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Abstract 

Background:  The development of the ovaries is an important factor that affects egg production performance in 
geese. Ovarian development is regulated by genes that are expressed dynamically and stage-specifically. The tran-
scriptome profile analysis on ovarian tissues of goose at different egg laying stages could provide an important basis 
for screening and identifying key genes regulating ovarian development.

Results:  In this study, 4 ovary tissues at each breeding period of pre-laying (PP), laying (LP), and ceased-laying period 
(CP), respectively, with significant morphology difference, were used for RNA extraction and mRNAs, lncRNAs, and 
miRNAs comparison in Yili geese. CeRNA regulatory network was constructed for key genes screening. A total of 337, 
1136, and 525 differentially expressed DE mRNAs, 466, 925, and 742 DE lncRNAs and 258, 1131 and 909 DE miRNAs 
were identified between PP and LP, between CP and LP, and between CP and PP groups, respectively. Functional 
enrichment analysis showed that the differentially expressed mRNAs and non-coding RNA target genes were mainly 
involved in the cell process, cytokine-cytokine receptor interaction, phagosome, calcium signaling pathway, ster-
oid biosynthesis and ECM-receptor interaction. Differential genes and non-coding RNAs, PDGFRB, ERBB4, LHCGR, 
MSTRG.129094.34, MSTRG.3524.1 and gga-miR-145–5p, related to reproduction and ovarian development were highly 
enriched. Furthermore, lncRNA-miRNA-mRNA regulatory networks related to ovary development were constructed.

Conclusions:  Our study found dramatic transcriptomic differences in ovaries of Yili geese at different egg-laying 
stages, and a differential lncRNA-miRNA-mRNA regulatory network related to cell proliferation, differentiation and 
apoptosis and involved in stromal follicle development were established and preliminarily validated, which could be 
regarded as a key regulatory pathway of ovarian development in Yili geese.
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Background
The development of ovary and follicle is an important 
factor affecting the laying performance of goose [1]. The 
ovarian volume of goose is smaller at non-reproductive 
period than that of the ovary during the laying period. 
No hierarchical follicles and many pre-hierarchical 

follicles could be detected of the ovaries at non-repro-
ductive period. The ovary stay degenerated until the next 
egg-laying period [2]. The biological process of ovarian 
development and ovulation is transcriptionally regu-
lated by a large number of key genes under dynamic and 
stage-specific expression [3]. Therefore, studying the 
expression characteristics of ovarian tissue at the tran-
scriptional level in goose egg laying stages could provide 
an important basis for screening and identifying key 
genes regulating goose ovarian development. The Yili 
geese is a high-quality local characteristic species poultry 
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in Xinjiang, China, are mainly characterized by strong 
adaptability, heat resistance, cold resistance, rough feed-
ing resistance, and a certain flying ability. The Yili geese is 
one of the typical seasonal breeding animals and only has 
one egg laying cycle per year. This feature makes the Yili 
geese an ideal animal model to study the gene expression 
patterns in geese during each laying period.

Transcriptome of Zhedong white geese ovary at laying 
and nesting period showed that differential genes were 
mainly involved in norepinephrine metabolism, steroid 
hormone biosynthesis, Wnt signaling pathway, calcium 
signaling pathway, GnRH signaling pathway and oocyte 
meiosis, which were closely related to follicular develop-
ment [4]. Based on high-throughput sequencing technol-
ogy, the transcriptome sequencing of the gonadal axis 
tissues in high and low egg production Xinjiang Yili geese 
resulted in 30 candidate genes related to egg production 
[5]. However, the regulation mechanism, especially the 
non-coding RNA involved regulatory network of repro-
ductive traits in goose is still unclear.

In this study, Yili geese at pre-laying, laying and ceased-
laying period were selected for exploring the candidate 

genes and network that regulate the ovarian develop-
ment by using RNA-seq and small RNA-seq technology. 
The results could provide new insights into the molecu-
lar regulatory mechanism of non-coding RNA-mediated 
ovary development in goose.

Results
Ovary histomorphometric analysis at different egg‑laying 
periods in Yili geese
During the pre-laying period (PP), the ovaries of Yili 
geese showed primary follicles are numerous, while the 
ovaries during the laying period (LP) showed a hierar-
chy of follicles, and goose at ceased-laying period (CP) 
showed degenerated ovaries (Fig.  1A-B). Moreover, the 
ovarian weight showed highly significant differences 
between periods (P < 0.01) (Fig. 1C).

Overview of sequencing and identification of lncRNA 
and miRNA
A total of 57,811,186 ~ 85,328,377 clean reads (Supple-
mentary Table S1–1) were produced from the 12 ovary 
cDNA libraries, of which 80.85% ~ 87.21% sequences 

Fig. 1  Histomorphometric of Yili geese ovary in different egg-laying periods. A Morphometric analysis of Yili geese ovary in different egg-laying 
periods. B Histological analysis of Yili geese ovary in different egg-laying periods. C Ovarian weight at each period
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were uniquely mapped (Supplementary Table S1–2) to 
produce 38,296 lncRNA and 33,332 mRNA transcripts 
(Supplementary Table S1–3).

For miRNA libraries, a total of 69.38% ~ 93.34% clean 
reads were produced from the 12 ovary cDNA librar-
ies (Supplementary Table S1–4), to produce 2700 
known-miRNAs (Supplementary Table S1–5) and 2983 
novel-miRNAs (Supplementary Table S1–6), and the 
proportion of annotated miRNAs was 47.51–74.58% 
(Supplementary Table S1–7). Most miRNA fragments 
are 18–25 nt in length, and the number of miRNAs with a 
length of 22 nt is the highest in each sample, with an aver-
age of 35.44% (Supplementary Table S1–8).

Analysis of the differentially expressed mRNA, lncRNA 
and miRNA among different egg‑laying periods
A total of 337 mRNAs were differentially expressed (286 
up-regulated and 51 down-regulated) in the LP as com-
pared with PP (PP vs LP) (Fig.  2A and supplementary 
Table S2–1), 1136 mRNAs were differentially expressed 
(582 up-regulated and 554 down-regulated) in the LP as 
compared with CP (CP vs LP) (Fig. 2A and supplemen-
tary Table S2–2), and 525 mRNAs were differentially 
expressed (220 up-regulated and 305 down-regulated) 
in the PP as compared with CP (CP vs PP) (Fig. 2A and 
supplementary Table S2–3). Four differential genes were 
coexpressed in the three comparison groups (Fig. 2B and 
supplementary Table S2–4).

A total of 466 lncRNAs were differentially expressed 
(133 up-regulated and 333 down-regulated) in the LP as 
compared with PP (PP vs LP) (Fig. 3A and supplementary 
Table S2–5), 925 lncRNAs were differentially expressed 
(307 up-regulated and 618 down-regulated) in the LP as 

compared with CP (CP vs LP) (Fig. 3A and supplemen-
tary Table S2–6), and 742 lncRNAs were differentially 
expressed (347 up-regulated and 395 down-regulated) in 
the PP as compared with CP (CP vs PP) (Fig. 3A and sup-
plementary Table S2–7). Six differential lncRNAs were 
coexpressed in the three comparison groups (Fig. 3B and 
supplementary Table S2–8).

A total of 258 miRNAs were differentially expressed 
(56 up-regulated and 202 down-regulated) in the LP as 
compared with PP (PP vs LP) (Fig. 4A and supplementary 
Table S2–9), 1131 miRNAs were differentially expressed 
(217 up-regulated and 914 down-regulated) in the LP as 
compared with CP (CP vs LP) (Fig. 4A and supplemen-
tary Table S2–10), and 909 miRNAs were differentially 
expressed (358 up-regulated and 515 down-regulated) 
in the PP as compared with CP (CP vs PP) (Fig. 4A and 
supplementary Table S2–11). Forty-four differential miR-
NAs were coexpressed in the three comparison groups 
(Fig. 4B and supplementary Table S2–12).

Functional enrichment analysis of differentially expressed 
genes and target genes
In ovarian tissues of different egg-laying stages, most 
DEGs were enriched in the “biological process” and “cel-
lular component” category. In the PP vs LP, CP vs LP, and 
CP vs PP groups, 204, 670, and 294 differential mRNAs 
were annotated by the GO database, respectively. In the 
PP vs LP, most of DEGs were enriched in cellular pro-
cess (BP), biological regulation (BP), membrane (CC), 
cell (CC), and binding (MF) (Fig.  5A and supplemen-
tary Table S3–1). In the CP vs LP, most of DEGs were 
enriched in cellular process (BP), single-organism process 
(BP), cell (CC), cell part (CC), binding (MF) and catalytic 

Fig. 2  Differentially expressed mRNAs in ovary tissues of Yili geese in different egg-laying periods. A The number of DE mRNAs in different 
comparison group. B Venn diagrams of differentially expressed mRNA in different comparison group



Page 4 of 20Zhao et al. BMC Genomics          (2022) 23:607 

activity (MF) (Fig.  5B and supplementary Table S3–2). 
In the CP vs PP, most of DEGs were enriched in single-
organism process (BP), cellular process (BP), cell (CC), 
cell part (CC), binding (MF) and catalytic activity (MF) 
(Fig.  5C and supplementary Table S3–3). This indicates 
that most DEGs were related to cellular components and 
biological regulation process.

Differential mRNAs were significantly enriched in 
5, 9 and 3 pathways in PP vs LP, CP vs LP and CP vs 
PP groups, respectively (q-value< 0.05). In the PP vs 

LP group, the differentially enriched pathways includ-
ing phagosome, calcium signaling pathway (Fig. 6A and 
supplementary Table S3–4). In the CP vs LP group, dif-
ferentially enriched pathways including steroid biosyn-
thesis, neuroactive ligand-receptor interaction (Fig.  6B 
and supplementary Table S3–5). In the CP vs PP group, 
differentially enriched pathways including ECM-receptor 
interaction, neuroactive ligand-receptor interaction, etc. 
(Fig.  6C and supplementary Table S3–6). Notably, the 
cytokine-cytokine receptor interaction, ECM-receptor 

Fig. 3  Differentially expressed lncRNAs in ovary tissues of Yili geese in different egg-laying periods. A The number of DE lncRNAs in different 
comparison group. B Venn diagrams of differentially expressed lncRNA in different comparison group

Fig. 4  Differentially expressed miRNAs in ovary tissues of Yili geese in different egg-laying periods. A The number of DE miRNAs in different 
comparison group. B Venn diagrams of differentially expressed miRNA in different comparison group
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interaction and calcium signaling pathway was com-
monly enriched by the DEGs in the ovarian tissues of dif-
ferent egg-laying stages.

It was found that 38,034 lncRNAs regulate 32,352 
mRNAs in their adjacent positions by cis mode; 158 lncR-
NAs have potential targeting regulatory relationship with 
12,939 mRNAs by trans mode. Based on the prediction 
results of lncRNAs target genes, this study conducted 
GO enrichment analysis on differentially expressed 
lncRNA target genes. It was found that 2485, 2993 and 
2847 differential lncRNAs target genes in PP vs LP, CP vs 
LP and CP vs PP groups were annotated by GO database, 
respectively. In the PP vs LP, most of differential lncRNAs 
target genes were enriched in cellular process (BP), sin-
gle-organism process (BP), cell (CC), organelle (CC), and 
binding (MF) (Fig. 7A and supplementary Table S4–1). In 
the CP vs LP, most of differential lncRNAs target genes 
were enriched in cellular process (BP), metabolic pro-
cess (BP), cell (CC), membrane (CC), binding (MF) and 
catalytic activity (MF) (Fig. 7B and supplementary Table 
S4–2). In the CP vs PP, most of differential lncRNAs tar-
get genes were enriched in cellular process (BP), single-
organism process (BP), cell (CC),organelle (CC), binding 

(MF) and catalytic activity (MF) (Fig. 7C and supplemen-
tary Table S4–3). This indicates that most of differential 
lncRNAs target genes were related to cellular component 
organization and biological regulation process.

Differential lncRNAs target genes were significantly 
enriched in 4, 12 and 10 pathways in PP vs LP, CP vs 
LP and CP vs PP groups, respectively (q-value< 0.05). 
In the PP vs LP group, the differentially enriched path-
ways including neuroactive ligand-receptor interaction, 
ECM-receptor interaction, etc. (Fig. 8A and supplemen-
tary Table S4–4). In the CP vs LP group, differentially 
enriched pathways including neuroactive ligand-receptor 
interaction, calcium signaling pathway, etc. (Fig. 8B and 
supplementary Table S4–5). In the CP vs PP group, dif-
ferentially enriched pathways including neuroactive 
ligand-receptor interaction, calcium signaling pathway 
(Fig.  8C and supplementary Table S4–6). Notably, the 
neuroactive ligand-receptor interaction, ECM-receptor 
interaction apoptosis, and calcium signaling pathway was 
commonly enriched by the differential lncRNAs target 
genes in the ovarian tissues of different egg-laying stages.

In the PP vs LP, CP vs LP and CP vs PP groups, 4129, 
8178 and 7738 differential miRNAs target genes were 

P
er

ce
n

ta
g

e 
o

f 
g

en
es

N
u

m
b

er
 o

f 
g

en
es

0.1

1

10

100

A B

C

ce
llu

la
r 

pr
oc

es
s

si
ng

le
-o

rg
an

is
m

 p
ro

ce
ss

m
et

ab
ol

ic
 p

ro
ce

ss
bi

ol
og

ic
al

 r
eg

ul
at

io
n

re
sp

on
se

 to
 s

tim
ul

us

m
ul

tic
el

lu
la

r 
or

ga
ni

sm
al

 p
ro

ce
ss

ce
llu

la
r 

co
m

po
ne

nt
 o

rg
an

iz
at

io
n 

or
 b

io
ge

ne
si

s
lo

ca
liz

at
io

n

de
ve

lo
pm

en
ta

l p
ro

ce
ss

si
gn

al
in

g

im
m

un
e 

sy
st

em
 p

ro
ce

ss

m
ul

ti-
or

ga
ni

sm
 p

ro
ce

ss
lo

co
m

ot
io

n
re

pr
od

uc
tiv

e 
pr

oc
es

s
bi

ol
og

ic
al

 a
dh

es
io

n
re

pr
od

uc
tio

n
gr

ow
th

rh
yt

hm
ic

 p
ro

ce
ss

ho
rm

on
e 

se
cr

et
io

n
ce

ll 
ag

gr
eg

at
io

n
ce

ll 
ki

lli
ng ce

ll
ce

ll 
pa

rt
or

ga
ne

lle
m

em
br

an
e

m
em

br
an

e 
pa

rt
or

ga
ne

lle
 p

ar
t

m
ac

ro
m

ol
ec

ul
ar

 c
om

pl
ex

ex
tr

ac
el

lu
la

r 
re

gi
on

ex
tr

ac
el

lu
la

r 
re

gi
on

 p
ar

t

m
em

br
an

e-
en

cl
os

ed
 lu

m
en

ce
ll 

ju
nc

tio
n

sy
na

ps
e

ex
tr

ac
el

lu
la

r 
m

at
rix

sy
na

ps
e 

pa
rt

ex
tr

ac
el

lu
la

r 
m

at
rix

 p
ar

t
co

lla
ge

n 
tr

im
er

nu
cl

eo
id

vi
rio

n
vi

rio
n 

pa
rt

bi
nd

in
g

ca
ta

ly
tic

 a
ct

iv
ity

m
ol

ec
ul

ar
 tr

an
sd

uc
er

 a
ct

iv
ity

re
ce

pt
or

 a
ct

iv
ity

tr
an

sp
or

te
r 

ac
tiv

ity

nu
cl

ei
c 

ac
id

 b
in

di
ng

 tr
an

sc
rip

tio
n 

fa
ct

or
 a

ct
iv

ity

en
zy

m
e 

re
gu

la
to

r 
ac

tiv
ity

st
ru

ct
ur

al
 m

ol
ec

ul
e 

ac
tiv

ity

pr
ot

ei
n 

bi
nd

in
g 

tr
an

sc
rip

tio
n 

fa
ct

or
 a

ct
iv

ity

gu
an

yl
-n

uc
le

ot
id

e 
ex

ch
an

ge
 fa

ct
or

 a
ct

iv
ity

ch
an

ne
l r

eg
ul

at
or

 a
ct

iv
ity

el
ec

tr
on

 c
ar

rie
r 

ac
tiv

ity
an

tio
xi

da
nt

 a
ct

iv
ity

ch
em

or
ep

el
le

nt
 a

ct
iv

ity

re
ce

pt
or

 r
eg

ul
at

or
 a

ct
iv

ity

ch
em

oa
ttr

ac
ta

nt
 a

ct
iv

ity

tr
an

sl
at

io
n 

re
gu

la
to

r 
ac

tiv
ity

nu
tr

ie
nt

 r
es

er
vo

ir 
ac

tiv
ity

pr
ot

ei
n 

ta
g

m
et

al
lo

ch
ap

er
on

e 
ac

tiv
ity

m
or

ph
og

en
 a

ct
iv

ity

9

94

945

9457

1

2

20

204
AllGene_number
Selected_gene_number

molecular functioncellular componentbiological process

P
er

ce
n

ta
g

e 
o

f 
g

en
es

N
u

m
b

er
 o

f 
g

en
es

0.1

1

10

100

ce
llu

la
r 

pr
oc

es
s

si
ng

le
-o

rg
an

is
m

 p
ro

ce
ss

m
et

ab
ol

ic
 p

ro
ce

ss
bi

ol
og

ic
al

 r
eg

ul
at

io
n

re
sp

on
se

 to
 s

tim
ul

us

m
ul

tic
el

lu
la

r 
or

ga
ni

sm
al

 p
ro

ce
ss

ce
llu

la
r 

co
m

po
ne

nt
 o

rg
an

iz
at

io
n 

or
 b

io
ge

ne
si

s
lo

ca
liz

at
io

n

de
ve

lo
pm

en
ta

l p
ro

ce
ss

si
gn

al
in

g

im
m

un
e 

sy
st

em
 p

ro
ce

ss

m
ul

ti-
or

ga
ni

sm
 p

ro
ce

ss
lo

co
m

ot
io

n
re

pr
od

uc
tiv

e 
pr

oc
es

s
bi

ol
og

ic
al

 a
dh

es
io

n
re

pr
od

uc
tio

n
gr

ow
th

rh
yt

hm
ic

 p
ro

ce
ss

ho
rm

on
e 

se
cr

et
io

n
ce

ll 
ag

gr
eg

at
io

n
ce

ll 
ki

lli
ng ce

ll
ce

ll 
pa

rt
or

ga
ne

lle
m

em
br

an
e

m
em

br
an

e 
pa

rt
or

ga
ne

lle
 p

ar
t

m
ac

ro
m

ol
ec

ul
ar

 c
om

pl
ex

ex
tr

ac
el

lu
la

r 
re

gi
on

ex
tr

ac
el

lu
la

r 
re

gi
on

 p
ar

t

m
em

br
an

e-
en

cl
os

ed
 lu

m
en

ce
ll 

ju
nc

tio
n

sy
na

ps
e

ex
tr

ac
el

lu
la

r 
m

at
rix

sy
na

ps
e 

pa
rt

ex
tr

ac
el

lu
la

r 
m

at
rix

 p
ar

t
co

lla
ge

n 
tr

im
er

nu
cl

eo
id

vi
rio

n
vi

rio
n 

pa
rt

bi
nd

in
g

ca
ta

ly
tic

 a
ct

iv
ity

m
ol

ec
ul

ar
 tr

an
sd

uc
er

 a
ct

iv
ity

re
ce

pt
or

 a
ct

iv
ity

tr
an

sp
or

te
r 

ac
tiv

ity

nu
cl

ei
c 

ac
id

 b
in

di
ng

 tr
an

sc
rip

tio
n 

fa
ct

or
 a

ct
iv

ity

en
zy

m
e 

re
gu

la
to

r 
ac

tiv
ity

st
ru

ct
ur

al
 m

ol
ec

ul
e 

ac
tiv

ity

pr
ot

ei
n 

bi
nd

in
g 

tr
an

sc
rip

tio
n 

fa
ct

or
 a

ct
iv

ity

gu
an

yl
-n

uc
le

ot
id

e 
ex

ch
an

ge
 fa

ct
or

 a
ct

iv
ity

ch
an

ne
l r

eg
ul

at
or

 a
ct

iv
ity

el
ec

tr
on

 c
ar

rie
r 

ac
tiv

ity
an

tio
xi

da
nt

 a
ct

iv
ity

ch
em

or
ep

el
le

nt
 a

ct
iv

ity

re
ce

pt
or

 r
eg

ul
at

or
 a

ct
iv

ity

ch
em

oa
ttr

ac
ta

nt
 a

ct
iv

ity

tr
an

sl
at

io
n 

re
gu

la
to

r 
ac

tiv
ity

nu
tr

ie
nt

 r
es

er
vo

ir 
ac

tiv
ity

pr
ot

ei
n 

ta
g

m
et

al
lo

ch
ap

er
on

e 
ac

tiv
ity

m
or

ph
og

en
 a

ct
iv

ity

9

94

945

9457

1

6

67

670
AllGene_number
Selected_gene_number

molecular functioncellular componentbiological process

P
er

ce
n

ta
g

e 
o

f 
g

en
es

N
u

m
b

er
 o

f 
g

en
es

0.1

1

10

100

ce
llu

la
r 

pr
oc

es
s

si
ng

le
-o

rg
an

is
m

 p
ro

ce
ss

m
et

ab
ol

ic
 p

ro
ce

ss
bi

ol
og

ic
al

 r
eg

ul
at

io
n

re
sp

on
se

 to
 s

tim
ul

us

m
ul

tic
el

lu
la

r 
or

ga
ni

sm
al

 p
ro

ce
ss

ce
llu

la
r 

co
m

po
ne

nt
 o

rg
an

iz
at

io
n 

or
 b

io
ge

ne
si

s
lo

ca
liz

at
io

n

de
ve

lo
pm

en
ta

l p
ro

ce
ss

si
gn

al
in

g

im
m

un
e 

sy
st

em
 p

ro
ce

ss

m
ul

ti-
or

ga
ni

sm
 p

ro
ce

ss
lo

co
m

ot
io

n
re

pr
od

uc
tiv

e 
pr

oc
es

s
bi

ol
og

ic
al

 a
dh

es
io

n
re

pr
od

uc
tio

n
gr

ow
th

rh
yt

hm
ic

 p
ro

ce
ss

ho
rm

on
e 

se
cr

et
io

n
ce

ll 
ag

gr
eg

at
io

n
ce

ll 
ki

lli
ng ce

ll
ce

ll 
pa

rt
or

ga
ne

lle
m

em
br

an
e

m
em

br
an

e 
pa

rt
or

ga
ne

lle
 p

ar
t

m
ac

ro
m

ol
ec

ul
ar

 c
om

pl
ex

ex
tr

ac
el

lu
la

r 
re

gi
on

ex
tr

ac
el

lu
la

r 
re

gi
on

 p
ar

t

m
em

br
an

e-
en

cl
os

ed
 lu

m
en

ce
ll 

ju
nc

tio
n

sy
na

ps
e

ex
tr

ac
el

lu
la

r 
m

at
rix

sy
na

ps
e 

pa
rt

ex
tr

ac
el

lu
la

r 
m

at
rix

 p
ar

t
co

lla
ge

n 
tr

im
er

nu
cl

eo
id

vi
rio

n
vi

rio
n 

pa
rt

bi
nd

in
g

ca
ta

ly
tic

 a
ct

iv
ity

m
ol

ec
ul

ar
 tr

an
sd

uc
er

 a
ct

iv
ity

re
ce

pt
or

 a
ct

iv
ity

tr
an

sp
or

te
r 

ac
tiv

ity

nu
cl

ei
c 

ac
id

 b
in

di
ng

 tr
an

sc
rip

tio
n 

fa
ct

or
 a

ct
iv

ity

en
zy

m
e 

re
gu

la
to

r 
ac

tiv
ity

st
ru

ct
ur

al
 m

ol
ec

ul
e 

ac
tiv

ity

pr
ot

ei
n 

bi
nd

in
g 

tr
an

sc
rip

tio
n 

fa
ct

or
 a

ct
iv

ity

gu
an

yl
-n

uc
le

ot
id

e 
ex

ch
an

ge
 fa

ct
or

 a
ct

iv
ity

ch
an

ne
l r

eg
ul

at
or

 a
ct

iv
ity

el
ec

tr
on

 c
ar

rie
r 

ac
tiv

ity
an

tio
xi

da
nt

 a
ct

iv
ity

ch
em

or
ep

el
le

nt
 a

ct
iv

ity

re
ce

pt
or

 r
eg

ul
at

or
 a

ct
iv

ity

ch
em

oa
ttr

ac
ta

nt
 a

ct
iv

ity

tr
an

sl
at

io
n 

re
gu

la
to

r 
ac

tiv
ity

nu
tr

ie
nt

 r
es

er
vo

ir 
ac

tiv
ity

pr
ot

ei
n 

ta
g

m
et

al
lo

ch
ap

er
on

e 
ac

tiv
ity

m
or

ph
og

en
 a

ct
iv

ity

9

94

945

9457

1

2

29

294
AllGene_number
Selected_gene_number

molecular functioncellular componentbiological process

Fig. 5  GO enrichment analysis of DE-mRNAs. A PP vs LP. B CP vs LP. C CP vs PP
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annotated by the GO database, respectively. In the PP 
vs LP, most of differential miRNAs target genes were 
enriched in cellular process (BP), single-organism process 
(BP), organelle (CC), membrane (CC), and binding (MF) 
(Fig. 9A and supplementary Table S5–1). In the CP vs LP, 
most of differential miRNAs target genes were enriched 
in metabolic process (BP), single-organism process (BP), 
cell (CC), cell part (CC), binding (MF) and catalytic activ-
ity (MF) (Fig. 9B and supplementary Table S5–2). In the 
CP vs PP, most of differential miRNAs target genes were 
enriched in cellular process (BP), metabolic process (BP), 
cell (CC), organelle (CC) and binding (MF) (Fig. 9C and 
supplementary Table S5–3). This indicates that most of 
differential miRNAs target genes were related to cellu-
lar component organization and biological regulation 
process.

In the PP vs LP group, the differential miRNA target 
genes were significantly enriched in the ECM-receptor 

interaction (Fig. 10A and supplementary Table S5–4). No 
KEGG pathway was significantly enriched in the CP vs 
LP and CP vs PP groups. However, miRNAs target genes 
were involved in calcium signaling pathway, Notch sign-
aling pathway and GnRH signaling pathway (Fig. 10B, C 
and supplementary Table S5–5 and 6). These results sug-
gest that the ECM-receptor interaction pathway may play 
an important role in miRNA-mediated reproductive pro-
cesses initiated during egg-laying.

Construction of lncRNA‑miRNA‑mRNA networks 
and functional analysis
Elements from the differentially expressed RNAs were 
adopted to construct the ceRNA network of lncRNA-
miRNA-mRNA. Each miRNA is negatively associated 
with multiple lncRNAs or mRNAs. The network of PP 
vs LP composed of 92 nodes and 1018 edges, and the 
nodes included 38 lncRNAs, 11 miRNAs and 43 mRNAs 

Fig. 6  KEGG enrichment analysis of DE-mRNAs. A PP vs LP. B CP vs LP. C CP vs PP
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(Fig. 11A and supplementary Table S6–1). In the network 
of PP vs LP group, miRNA expression was significantly 
down-regulated, while mRNA and lncRNA expres-
sion were both significantly up-regulated, and central 
nodes include novel_miR_336, novel_miR_1333, gga-
miR-34b-5p, WDFY4, PDGFRB and MSTRG.129094.34, 
etc. The network of CP vs LP composed of 68 nodes 
and 496 edges, and the nodes included 32 lncRNAs, 14 
miRNAs and 22 mRNAs (Fig.  11B and supplementary 
Table S6–2). In the network of CP vs LP group, miRNA 
expression was significantly up-regulated, while mRNA 
and lncRNA expression were both significantly down-
regulated, and central nodes include gga-miR-145–5p, 
eca-miR-145, ANOS1, ERBB4, MSTRG.3524.1, and 
MSTRG.5970.28, etc. The network of CP vs PP composed 
of 149 nodes and 3882 edges, and the nodes included 55 
lncRNAs (34 up-regulated lncRNAs and 21 down-regu-
lated lncRNAs), 33 miRNAs (17 up-regulated miRNAs 
and 16 down-regulated miRNAs) and 61 mRNAs (48 
up-regulated mRNAs and 13 down-regulated mRNAs) 
(Fig.  11C and supplementary Table S6–3). The network 
central nodes of the CP vs PP group include novel_
miR_2064, novel_miR_1116, gga-miR-145–5p, MYL9 

and MSTRG.164147.2, etc. Notably, gga-miR-145–5p, 
eca-miR-145, novel_miR_560, and novel_miR_72 in the 
ceRNA network were participated in CP vs LP and CP vs 
PP groups. Meanwhile, the above miRNAs were signifi-
cantly up-regulated in both the CP vs LP and CP vs PP 
groups.

Furthermore, functional enrichment analyses of 
mRNA involved in ceRNA network were deeply analyzed 
(Fig.  12). Genes were mostly enriched in the calcium 
signaling pathway, ECM-receptor interaction, oxytocin 
signaling pathway and oocyte meiosis pathways.

Validation of RNA‑Seq results
In the lncRNA-miRNA-mRNAs interaction network, the 
expression levels of 9, 7, and 6 key nodes in the PP vs LP, 
CP vs LP, and CP vs PP groups, respectively, were veri-
fied by RT-qPCR. (Fig. 13). The results showed that the 
expression trends of key node genes in each group were 
consistent with the RNA-seq data, indicating that the 
RNA-seq data were reliable. And the expression trend of 
miRNA in each group was opposite to that of its target 
lncRNA and mRNA. The above results showed that the 
gene expression relationship of these 22 key nodes was 

P
er

ce
n

ta
g

e 
o

f 
g

en
es

N
u

m
b

er
 o

f 
g

en
es

0.1

1

10

100

A B

C

ce
llu

la
r 

pr
oc

es
s

si
ng

le
-o

rg
an

is
m

 p
ro

ce
ss

m
et

ab
ol

ic
 p

ro
ce

ss
bi

ol
og

ic
al

 r
eg

ul
at

io
n

re
sp

on
se

 to
 s

tim
ul

us

m
ul

tic
el

lu
la

r 
or

ga
ni

sm
al

 p
ro

ce
ss

ce
llu

la
r 

co
m

po
ne

nt
 o

rg
an

iz
at

io
n 

or
 b

io
ge

ne
si

s
lo

ca
liz

at
io

n

de
ve

lo
pm

en
ta

l p
ro

ce
ss

si
gn

al
in

g

im
m

un
e 

sy
st

em
 p

ro
ce

ss

m
ul

ti-
or

ga
ni

sm
 p

ro
ce

ss
lo

co
m

ot
io

n
re

pr
od

uc
tiv

e 
pr

oc
es

s
bi

ol
og

ic
al

 a
dh

es
io

n
re

pr
od

uc
tio

n
gr

ow
th

rh
yt

hm
ic

 p
ro

ce
ss

ho
rm

on
e 

se
cr

et
io

n
ce

ll 
ag

gr
eg

at
io

n
ce

ll 
ki

lli
ng ce

ll
ce

ll 
pa

rt
or

ga
ne

lle
m

em
br

an
e

m
em

br
an

e 
pa

rt
or

ga
ne

lle
 p

ar
t

m
ac

ro
m

ol
ec

ul
ar

 c
om

pl
ex

ex
tr

ac
el

lu
la

r 
re

gi
on

ex
tr

ac
el

lu
la

r 
re

gi
on

 p
ar

t

m
em

br
an

e-
en

cl
os

ed
 lu

m
en

ce
ll 

ju
nc

tio
n

sy
na

ps
e

ex
tr

ac
el

lu
la

r 
m

at
rix

sy
na

ps
e 

pa
rt

ex
tr

ac
el

lu
la

r 
m

at
rix

 p
ar

t
co

lla
ge

n 
tr

im
er

nu
cl

eo
id

vi
rio

n
vi

rio
n 

pa
rt

bi
nd

in
g

ca
ta

ly
tic

 a
ct

iv
ity

m
ol

ec
ul

ar
 tr

an
sd

uc
er

 a
ct

iv
ity

re
ce

pt
or

 a
ct

iv
ity

tr
an

sp
or

te
r 

ac
tiv

ity

nu
cl

ei
c 

ac
id

 b
in

di
ng

 tr
an

sc
rip

tio
n 

fa
ct

or
 a

ct
iv

ity

en
zy

m
e 

re
gu

la
to

r 
ac

tiv
ity

st
ru

ct
ur

al
 m

ol
ec

ul
e 

ac
tiv

ity

pr
ot

ei
n 

bi
nd

in
g 

tr
an

sc
rip

tio
n 

fa
ct

or
 a

ct
iv

ity

gu
an

yl
-n

uc
le

ot
id

e 
ex

ch
an

ge
 fa

ct
or

 a
ct

iv
ity

ch
an

ne
l r

eg
ul

at
or

 a
ct

iv
ity

el
ec

tr
on

 c
ar

rie
r 

ac
tiv

ity
an

tio
xi

da
nt

 a
ct

iv
ity

ch
em

or
ep

el
le

nt
 a

ct
iv

ity

re
ce

pt
or

 r
eg

ul
at

or
 a

ct
iv

ity

ch
em

oa
ttr

ac
ta

nt
 a

ct
iv

ity

tr
an

sl
at

io
n 

re
gu

la
to

r 
ac

tiv
ity

nu
tr

ie
nt

 r
es

er
vo

ir 
ac

tiv
ity

pr
ot

ei
n 

ta
g

m
et

al
lo

ch
ap

er
on

e 
ac

tiv
ity

m
or

ph
og

en
 a

ct
iv

ity

9

94

945

9457

2

24

248

2485
AllGene_number
Selected_gene_number

molecular functioncellular componentbiological process

P
er

ce
n

ta
g

e 
o

f 
g

en
es

N
u

m
b

er
 o

f 
g

en
es

0.1

1

10

100

ce
llu

la
r 

pr
oc

es
s

si
ng

le
-o

rg
an

is
m

 p
ro

ce
ss

m
et

ab
ol

ic
 p

ro
ce

ss
bi

ol
og

ic
al

 r
eg

ul
at

io
n

re
sp

on
se

 to
 s

tim
ul

us

m
ul

tic
el

lu
la

r 
or

ga
ni

sm
al

 p
ro

ce
ss

ce
llu

la
r 

co
m

po
ne

nt
 o

rg
an

iz
at

io
n 

or
 b

io
ge

ne
si

s
lo

ca
liz

at
io

n

de
ve

lo
pm

en
ta

l p
ro

ce
ss

si
gn

al
in

g

im
m

un
e 

sy
st

em
 p

ro
ce

ss

m
ul

ti-
or

ga
ni

sm
 p

ro
ce

ss
lo

co
m

ot
io

n
re

pr
od

uc
tiv

e 
pr

oc
es

s
bi

ol
og

ic
al

 a
dh

es
io

n
re

pr
od

uc
tio

n
gr

ow
th

rh
yt

hm
ic

 p
ro

ce
ss

ho
rm

on
e 

se
cr

et
io

n
ce

ll 
ag

gr
eg

at
io

n
ce

ll 
ki

lli
ng ce

ll
ce

ll 
pa

rt
or

ga
ne

lle
m

em
br

an
e

m
em

br
an

e 
pa

rt
or

ga
ne

lle
 p

ar
t

m
ac

ro
m

ol
ec

ul
ar

 c
om

pl
ex

ex
tr

ac
el

lu
la

r 
re

gi
on

ex
tr

ac
el

lu
la

r 
re

gi
on

 p
ar

t

m
em

br
an

e-
en

cl
os

ed
 lu

m
en

ce
ll 

ju
nc

tio
n

sy
na

ps
e

ex
tr

ac
el

lu
la

r 
m

at
rix

sy
na

ps
e 

pa
rt

ex
tr

ac
el

lu
la

r 
m

at
rix

 p
ar

t
co

lla
ge

n 
tr

im
er

nu
cl

eo
id

vi
rio

n
vi

rio
n 

pa
rt

bi
nd

in
g

ca
ta

ly
tic

 a
ct

iv
ity

m
ol

ec
ul

ar
 tr

an
sd

uc
er

 a
ct

iv
ity

re
ce

pt
or

 a
ct

iv
ity

tr
an

sp
or

te
r 

ac
tiv

ity

nu
cl

ei
c 

ac
id

 b
in

di
ng

 tr
an

sc
rip

tio
n 

fa
ct

or
 a

ct
iv

ity

en
zy

m
e 

re
gu

la
to

r 
ac

tiv
ity

st
ru

ct
ur

al
 m

ol
ec

ul
e 

ac
tiv

ity

pr
ot

ei
n 

bi
nd

in
g 

tr
an

sc
rip

tio
n 

fa
ct

or
 a

ct
iv

ity

gu
an

yl
-n

uc
le

ot
id

e 
ex

ch
an

ge
 fa

ct
or

 a
ct

iv
ity

ch
an

ne
l r

eg
ul

at
or

 a
ct

iv
ity

el
ec

tr
on

 c
ar

rie
r 

ac
tiv

ity
an

tio
xi

da
nt

 a
ct

iv
ity

ch
em

or
ep

el
le

nt
 a

ct
iv

ity

re
ce

pt
or

 r
eg

ul
at

or
 a

ct
iv

ity

ch
em

oa
ttr

ac
ta

nt
 a

ct
iv

ity

tr
an

sl
at

io
n 

re
gu

la
to

r 
ac

tiv
ity

nu
tr

ie
nt

 r
es

er
vo

ir 
ac

tiv
ity

pr
ot

ei
n 

ta
g

m
et

al
lo

ch
ap

er
on

e 
ac

tiv
ity

m
or

ph
og

en
 a

ct
iv

ity

9

94

945

9457

2

29

299

2993
AllGene_number
Selected_gene_number

molecular functioncellular componentbiological process

P
er

ce
n

ta
g

e 
o

f 
g

en
es

N
u

m
b

er
 o

f 
g

en
es

0.1

1

10

100

ce
llu

la
r 

pr
oc

es
s

si
ng

le
-o

rg
an

is
m

 p
ro

ce
ss

m
et

ab
ol

ic
 p

ro
ce

ss
bi

ol
og

ic
al

 r
eg

ul
at

io
n

re
sp

on
se

 to
 s

tim
ul

us

m
ul

tic
el

lu
la

r 
or

ga
ni

sm
al

 p
ro

ce
ss

ce
llu

la
r 

co
m

po
ne

nt
 o

rg
an

iz
at

io
n 

or
 b

io
ge

ne
si

s
lo

ca
liz

at
io

n

de
ve

lo
pm

en
ta

l p
ro

ce
ss

si
gn

al
in

g

im
m

un
e 

sy
st

em
 p

ro
ce

ss

m
ul

ti-
or

ga
ni

sm
 p

ro
ce

ss
lo

co
m

ot
io

n
re

pr
od

uc
tiv

e 
pr

oc
es

s
bi

ol
og

ic
al

 a
dh

es
io

n
re

pr
od

uc
tio

n
gr

ow
th

rh
yt

hm
ic

 p
ro

ce
ss

ho
rm

on
e 

se
cr

et
io

n
ce

ll 
ag

gr
eg

at
io

n
ce

ll 
ki

lli
ng ce

ll
ce

ll 
pa

rt
or

ga
ne

lle
m

em
br

an
e

m
em

br
an

e 
pa

rt
or

ga
ne

lle
 p

ar
t

m
ac

ro
m

ol
ec

ul
ar

 c
om

pl
ex

ex
tr

ac
el

lu
la

r 
re

gi
on

ex
tr

ac
el

lu
la

r 
re

gi
on

 p
ar

t

m
em

br
an

e-
en

cl
os

ed
 lu

m
en

ce
ll 

ju
nc

tio
n

sy
na

ps
e

ex
tr

ac
el

lu
la

r 
m

at
rix

sy
na

ps
e 

pa
rt

ex
tr

ac
el

lu
la

r 
m

at
rix

 p
ar

t
co

lla
ge

n 
tr

im
er

nu
cl

eo
id

vi
rio

n
vi

rio
n 

pa
rt

bi
nd

in
g

ca
ta

ly
tic

 a
ct

iv
ity

m
ol

ec
ul

ar
 tr

an
sd

uc
er

 a
ct

iv
ity

re
ce

pt
or

 a
ct

iv
ity

tr
an

sp
or

te
r 

ac
tiv

ity

nu
cl

ei
c 

ac
id

 b
in

di
ng

 tr
an

sc
rip

tio
n 

fa
ct

or
 a

ct
iv

ity

en
zy

m
e 

re
gu

la
to

r 
ac

tiv
ity

st
ru

ct
ur

al
 m

ol
ec

ul
e 

ac
tiv

ity

pr
ot

ei
n 

bi
nd

in
g 

tr
an

sc
rip

tio
n 

fa
ct

or
 a

ct
iv

ity

gu
an

yl
-n

uc
le

ot
id

e 
ex

ch
an

ge
 fa

ct
or

 a
ct

iv
ity

ch
an

ne
l r

eg
ul

at
or

 a
ct

iv
ity

el
ec

tr
on

 c
ar

rie
r 

ac
tiv

ity
an

tio
xi

da
nt

 a
ct

iv
ity

ch
em

or
ep

el
le

nt
 a

ct
iv

ity

re
ce

pt
or

 r
eg

ul
at

or
 a

ct
iv

ity

ch
em

oa
ttr

ac
ta

nt
 a

ct
iv

ity

tr
an

sl
at

io
n 

re
gu

la
to

r 
ac

tiv
ity

nu
tr

ie
nt

 r
es

er
vo

ir 
ac

tiv
ity

pr
ot

ei
n 

ta
g

m
et

al
lo

ch
ap

er
on

e 
ac

tiv
ity

m
or

ph
og

en
 a

ct
iv

ity

9

94

945

9457

2

28

284

2847
AllGene_number
Selected_gene_number

molecular functioncellular componentbiological process

Fig. 7  GO enrichment analysis of DE-lncRNAs target gene. A PP vs LP. B CP vs LP. C CP vs PP
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in line with the ceRNA hypothesis. These key node genes 
may be one of the important reasons affecting the ovar-
ian development of Yili geese.

Verification of the interaction among MSTRG.5970.28, 
gga‑miR‑145–5p, and ERBB4
MSTRG.5970.28 and ERBB4 were downregulated in the 
CP vs LP group, while gga-miR-145–5p was upregulated 
in the CP vs LP group. Targetscan and miRanda soft-
ware predicted that MSTRG.5970.28 and ERBB4 was 
targeted to gga-miR-145–5p (Fig.  14A, C). Therefore, 
mutant vectors were constructed to verify the specific 
binding sites. The results showed that compared with 
the NC group, gga-miR-145–5p significantly decreased 
the expression of luciferase in MSTRG.5970.28-wt 
(P < 0.01) and ERBB4-wt (P < 0.01), and no signifi-
cant effect on luciferase activity when co-transfected 
with mutated plasmids (Fig.  14B, D). The results 

suggest that MSTRG.5970.28 and ERBB4 directly targets 
gga-miR-145–5p.

Discussion
The ovary is an important reproductive organ of female 
animals, its main function is to produce and discharge 
healthy eggs that could be fertilized, and to secret sex 
hormones to maintain the sexual characteristics and 
periodic reproductive activities [6]. The development of 
animal ovary, especially follicle development and ovula-
tion biology, is distinctly stage-specific and regulated by 
their own gene expression [3]. Studies have shown that 
mRNA and non-coding RNA have important regulatory 
roles in reproductive-related processes such as gonadal 
development, hormone regulation, sex determination, 
and embryo implantation [7–11].

In the present study, significant differences in both 
the morphology, histology and weight of ovarian tissues 

Fig. 8  KEGG enrichment analysis of DE-lncRNAs target gene. A PP vs LP. B CP vs LP. C CP vs PP
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were observed of Yili geese at different egg-laying peri-
ods. Consistent with this observation, 337, 1136, and 525 
DEGs were identified in the PP vs LP, CP vs LP, and CP 
vs PP groups, respectively. Taken together, these identi-
fied DEGS may be can potentially be used to explain the 
specific functions that regulate ovarian development 
in geese. There were four differentially expressed genes 
appeared in all the three comparison groups, namely 
ADRA2A, CP, GPNMB and LOC106033756. Nota-
bly, these four overlapping differential mRNAs and the 
remaining 178 differential mRNAs were significantly 
up-regulated when geese enters the laying period from 
pre-laying period, and significantly down-regulated when 
geese enters the ceased-laying period from the laying 

period (Supplementary Table S7–1). The high expres-
sion of the above differential mRNAs may promote the 
ovarian development process. In addition, 180 differen-
tial mRNAs were significantly up-regulated when the 
goose from the laying to the ceased-laying period and 
significantly down-regulated when the goose from the 
ceased-laying to the pre-laying period (Supplementary 
Table S7–2), suggesting that the high expression of these 
differential mRNAs may have inhibite the ovarian devel-
opment process. Some of them have been reported to 
be associated with ovarian development or reproductive 
processes, such as GPNMB, CXCR4, HGF and PDGFRB. 
On a physiological level, GPNMB improves cell invasion 
and motility, enabling metastasis. GPNMB was found to 
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Fig. 9  GO enrichment analysis of DE-miRNAs target gene. A PP vs LP. B CP vs LP. C CP vs PP
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be highly expressed in breast cancer samples [12]. Ele-
vated CXCR4 have been reported to promote the occur-
rence of endometriosis [13], suggested its relation to the 
regulation of ovary function. HGF plays a promoting role 
in estrogen-mediated stimulation of ovarian cell growth 
and differentiation [14]. Elevated PDGFRB may promote 
steroid hormone synthesis in mouse ovaries [15].

To further reveal the biological implications of these 
identified DEGs, GO annotation and KEGG enrichment 
analysis were performed. Most of the DEGs in ovar-
ian tissues of different egg-laying stages were enriched 
in the GO terms related to cell part, membrane, bind-
ing and catalytic activity process, suggesting that cel-
lular components and biological regulation process 
could be essential for the ovarian development of geese. 
The results of KEGG enrichment analysis showed that 
cytokine-cytokine receptor interaction, cell adhesion 
molecules (CAMs), ECM-receptor interaction, phago-
some, neuroactive ligand-receptor interaction, and cal-
cium signaling pathway were enriched in two or three 
comparison groups. Differential genes in significantly 
enriched pathways may be associated with ovarian 
development, such as ERBB4 and LHCGR​. ERBB4 was 
significantly downregulated in the CP vs LP group. Loss 
of ERBB4 gene may cause aberrant ovarian function by 

affecting reproductive function and metabolic func-
tion [16]. LHCGR​ was significantly downregulated in 
both CP vs LP and CP vs PP group. The expression of 
LHCGR​ is associated with ovulation and luteinization 
of the ovary [17]. It is suggested that the differentially 
expressed genes screened in this study may play a key 
regulatory role in the ovarian development of Yili geese 
by affecting ovarian function.

The regulation of follicle and oocyte maturation is a 
complex multi-factor regulation process that requires 
specific genes to be accurately expressed at a specific 
time [3]. Studies have shown that lncRNA has an impor-
tant regulatory role in reproduction-related processes 
such as gonadal development, hormone regulation, 
sexual determination, meiosis, and embryo implan-
tation [18, 19]. By analyzing the lncRNAs expression 
profiles of ovarian tissues of Yili geese at different egg-
laying periods, we identified 51 differential lncRNAs that 
were significantly up-regulated when the geese entered 
the laying period from the pre-laying and significantly 
down-regulated when the geese entered the ceased-
laying from the laying period (Supplementary Table 
S7–3), suggesting that the high expression of these dif-
ferential lncRNAs may promote the developmental pro-
cess of the ovaries. In addition, 79 differential mRNAs 

A B

C

Fig. 10  KEGG enrichment analysis of DE-miRNAs target gene. A PP vs LP. B CP vs LP. C CP vs PP
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were significantly up-regulated when the goose from 
the laying to the ceased-laying period and significantly 
down-regulated when the goose from the ceased-laying 
to the pre-laying period (Supplementary Table S7–4), 
suggesting that the high expression of these differential 
lncRNAs may have inhibite the ovarian development 
process. Six lncRNAs were differentially expressed in all 
three comparison groups, including MSTRG.111093.1, 
MSTRG.119742.1 and MSTRG.127167.95, et al. And the 
target genes of the above six differential lncRNAs were 
significantly enriched in reproduction-related calcium 

signaling pathways [20], apoptosis [21] and ECM-recep-
tor interactions [22], suggested that the six differential 
lncRNAs could affected the ovarian development of Yili 
geese by regulating the target genes in the above-men-
tioned signaling pathways.

The GO term with significant enrichment of differ-
ential lncRNAs target genes was mainly related to bio-
logical regulation, cellular process, metabolic process. 
The KEGG enrichment analysis showed that apopto-
sis, calcium signaling pathway, cell adhesion molecules 
(CAMs), and ECM-receptor interaction pathways 

A

C

B

Fig. 11  lncRNA–miRNA–mRNAs interaction network constructed and visualized. A PP vs LP. B CP vs LP. C CP vs PP. V shaped, circle, triangle denote 
miRNA, mRNA, and lncRNA, respectively. Red color represents up-regulation and blue represents down-regulation.
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Fig. 12  KEGG enrichment analysis of mRNAs in the ceRNA regulatory network

Fig. 13  RT-qPCR verification of key nodes in ceRNA network



Page 13 of 20Zhao et al. BMC Genomics          (2022) 23:607 	

were significantly enriched in two or three comparison 
groups. During reproduction, preventing cell apopto-
sis and autophagy could obtain high-quality oocytes 
in the ovary, maintain ovarian function, and protect 
female fertility [21]. High expression of CTSS in ovary 
induced excess lipid deposit, oxidative stress and poten-
tial ovulation damage [23]. High level of FAS in antral 
follicle initiated ovarian cell death [24]. RIPK1, FADD, 
TRADD and TNFRSF1A were all highly expressed in 
cell apoptosis [25], which would also promote cell apop-
tosis in the ovary. In this study, 23, 8, 4, 2, 6, 16 differ-
ential lncRNAs targeted CTSS, FAS, RIPK1, FADD, 
TRADD, and TNFRSF1A (Supplementary Table S8–1), 
respectively, which were significantly enriched in the 
apoptosis pathway, indicating that the above differen-
tial lncRNAs might inhibit ovarian development of Yili 
geese. It is well known that intracellular Ca2+ concen-
tration is a key signaling molecule to control exocytosis 
and regulate the release of neurotransmitters and endo-
crine hormones [20]. Wang et al. [26] found that EGFR 
and GNAS were involved in the reproductive process 
of pigs. In this study, 4 and 1 differential lncRNAs were 
found to be significantly enriched in the calcium signal-
ing pathway by targeting EGFR and GNAS, respectively. 
It is speculated that the above 5 differential lncRNAs 
participate in the development of the ovary of Yili geese 
by regulating the release of neurotransmitters and endo-
crine hormones. In addition, 23, 8, 7 and 24 differential 

lncRNAs were found in this study to target HGF, PDG-
FRB, ERBB4 and LHCGR​ (Supplementary Table S8–2), 
respectively, which were reported to regulate ovarian 
function [14–17].

Studies have found that miRNA has an important 
function in the development of the mouse ovary, 
including meiosis of oocytes, reproductive regula-
tion [27]. By analyzing the miRNA expression profiles 
of ovarian tissues of Yili geese at different egg-laying 
periods, we found that the number of differential miR-
NAs was higher in CP vsLP than in PP vs LP and CP 
vs LP groups, and this expression trend was similar to 
that of differential mRNAs and differential lncRNAs. 
Interestingly, we identified 35 differential miRNAs 
that were significantly up-regulated when the geese 
enters the laying period from pre-laying period, and 
significantly down-regulated when geese enters the 
ceased-laying period from the laying period (Supple-
mentary Table S7–5), suggesting that the high expres-
sion of these differential miRNAs may promote the 
developmental process of the ovary. In addition, 363 
differential miRNAs were significantly up-regulated 
when the goose from the laying to the ceased-laying 
period and significantly down-regulated when the 
goose from the ceased-laying to the pre-laying period 
(Supplementary Table S7–6), suggesting that the high 
expression of these differential miRNAs may have 
inhibite the ovarian development process. There were 

Fig. 14  MSTRG.5970.28 bind to gga-miR-145–5p. A The predicted binding site and mutated site of gga-miR-145–5p in ERBB4. B Detection 
of interaction between ERBB4 and gga-miR-145–5p by dual luciferase reporter gene assay. C The predicted binding site and mutated site of 
gga-miR-145–5p in MSTRG.5970.28. D Detection of interaction between MSTRG.5970.28 and gga-miR-145–5p by dual luciferase reporter gene assay
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44 differential miRNAs overlapped in the three com-
parison groups, which were involved in ECM-recep-
tor interaction [22], FoxO signaling pathway [28], and 
oxytocin signaling pathway [29] related to reproduc-
tive regulation.

KEGG enrichment analysis showed that miRNAs 
target genes in the PP vs LP group were significantly 
enriched in ECM-receptor interaction, in which THBS1 
was involved in mediating IGF-I-induced steroid pro-
duction and proliferation in granulosa cells during folli-
cular development [30]. TNC defective would cause the 
failure of ovulation [31]. In this study, novel_miR_1844, 
novel_miR_1333, and novel_miR_336 target THBS1 and 
TNC, respectively, might regulate the ovulation process 
of Yili geese.

In this study, oha-miR-375–3p, tgu-miR-375, and 
gga-miR-375 were significantly different in the PPvs 
LP group. Compared with the pre-laying period, it was 
increased by 46.8 times during the laying period. Stud-
ies have shown that the Wnt signaling pathway was reg-
ulated by miR-375 [32], and the Wnt signaling pathway 
is crucial in the differentiation, proliferation and metas-
tasis of primordial germ cells and the regulation of 
stromal cells [33]. This indicated that oha-miR-375–3p, 
tgu-miR-375, and gga-miR-375 might participate in the 
regulation of the developmental process of the ovaries 
from the prelaying period to the laying period through 
the Wnt signaling pathway. In the CPvs LP group, the 
top 10 foldchanged novel_miR_1116, novel_miR_1473, 
novel_miR_2688, novel_miR_3346, novel_miR_3441, 
novel_miR_3838, novel_miR_4002, novel_miR_4129 
and novel_miR_4382 target genes participate mainly 
in hedgehog signaling pathway, MAPK signaling path-
way, and FoxO signaling pathway. Hedgehog signaling 
pathway was involved in regulating the proliferation 
and differentiation of germline stem cells [34]. MAPKs 
mediate signal transmission related to a variety of cell 
activities in cells, including cell proliferation, differ-
entiation, survival, death and transformation [35, 36]. 
The main function of FoxO is to regulate cell cycle, 
apoptosis, atrophy and energy balance [37]. Therefore, 
these novel miRNAs might play a key role in regulating 
the proliferation and differentiation of germline stem 
cells and signal transmission related to cell activities. 
In the CP vs PP group, gga-miR-34c-5p and ppa-miR-
34c were significantly down-regulated with 71.4-fold 
and 71.2-fold, respectively. Members of the miR-34 
family (miR-34a, miR-34b, and miR-34c) have been 
widely speculated to be key mediators of p53 pathway 
[38, 39], which regulated a variety of cellular processes, 
including apoptosis, senescence, cell cycle arrest, dif-
ferentiation, and DNA repair and replication [40]. It 
is speculated that gga-miR-34c-5p and ppa-miR-34c 

might regulate the development, senescence and apop-
tosis of ovarian cells.

Through the miRNA binding elements, lncRNA 
could compete with mRNA to combine with miRNA, 
so as to realize the regulation of lncRNA on mRNA 
expression [41]. Despite great progress in understand-
ing human disease using the ceRNA, relatively few 
studies have been carried out in the regulation of ovar-
ian development and reproductive traits. By analyzing 
the differential mRNAs of different egg-laying stages, 
we obtained some important candidate genes associ-
ated with ovarian development. Interestingly, genes 
such as PDGFRB, WDFY4, PDGFRA and PTAFR were 
also identified in the ceRNA network of the PP vs LP 
group. Novel_miR_336 showed the most nodes in the 
regulatory network, and its expression was down-
regulated in the PP vs LP group. The predicted target 
genes, PDGFRB and LPAR4, were negatively correlated 
with the expression of novel_miR_336. PDGFRB was 
involved in controlling the synthesis of steroid hor-
mones in the ovaries of mice [15]. LPAR4 is expressed 
at high levels in human ovaries [42]. In this network, 
there were many nodes of MSTRG.129094.34, and its 
target genes were involved in a number of pathways 
related to reproduction, such as MAPK signaling path-
way and Calcium signaling pathway. At the same time, 
MSTRG.129094.34 was predicted to target novel_
miR_336, and to be negatively regulated by novel_
miR_336. It is speculated that MSTRG.129094.34 
might up-regulate PDGFRB and LPAR4 by targeting 
novel_miR_336, thereby participating in the synthesis 
of steroid hormones in the ovary. Studies have shown 
that mmu-miR-34b-5p and mmu-miR-107–3p might 
be involved in the alternative splicing of kitl pre-
mRNA in mouse ovarian granulosa cells [43]. WDFY4 
was associated with antigen processing, T cell activa-
tion, and immune response in humans, mice, and rats 
[44]. MSTRG.129094.34 targeted gga-miR-34b-5p 
which further regulated the expression of WDFY4 to 
promote the immune response in the ovary, and then 
affecting the ovarian development process.

In the ceRNA network of CP vs LP group, the expres-
sion of both differential mRNAs and lncRNAs were 
down-regulated, and the expression of differential 
miRNA were up-regulated. In the ceRNA network of 
the CP vs LP group, we noted the inclusion of screened 
candidate genes for ovarian development, such as KIT, 
KIF26B and ELAVL4. Novel_miR_814 has the most 
nodes in the regulatory network, and its expression 
was up-regulated in the CP vs LP group, which tar-
geted to NRG1 and KIT and showed negative correla-
tion with this two genes. The expression of NRG1 was 
related to LH-induced ovulation and depends on the 
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ERK1/2-C/EBP regulatory pathway. It is supposed that 
NRG1 could enhance granulosa cell luteinization and 
regulate the maturation and development of oocytes 
[45]. KIT was related to the cleavage of vitelline mem-
brane and the formation of primordial follicles and the 
number of oocytes [46]. LncRNA of MSTRG.128144.1 
and MSTRG.158716.1 targeted to NRG1 and KIT, 
respectively, through trans-action. It is speculated that 
MSTRG.128144.1 and MSTRG.158716.1 could release 
the inhibitory factor on the target genes of NRG1 and 
KIT, respectively, by adsorbing novel_miR_814. The 
other two miRNAs of gga-miR-145–5p and ccr-miR-
133a-3p have multiple nodes in this network. Overex-
pression of miR-145–5p could inhibit the activation 
of Notch signaling pathway and apoptosis signaling 
pathway [47], which regulated cell proliferation, differ-
entiation and apoptosis, and participated in the devel-
opment of stromal follicles [48]. Both gga-miR-145–5p 
and MSTRG.5970.28/MSTRG.3524.1 targeted ERBB4. 
ERBB4 has been demonstrated to be related to ovarian 
function. Thus, it is speculated that MSTRG.5970.28/
MSTRG.3524.1 might be act as the ceRNA sponges of 
gga-miR-145–5p and affect the expression of ERBB4. 
MiR-133 has been demonstrated to regulate oocyte 
meiosis [49] and suppress ovarian cancer cell prolif-
eration [50, 51]. NYAP2 and MSTRG.24644.1 were 
significantly down-regulated in the CP vs LP group, 
and both targeted to ccr-miR-133a-3p. It is speculated 
that MSTRG.24644.1 affects the expression of NYAP2 
by acting as the ceRNA sponges of ccr-miR-133a-3p. 
Moreover, the results of dual-luciferase reporter detec-
tion suggested that there were target sites of gga-miR-
145–5p in the MSTRG.5970.28 sequence and ERBB4 
mRNA 3′-UTR. It is suggested that the MSTRG.5970.28 
may regulates ERBB4 expression by binding gga-miR-
145–5p, and then regulates the growth and development 
of Yili geese ovary.

In the ceRNA network of CP vs PP group, there are 
two modes of regulation between lncRNA, miRNA 
and mRNA. Novel_miR_2064 had the most interaction 
relationships in the regulatory network and was sig-
nificantly downregulated in the CP vs PP groups. The 
novel_miR_2064 and MSTRG.7233.4 was predicted to 
target gene MYL9, which is enriched in the oxytocin 
signaling pathway. It is speculated that MSTRG.7233.4 
affects the expression of MYL9 by acting as a ceRNA of 
novel_miR_2064. Notably, the differential gene expres-
sion analysis of ovarian tissues of Yili geese at different 
egg-laying stages revealed that high expression of SYCP2, 
LOC106042005 and MCF2 genes might inhibit ovarian 
development. SYCP2 is expressed in both testis and ovary 
and is essential for male fertility [52]. MCF2 was found to 

be expressed in bovine oocytes/ovaries and testis [53]. In 
the ceRNA network of the CPvsPP group, the expression 
of SYCP2, MCF2 and LOC106042005 was significantly 
downregulated and targeted to novel_miR_2001 and 21 
lncRNAs. In addition, oan-miR-143–5p and gga-miR-
145–5p in this network have been reported to be related 
to the reproduction process, in which oan-miR-143–5p 
belongs to the miR-143 family, while miR-143 is related 
to steroid hormone synthesis, proliferation and apop-
tosis of granulosa cells [54, 55]. There were 21 lncRNAs 
targeted to PDGFB and oan-miR-143–5p, 22 lncRNAs 
targeted to LOC106032597 and gga-miR-145–5p in this 
network. Therefore, the lncRNAs-miRNAs-mRNA reg-
ulatory network constructed in this study might affect 
steroid hormone synthesis, granulosa cell proliferation 
and apoptosis, and then affect the ovarian development 
of Yili geese. Despite our observations, the underlying 
mechanisms need further investigation.

Conclusions
In this study, differentially expressed mRNAs, lncR-
NAs and miRNAs were identified in the ovary of Yili 
geese at different egg-laying stages. It was found that 
differential mRNAs, lncRNAs and miRNAs were 
mainly related to cellular processes, biological regula-
tion, ECM-receptor interaction, neuroactive ligand-
receptor interaction, and calcium signaling pathway. 
A differential lncRNA-miRNA-mRNA regulatory net-
work related to cell proliferation, differentiation and 
apoptosis and involved in stromal follicle development 
were established and preliminarily validated, which 
could be regarded as a key regulatory pathway of ovar-
ian development in Yili geese.

Materials and methods
Animals, sample collection and Histomorphometric 
analysis
Yili geese enters the peak-laying period at the third 
year. In this study, 4 geese at 3-year-olds at the same 
batch and similar body weight (3.2 kg ± 0.2 kg) were 
selected at the period of pre-laying (39 months) (PP), 
laying (41 months) (LP) and ceased-laying period 
(46 months) (CP), respectively. All the geese were pro-
vided by the National Yili geese breeding farm (Xin-
jiang, China). All selected geese were euthanized by 
inhaling carbon dioxide and cervical dislocation, which 
performed by competent personnel who experienced 
and correctly applied the technique. Then, the ovary 
removed immediately after slaughter. The morphologi-
cal characteristics and weight data of the ovary were 
recorded quickly. Stroma with cortical follicles < 2 mm 
in diameter were dissected out of the ovaries, rinsed 
with PBS buffer and fixed in 4% paraformaldehyde. 



Page 16 of 20Zhao et al. BMC Genomics          (2022) 23:607 

The samples were then embedded in paraffin, sec-
tioned (5 μm) and mounted on slides, and standard 
hematoxylin and eosin (H&E) staining was performed. 
Histological characteristics of the ovarian stroma were 
observed using Nikon Eclipse Ci-L instrument and 
Nikon E.Z-MET software. For RNA-seq, collected ova-
ries were stored in liquid nitrogen and then transferred 
to − 80 °C.

RNA extraction, RNA‑seq library preparation, 
and sequencing
Total RNA was extracted from each ovarian tissue using 
TRIzol reagent (Invitrogen, Carlsbad, CA, USA). RNA 
degradation and contamination were detected by 1.5% 
agarose gel. The purity and concentration of RNA were 
determined from OD260/280 readings using the Nan-
odrop 2000 (Thermo Fisher Scientific Inc., Waltham, 
MA, USA). RNA integrity was checked using Agilent 
2100 Bioanalyzer (Agilent Technologies,Palo Alto, CA, 
USA).

Approximately 3 μg RNA per sample was used for 
mRNA and lncRNA libraries. Ribosomal RNA was 
depleted using the Ribo-Zero™ rRNA Removal Kit 
(Epicentre, Madison, USA). After rRNA depletion, the 
remaining RNA was purified. The NEBNext® Ultra™ The 
Directional RNA Library Prep Kit for Illumina® (New 
England Biolabs; NEB, Ipswich, MA. USA) was used 
according to manufacturer’s guidelines to construct the 
cDNA libraries. The cDNA fragments were enriched 
by PCR amplification. The amplification product was 
purified using AMPure XP system. PCR products were 
purified (AMPure XP system) and library quality was 
assessed on the Agilent Bioanalyzer 2100 system. The 12 
ovary tissues cDNA libraries were subjected to 2 × 150 bp 
paired-end sequencing using the Illumina NovaSeq 6000 
platform (Illumina, San Diego, CA, USA).

For small RNA sequencing, the same sample was used 
to construct Illumina small RNA-seq (RNA sequenc-
ing) library by using the NEBNext®MultiplexSmall 
RNA Library Prep Set for Illumina kit® (NEB) follow-
ing the manufacturer’s recommendations. In brief, the 
5′ SR and 3′ SR adaptor for Illumina was ligated to the 
small RNA, and first strand cDNA was synthesized. 
The product was then subjected for the second strand 
synthesis. The product with 3′ SR and 5′ SR was then 
PCR amplified. PAGE gel was used to recover the 140-
160 bp target fragment, rubber cutting recycling as the 
pieces get small RNA libraries. At last, PCR products 
were purified (AMPure XP system) and library quality 
was assessed. The 12 ovary tissues cDNA libraries were 
subjected to 1 × 50 bp single-end sequencing using the 

Illumina NovaSeq 6000 platform (Illumina, San Diego, 
CA, USA).

Quality control
Raw data (raw reads) of fastq format were firstly pro-
cessed through self perl scripts. Clean data (clean reads) 
were obtained by removing reads containing adapter, 
ploy-N and low quality reads. Further, the reads of miR-
NAs were trimmed by removing the sequences smaller 
than 18 nt or longer than 30 nt. The content of Q20, Q30 
and GC and sequence duplication level of the clean data 
were calculated. All the downstream analyses were based 
on clean data with high quality.

Analysis of RNA‑Seq data
The clean reads were aligned to the geese reference 
genome (Ans Cyg_PRJNA183603_v1.0) by Hisat2(v2.0.4) 
[56], the mapped reads of each sample were assembled 
by StringTie (v1.3.1) [57]. StringTie(v1.3.1) [57] was used 
to assess expression levels of mRNAs and lncRNAs by 
calculating FPKM [58] (Fragments Per Kilobase of tran-
script per Million fragments mapped). DESeq2 [59] was 
used for differentially expressed gene (DEG) analysis 
and Benjamini and Hochberg’s [60, 61] method for FDR 
(False Discovery Rate) correction. Differential expression 
of mRNAs and lncRNA were defined according to the 
following criteria: |log2(Fold Change)| ≥1 and adjusted 
P-value (FDR) < 0.05.

Analysis of microRNA‑Seq data
The Clean Reads were aligned with Silva database, 
GtRNAdb database, Rfam database, and Repbase data-
base, respectively, to filter ribosomal RNA (rRNA), trans-
fer RNA (tRNA), small nuclear RNA (snRNA), small 
nucleolar RNA (snoRNA), repeat sequences, and other 
ncRNA using Bowtie tools (v1.0.0) [62], then unannotated 
reads containing miRNA were acquired. Unannotated 
reads were aligned to the geese reference genome (Ans 
Cyg_PRJNA183603_v1.0) using Bowtie(v1.0.0) [62], to 
obtain the location information on the reference genome 
(Mapped Reads). The small RNA that matched to the ref-
erence genome was compared to the miRNAs from all 
animals in the miRBase(v22) database to identify known 
miRNA. Novel miRNA prediction was performed using 
miRDeep2 (v2.0.5) [63]. For both known miRNAs and 
novel miRNAs, the miRNA expression level was calcu-
lated and normalized by transcripts per million (TPM) 
[64]. DESeq2(v1.10.1) [59] was used for differentially 
expressed miRNA analysis and Benjamini and Hochberg’s 
[60, 61] method for FDR correction. Differential expres-
sion of miRNAs were defined according to the following 
criteria: |log2(Fold Change)| ≥ 0.58 and P-value<0.01.
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lncRNAs identification
Transcript class_codes with “i”, “x”, “u”, “o”, “e”, 
length ≥ 200 bp and exon number ≥ 2, were selected, 
FPKM≥0.1, CPC (Coding Potential Calculator) [65], 
CNCI (coding-noncoding-index) [66], CPAT (coding 
potential assessment tool) [67] and Pfam-scan [68] were 
used to distinguish mRNAs from lncRNAs.

GO and KEGG enrichment analyses
Coding genes located within 100 kb upstream and down-
stream of lncRNA were regarded as the cis-target genes 
of the lncRNA. Pearson correlation coefficient method 
was used to analyze the correlation between lncRNA and 
mRNA and the genes with |r| > 0.95 and P < 0.01 were 
considered as trans-target gene of the lncRNA. Accord-
ing to the gene sequence information of known miR-
NAs and novel miRNAs, miRanda [69] and targetscan 
[70] software were used to predict miRNA target genes. 
ClusterProfiler(v3.10.1) [71] and KOBAS (v2.0) [72] was 
used for GO (Gene Ontology) and KEGG (Kyoko Ency-
clopedia of Genes and Genomes) [73, 74] pathway anal-
yses of differentially expressed mRNA, lncRNA target 
genes and miRNA target genes. GO enrichment analysis 
includes biological process (BP), cellular component (CC), 
and molecular function (MF). GO terms or KEGG path-
ways with corrected p-value (q-value) < 0.05 were consid-
ered to be significantly enriched.

Construction of lncRNA‑miRNA‑mRNA networks
In this study, lncRNA-miRNA-mRNA network was con-
structed according to the ceRNA method with the fol-
lowing step, (1) The correlation of differentially expressed 
miRNA and mRNA was used to predict the negative 
interaction of miRNA-mRNA. (2) The predicted miRNA 
binding sites for the differentially expressed lncRNAs 
were identified using the miRanda [69], to construct a 
differentially expressed lncRNA-miRNA negative regula-
tory network. (3) Baes on the predicted miRNA-mRNA 
and lncRNA-miRNA regulatory network, the lncRNA-
miRNA-mRNA network (ceRNA network) was con-
structed using Cytoscape(v3.8.0) [75] software.

Reverse transcription real‑time quantitative PCR (RT‑qPCR)
The remaining RNA from RNA-seq library was used for 
RT-PCR quantification. Based on the lncRNA–miRNA–
mRNA correlation networks, specifically, several interac-
tion nodes were validated by RT-qPCR, including 9 mRNA, 
6 lncRNA and 7 miRNA (Table S1). For mRNA, lncRNA 
and miRNA, RNA was reverse transcribed using RevertAid 
Reverse Transcriptase (Thermo Fisher Scientific) following 
the manufacturer’s protocol. Quantitative RT-PCR (RT-
qPCR) was performed using AceQ Universal SYBR qPCR 
Master Mix (Vazyme Biotech, Nanjing, China) and ABI 

StepOnePlus machine (ABI, Foster City, CA, USA). The 
PCR protocol was initiated at 95 °C for 5 min, followed by 
40 cycles of the amplification program, with denaturation 
at 95 °C, 15 s, and annealing/ extension at 60 °C, 30 s. At the 
end of the last amplification cycle, melt curves were gen-
erated to confirm the specificity of the amplification reac-
tion. Primers were designed using Primer Premier 5.0. All 
primer sequences, including selected genes, miRNAs and 
internal control genes (GAPDH and U6 snRNA), were 
listed in Table S9. Relative expression levels of genes and 
miRNAs were calculated by the2-ΔΔCt [76] method.

Dual‑luciferase reporter assays
PsiCheck2-MSTRG.5970.28-wild type (wt) / mutated (mut) 
and PsiCheck2-ERBB4-wt/mut vectors were synthesized 
by He Fei Yuanen Biotechnology Company (Hefei, Anhui, 
China). 293 T cells were seeded in a 24-well plates (5 × 105 
cells/well). Cells were co-transfected with wt or mut reporter 
vector and gga-miR-145–5p mimics or NC mimic duplexes 
using Lip 3000 (Invitrogen). At 48 h after transfection, cell 
lysates were prepared and dual luciferase reporter assay kit 
(RG027, Beyotime Institute of Biotechnology) was used to 
measure luciferase activities following the manufacturers 
instructions. The relative luciferase activities were calculated 
by comparing the Firefly/Renilla luciferase activity ratio.

Statistical analysis
Statistical analysis was performed using the software 
IBM SPSS Statistics version 22. The comparative analysis 
of two groups was performed using Student’s t-test, and 
multiple comparative analysis was performed with one-
way ANOVA. GraphPad Prism 8 was applied for mak-
ing graph. It was considered to be statistically significant 
when P-value < 0.05.
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