobacteriaceae family and Vibrionaceae vibrio, decreased consistently and significantly

over time, other Gammaproteobacteria such as Moraxcellaceae and Pseudomonas increased in

relative abundance after a decrease between 4 and 9 months of age (Fig 5).

More KEGG pathway assignments (57%) were significant by PERMANOVA analysis than

Metaxa2 assignments (39%) for at least one time point comparison. The magnitude of log2

fold-change of sequences assigned to KEGG pathways was smaller than the fold-change of

sequences assigned to taxonomy (Figs 5 and 6), in line with patterns identified in Fig 3.

The magnitude of fold-change was greater between 4 and 9 months of age than between 9

and 12 months of age (Fig 6), in agreement with clustering patterns shown in Fig 4. More

sequences assigned to KEGG pathways significantly decreased in relative abundance between

4 and 9 months of age (Fig 6), also in agreement with diversity scores shown in Fig 3 and clus-

tering identified in Fig 4.

Sequences assigned to “amino acid metabolism”, “xenobiotic degradation and metabolism”,

and “terpenoid and polyketoid metabolism” consistently decreased over time, along with asso-

ciated “protein families: metabolism” pathways (Fig 6). In particular, decreased cytochrome

P450 degradation pathways had a strong influence on the separation between 4 and 9 months

of age sPLS-DA clustering. Sequences assigned to “secondary metabolite biosynthesis” and

“secondary bile acid biosynthesis” increased consistently in relative abundance over time,

whereas “biosynthesis of lipopolysaccharides” and associated “protein family: metabolism”

pathways decreased in relative abundance (Fig 6). Of the cellular processes that changed signif-

icantly and with a log2 fold change of>|.2|, sequences assigned to the “PI3k-Akt signalling

pathway” and “RNA transport” increased significantly over time (Fig 6). Sequences assigned to

“biofilm formation” from specific species all significantly decreased between each time point

(Fig 6).

Correlation and integration of the microbiome with metabolites between

time points

Regularised canonical correlations based on Pearson’s correlations of the delta (change)

between time points of microbiome datasets (taxonomic assignments (level 6), KEGG pathway

assignments (L3)), and metabolome datasets were carried out to identify significantly corre-

lated shifts between time points. Correlations between changes in relative abundances of

KEGG pathways and changes in metabolite concentration had more significant coefficients

than correlations between microbial species and fecal metabolites.

Filtered heatmaps depicting correlations above the cut-off values are shown in Figs 5–8.

There were more significant correlations, both positive and negative, between 4 and 9

months of age than between 9 and 12 months of age. These observations are in agreement with

the results depicted in Figs 3, 5, 6. However, of the taxonomy and KEGG pathway assignments

that were found to correlate significantly with metabolites, few overlapped with assignments

found to be significant by PERMANOVA shown in Figs 5 and 6 in the 4 vs 9-month time

point comparison. Sequences assigned to KEGG pathways correlated more strongly with aque-

ous metabolites than lipid metabolites, whereas microbial species correlated more strongly

with more lipid metabolites. This pattern was particularly apparent between 9 and 12 months

of age (Figs 6 and 7).

Between 4 and 9 months of age Unclassified Firmicutes, Unclassified Gammaproteobac-

teria, and Enterobacteriales were the only taxonomic assignments that correlated strongly with

metabolites and changed significantly (PERMANOVA FDR corrected p-value of<0.05; Figs 5
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and 7). Of the sequences assigned to KEGG pathways that correlated strongly with changes in

metabolite concentrations, the “PI3K-Akt signalling pathway” and “RNA transport” pathway

assignment increased significantly, and “benzoate degradation” pathway assignments

decreased significantly (PERMANOVA FDR corrected p-value of<0.05) (Figs 6 and 8). The

remaining sequences assigned to taxonomy and KEGG pathways that correlated with metabo-

lites were not significantly different between 4 and 9 months of age by PERMANOVA (Figs 5

and 6).

Significant correlations were found between changes in sequences assigned to each of the

four main phyla and changes in both lipid and aqueous metabolites between 4 and 9 months

of age (Fig 7). Hypoxanthine was strongly correlated with members of each phylum; positively

with Proteobacteria and Bacteroides, and negatively with Actinobacteria (Actinomycetaceae
Varibaculum) and several species of Firmicutes (Fig 7). Hypoxanthine was also positively

Fig 7. Filtered regularised canonical correlation heatmap of the delta value of taxonomic assignments and metabolites between 4 and 9 months of

age. Orange circles depict significant positive Pearson’s correlation coefficients (>0.5), and blue depicts significant negative correlations (<-0.5).

Taxonomic assignments that were also significant by PERMANOVA analysis for this time point comparison are indicated by �.

CerG1 = Glucosylceramide; CerG2 = Diglycosylceramide; Cer = Ceramide; LPC = Lysophosphatidylcholine; LPE = Lysophosphatidylethanolamine;

MG = Monoglyceride; PE = Phosphatidylethanolamine; PG = Phosphatidylglycerol; SO = Sphingosine.

https://doi.org/10.1371/journal.pone.0270213.g007

PLOS ONE Adaptation of the infant gut microbiome during the complementary feeding transition

PLOS ONE | https://doi.org/10.1371/journal.pone.0270213 July 14, 2022 13 / 21

https://doi.org/10.1371/journal.pone.0270213.g007
https://doi.org/10.1371/journal.pone.0270213


correlated with glycan biosynthesis and metabolism in the integration with KEGG pathway

assignments (Fig 7). This positive correlation was part of a larger cluster of aqueous metabo-

lites that positively correlate with sequences assigned to “glycan degradation and biosynthesis,”

which otherwise did not strongly correlate with any lipid metabolites (Fig 8). Microbial “Car-

bohydrate metabolism” was negatively correlated with lipid metabolites, and microbial “starch

and sucrose metabolism” was negatively correlated with a series of aqueous metabolites

(Fig 8).

Between 9 and 12 months of age, fewer aqueous metabolites significantly correlated with

taxonomic assignments than with KEGG pathways (Figs 6 and 7). Changes in several classes of

lipid metabolites correlated with changes in sequences assigned to species (Fig 9). Firmicutes

and Proteobacteria were strongly positively correlated with ceramides, diglycerides, and a tri-

glyceride, but negatively associated with cytidine, an aqueous metabolite (Fig 9). Clostridium
sensu stricto and both species of Lachnospiraceae included here were negatively correlated with

lipid metabolites (Fig 9).

A series of dipeptides and amino acids were associated with sequences assigned to KEGG

pathways between 9 and 12 months of age (Fig 10). Whereas others were negatively associated

Fig 8. Filtered regularised canonical correlation heatmap of the delta value of KEGG pathway assignments and metabolites between 4 and 9

months of age. Orange circles depict significant positive Pearson’s correlation coefficients (>0.6), and blue depicts significant negative correlations

(<-0.6). KEGG pathway assignments that were also significant by PERMANOVA analysis for this time point comparison are indicated by �.

DG = Diglyceride; MG = Monoglyceride;PG = Phosphoglyceride; PG = Phosphatidylglycerol; MGSDG = Monogalactosyldiacylglycerol;

CerG1 = Glucosylceramide; CerG2 = Diglycosylceramide.

https://doi.org/10.1371/journal.pone.0270213.g008
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with serine in particular: “biosynthesis of unsaturated fatty acids,” “selenocompound metabo-

lism,” “protein kinases,” “transporters,” and “quorum sensing” were positively associated with

dipeptide metabolites, “citrate cycle,” “metabolism of cofactors and vitamins,” “transcription

machinery,” and “AMPK signalling” (Fig 10).

Discussion

This study investigated how the infant gut microbiome adapts to the addition and continua-

tion of solid foods during the first year of life by characterising shifts in species composition

and functional capacity and identifying significant correlations with gut metabolites. Fecal

samples were utilized as a proxy of the microbiome and metabolome in the lower gut. The

novel aspect of this study was the identification of metabolites that associate with composition

and predictive functional capacity of the microbiota before and after the introduction of solid

foods. These highly correlated metabolites may be relevant compounds for further investiga-

tions into complementary feeding using targeted metabolomics.

The infant gut microbiome increased in alpha diversity when complementary foods were

introduced from after 4 months of age until 12 months of age. In agreement with this study’s

hypothesis, the shifts occurring between 4 and 9 months of age were more significant than

between 9 and 12 months of age. A greater proportion of sequences assigned to KEGG path-

ways were significant by PERMANOVA than sequences assigned to taxonomy, indicating

more consistent changes in functional capacity than in species composition. However, the

magnitude of changes in the relative abundance of sequences assigned to functional capacity

Fig 9. Filtered regularised canonical correlation heatmap of the delta value of taxonomic assignments and metabolites between 9 and 12 months

of age. Orange circles depict significant positive Pearson’s correlation coefficients (>0.5), and blue depicts significant negative correlations (<-0.5).

Taxonomic assignments that were also significant by PERMANOVA analysis for this time point comparison are indicated by �. Cer = Ceramide;

CerG1 = Glucosylceramide; DG = Diglyceride; TG = Triglyceride; PE = Phosphatidylethanolamine; MGSDG = Monogalactosyldiacylglycerol;

PG = Phosphatidylglycerol.

https://doi.org/10.1371/journal.pone.0270213.g009
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was smaller than that of changes in microbial composition over the same period. This pattern

indicates a degree of functional redundancy across gut microbial species, in particular genes

that are compulsory for survival, and suggests that shifts in functional capacity patterns are

similar among infants as the diet transitions from milk to solid foods.

The higher variance (beta diversity) of both taxonomy and KEGG pathway assignments at

4 months of age compared to 9 or 12 months of age suggests that the effects of early-life factors

with known impacts on the infant gut microbiome that differed among infants in this cohort

diminished with the addition of solid foods. Effects of mode of birth on the gut microbiome,

including increased skin associated species and functional diversity in Caesarian-born infants,

have been reported to persist until approximately 6 months of age [2], but the magnitude and

persistence of these influences may vary. The mode of milk feeding has been shown to affect

the composition of the gut microbiome, but as time progresses, differences between breastmilk

or formula consumption diminish [23]. Individual microbial differences that may have been

associated with these early-life factors may become abrogated with the addition of solid foods,

as suggested by the tighter clustering of taxonomic and functional assignments in ordination

analyses at 9 months of age. These findings are in agreement with published studies [24, 25].

The variance in the gut microbiome composition at 12 months of age may be reflective of

microbes’ preferences for specific structures from the food matrix that is likely diversifying

and divergent between infants as they age.

The patterns that appeared through correlating the change in microbial sequences assigned

to species or KEGG pathways with the change in fecal metabolite concentrations support

Fig 10. Filtered regularised canonical correlation heatmap of the delta value of KO pathway assignments and metabolites between 9 and 12

months of age. Orange circles depict significant positive Pearson’s correlation coefficients (>0.6), and blue depicts significant negative correlations

(<-0.6). KEGG pathway assignments that were also significant by PERMANOVA analysis for this time point comparison are indicated by �.

https://doi.org/10.1371/journal.pone.0270213.g010
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results from PERMANOVA and ordination analyses, i.e., that more significant changes

occurred with the introduction of solid foods rather than the continuation of solid foods.

Interestingly, few of the taxa and functional pathways that correlate strongly with metabolites

were significant by PERMANOVA analysis, particularly from 4 to 9 months of age. This result

suggests that the change in the relative abundance of sequences assigned to taxa or KEGG

pathways shown in Figs 5–8 (that were not also significant by PERMANOVA) were more

closely related to changes in metabolite concentrations than to age.

The propensity for taxa to correlate more strongly with lipid metabolites than aqueous

metabolites suggest these taxa may have a direct or indirect role in the production of these lip-

ids or that the microbes themselves have a higher content of these lipids than other members

of the community [26]. The increased variation in sequences assigned to taxonomy and in

lipid metabolite profiles between infants at 9 and 12 compared to at 4 months of age supports

the theory that the lipids identified were from the bacteria themselves. The correlations

between differences in aqueous metabolites and differences in metabolism and degradation

KEGG pathway assignments implicate shifting dietary patterns and altered utilisation of sub-

strates derived from the digestion of dietary proteins, saccharides, oligosaccharides, and fer-

mentative by-products from other microbes [27].

Many of the correlated aqueous metabolites detected are products of incomplete protein

degradation and putrefaction [28]. This series of dipeptides, along with acetylcadaverine and

N-acetylputrescine, are negatively correlated with sequences assigned to “starch and sucrose

metabolism,” indicating that as protein utilisation decreases, as shown in the decreased amino

acid utilisation pathways over time, carbohydrate utilisation increases, which may reflect the

protein to carbohydrate ratio in breastmilk and formula [29]. Prior research has identified the

gut microbiome as playing a critical role in the production of essential amino acids that are

critical to infant growth and development, particularly in the context of breastmilk and for-

mula consumption [1]. The enrichment of amino acid utilisation and biosynthetic pathways at

4 months of age compared to 9 or 12 months of age may compensate for immature proteolytic

enzyme production and secretion in the developing gut [1, 30]. The incomplete digestion of

proteins can have a significant effect on microbial trophic networks, which may influence

immune system development through the production of precursors and intermediaries to

immune crosstalk throughout the gut [24, 31].

As trophic networks adapt to shifting resources, interactions between populations of micro-

bial community members also flux, likely in response to metabolite intermediaries. For

instance, the strong positive correlation between change in serine concentration, and changes

in sequences assigned to quorum sensing pathways, in which acyl-homoserine lactone is an

intercellular signalling molecule in gram-negative bacteria, points to the role of metabolites in

the regulation of microbial genes that monitor and respond to population density [32, 33].

Small and insignificant (FDR corrected p-value of>0.5) Apparent decreases in sequences

assigned to quorum sensing pathways were identified by PERMANOVA but these were not

significant (S2 Table in S3 File). This inconsistent change in KEGG pathway abundance over

time among infants alongside a positive correlation with serine concentration changes indicate

that changes in serine concentrations may have a stronger influence than age in regulating

genes associated with monitoring population density.

This study was limited by the small cohort size (n = 25), varied age at sampling, analysing

samples in 2 batches, and alterations in sample processing protocols for samples collected at 4

months of age. There were additional limitations inherent in using shotgun metagenomic

sequencing to assign taxonomy and in annotating chemical identities to chromatographic

peaks during metabolomic data processing [34, 35]. The small size of the Nourish to Flourish

cohort limits the confidence with which early-life factors such as mode of birth and mode of
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milk feeding can be investigated. However, the design of this study allowed for the effects of

the introduction of solid foods on the gut microbiome to be compared with the effects of the

continuation of solid foods, using a longitudinal, high-resolution, multi-omic approach. Batch

effects were successfully overcome by including samples from all time points in both batches

during sample analysis, and normalisation approaches specific to each dataset. Furthermore,

additional dietary data were collected to accompany the samples used here, enabling further

research into specific associations between complementary feeding and the development of

the infant gut microbiome.

The Nourish to Flourish longitudinal study provided evidence that the infant gut micro-

biome responds to the introduction of solid foods with increased microbial taxonomic diver-

sity while the abundance of functional genes remains relatively stable. Ongoing dietary

diversification may lead to continued changes in the relative abundances of different species

during the transition from liquid to solid diets. The decreased magnitude of changes in the

functional pathway assignments of the gut microbiome from 9 to 12 months of age was indica-

tive of the ongoing stabilisation process. Some changes in relative abundances of microbes and

functional groups were more strongly associated with changes in metabolite concentrations

than with changes in age. Overall, the lesser changes in gene functions over time, despite large

changes in taxonomic composition, suggests that most of the genes required to make use of

new substrates are already present at 4 months of age. It is plausible that the changing environ-

ment at that time results in the selection of different microbes that may harbour these genes in

different combinations.

Abbreviations and file naming

CF1 refers to data obtained from samples collected at approximately 4 months of age. CF3

refers to data obtained from samples collected at 9 months of age. CF6 refers to data obtained

from samples collected at 12 months of age. Documents with titles beginning with KEGG refer

to relative abundance data, intermediary analyses, processing, and formatting of KEGG ortho-

logous pathways. Documents with titles beginning with MBComp refer to relative abundance

data, intermediary analyses, processing, and formatting of sequences assigned species data.

Documents with titles beginning with HILIC refer to aqueous metabolite peak data, intermedi-

ary analyses, processing, and formatting of metabolites detected by HILIC LC/MS data. Docu-

ments with titles beginning with Lipid refer to lipid peak data, intermediary analyses,

processing, and formatting of Lipid LC/MS data. As comparisons were made between time-

points, files containing “BM” refer to comparisons between 4 and 9 months of age, and files

containing “ME” refer to comparisons between 9 and 12 months of age. sPLSDA stands for

sparse Partial Least Squared Discriminant Analysis. VIP refers to Variable Important to Pro-

jection. CIM refers to canonical correlation matrices.
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