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Abstract: Global Navigation Satellite System (GNSS) data can be used in a myriad of ways. The current
number of applications exceed by far those originally GNSS was designed for. As an example, the
present Special Issue on GNSS Data Processing and Navigation compiles 14 international contributions
covering several aspects of GNSS research. This Editorial summarizes the whole special issue grouping
the contributions under four different, but related topics.
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1. GNSS Signals

The first stage in GNSS data processing involves acquiring the signals transmitted by the satellites.
In this regard, ref. [1] proposed a tensor-based subspace tracking algorithm that mitigates multipath
interference on receivers using multiple antennas, suitable for real-time applications. Sometimes, the
interference can be intentional, ref. [2] evaluated the factors influencing the jamming on GNSS signals
with the focus on high-end geodetic GNSS receivers. Finally, ref. [3] proposed a tracking loop able to
perform such tracking of received signals in a highly accurate manner, which ultimately determine the
accuracy of the positioning achievable.

2. Atmospheric Modelling

The valuable data on the GNSS signals can be used to study the Earth derive a variety of models.
One of the main propagation delays is originated at the upper atmosphere, precisely at the ionosphere.
Ref. [4] studied the spatial and temporal variations of the Total Electron Content (TEC) at the Earth
poles for one solar cycle.

3. High Accuracy Navigation

The accuracy of the computed coordinates by means of GNSS is enhanced when external
information is received and combined with the GNSS measurements. Different strategies were
presented to cope with outages occurring in the communication link receiving either the measurements
from a reference station [5] or precise satellite orbits and clock corrections [6].

The GNSS measurements at the user are corrected using well-established models. Ref. [7] investigated
the effect of using different Antenna Phase Centre (APC) correction models focusing on high-end geodetic
receivers. Ref. [8] analyzed the variation of the Differential Code Biases (DCBs) occurring for the Beidou
GNSS using a 40 m diameter, low-noise, and high-gain antenna.
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Once the GNSS data is corrected, the user applies different algorithms to estimate accurately its
Position Velocity and Time (PVT). In the case of receivers on the ground, ref. [9] assessed the efficiency
of different filter strategies to perform such estimation, and ref. [10] addressed the variances of the
different GNSS constellations to weigh them optimally. Finally, ref. [11] presented PVT based on the
integration of GNSS measurements with other sensors, focused on autonomous vehicles.

GNSS can be used to determine the PVT of receivers on board of a satellite. Ref. [12] improved the
determination of the orbit of the Gravity Recovery and Climate Experiment (GRACE) twin satellites
through a modified clock estimating method. Furthermore, ref. [13] presented a positioning algorithm
for space-borne GNSS timing receivers, assessing the Ling Qiao Low Earth Orbit (LEO) Chinese satellite.

In the inverse problem, knowledge of station coordinates can be used to determine the computation
of satellite coordinates and associated clock biases, which is critical to the whole GNSS. In this regard,
ref. [14] presented a characterization and evaluation of the atomic clocks onboard the Japanese system,
namely the Quasi Zenith Satellite System (QZSS).
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