
PNAS Nexus, 2023, 2, 1–12 

https://doi.org/10.1093/pnasnexus/pgad176
Advance access publication 25 May 2023 

Research Report

Outlearning extortioners: unbending strategies can foster 
reciprocal fairness and cooperation
Xingru Chen a,b and Feng Fu b,c,*

aSchool of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
bDepartment of Mathematics, Dartmouth College, Hanover, 03755 NH, USA
cDepartment of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, 03756 NH, USA
*To whom correspondence should be addressed: Email: fufeng@gmail.com
Edited By: S. Gavrilets

Abstract
Recent theory shows that extortioners taking advantage of the zero-determinant (ZD) strategy can unilaterally claim an unfair share of 
the payoffs in the Iterated Prisoner’s Dilemma. It is thus suggested that against a fixed extortioner, any adapting coplayer should be 
subdued with full cooperation as their best response. In contrast, recent experiments demonstrate that human players often choose 
not to accede to extortion out of concern for fairness, actually causing extortioners to suffer more loss than themselves. In light of 
this, here we reveal fair-minded strategies that are unbending to extortion such that any payoff-maximizing extortioner ultimately will 
concede in their own interest by offering a fair split in head-to-head matches. We find and characterize multiple general classes of 
such unbending strategies, including generous ZD strategies and Win-Stay, Lose-Shift (WSLS) as particular examples. When against 
fixed unbending players, extortioners are forced with consequentially increasing losses whenever intending to demand a more unfair 
share. Our analysis also pivots to the importance of payoff structure in determining the superiority of ZD strategies and in particular 
their extortion ability. We show that an extortionate ZD player can be even outperformed by, for example, WSLS, if the total payoff of 
unilateral cooperation is smaller than that of mutual defection. Unbending strategies can be used to outlearn evolutionary 
extortioners and catalyze the evolution of Tit-for-Tat-like strategies out of ZD players. Our work has implications for promoting 
fairness and resisting extortion so as to uphold a just and cooperative society.
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Significance Statement

Extortioners witting of the zero-determinant strategy can gain the upper hand in Iterated Prisoner’s Dilemma games by unilaterally 
enforcing an unfair linear relation between their own payoff and that of their coplayer. Therefore, theory predicts that acceding to 
extortion is the best response for any adapting coplayer. Recent empirical evidence, however, shows that human players seldom yield 
to extortion out of concern for fairness and are willing to discipline extortioners by refusing to fully cooperate. To shed light on such 
fair-minded responses, here we find and characterize general classes of unbending strategies such that the best response of any 
payoff-maximizing extortioner against a fixed unbending player is to offer a fair split, thereby guaranteeing equal pay for both parties.
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Introduction
The Prisoner’s Dilemma (PD) has been considered a central para

digm for understanding a wide variety of cooperation problems 

(1). In this game, two players decide whether to cooperate (C) or 

defect (D). If both players choose to cooperate, they receive the 

same reward for mutual cooperation, R, and if they both defect, 

they receive the same punishment for mutual defection, P. 

However, if one cooperates but the other defects, the defector re

ceives the temptation to defect, T, whereas the cooperator re

ceives the sucker’s payoff, S. These payoff values satisfy 

T > R > P > S (2).

Departure from one-shot games, the dynamics of the Iterated 
Prisoner’s Dilemma (IPD) can be analyzed by examining the four 
possible outcomes that arise when two players simultaneously 
play the game at each time step: (C, C), (D, D), (D, C), and (C, D). 
The former two outcomes result in equal payoffs for both players, 
while the latter two create a payoff inequality, with one player re
ceiving a higher payoff than the other. In repeated interactions, it 
is possible for both players to have equal long-term average pay
offs, or for one player to receive a higher payoff than the other.

To shed light on a range of cooperative or exploitative strategies 
in IPD games (3), prior studies have extensively investigated vari
ous behavioral choices and responses that can be characterized 
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by prescribed intentions or preferences to be fair, cooperative, re
ciprocal, generous, and forgiving (or the opposite). These concepts 
involving reciprocal fairness and cooperation (also known as dir
ect reciprocity, put it simply, “I will if you will”) can be investigated 
within the framework of IPD games.

Various strategies can be employed in an IPD game, with some 
being more cooperative and fair-minded than others. For instance, 
a fair-minded reciprocator would reciprocate cooperation at least 
as often as their coplayer does, rather than seeking an advantage 
over them. Among the common IPD strategies, Tit-for-Tat (TFT) 
and its variants, such as generous TFT (GTFT), are cooperative 
and fair-minded in nature (4). TFT-like players do not defect initial
ly unless their coplayers had defected once or more. On the other 
hand, adaptive learning strategies (5), such as Win-Stay, 
Lose-Shift (WSLS), are more robust to noise and error than TFT 
(6). WSLS deterministically keeps the current strategy if the result
ing payoff is above a fixed aspiration level, or switches otherwise.

An “equalizer” is capable of unilaterally setting any coplayer’s 
payoff level to the same arbitrary level within the range of [P, R] 
(7). Even more capable of bilateral payoff control is the zero- 
determinant (ZD) strategy, discovered by Press and Dyson (8). A 
ZD player can unilaterally set a linear relation between the payoff 
of themselves and that of the coplayer, regardless of the strategy 
of the coplayer. In recent years, the discovery of ZD strategies has 
generated renewed interest in studying IPD games in light of Press 
and Dyson’s finding (9–18).

Of particular interest is the existence of a continuous spectrum 
of ZD strategies that vary in their level of generosity, ranging from 
extortionate ZD to generous ZD (19). Undoubtedly, witting of ZD 
strategies enables players to gain the upper hand in IPD games, 
even allowing an implicit form of extortion (8). Self-serving extor
tioners can leverage ZD strategies to their advantage to the fullest 
extent, aiming to dominate any coplayer preemptively. However, 
it is shown that two extortioners, both equipped with the knowl
edge of extortionate ZD, will neutralize each other in their interac
tions and lead to their own demise, both receiving P (8). The lack of 
mutual cooperation among extortionate ZD players may prevent 
them from being favored by natural selection in an evolutionary 
population dynamics setting, particularly in larger populations 
(14). However, ZD players can still be successful in small popula
tions, and even more so when they either adapt to be more gener
ous towards others (19) or establish reconciliation and 
cooperation among themselves (20).

Prior work almost invariably considers ZD fixed, while their co
player tries to adapt to ZD’s unilateral control. In reality, extortion 
can be met with resistance; unbending individuals are willing to 
push back any attempt to extort out of concern for fairness (10, 
15, 21). Indeed, recent experiments demonstrate that fixed com
puter ZD players are able to outcompete their human counter
parts but at a huge cost in a way that human players are 
significantly less cooperative (15). In a variety of experimental 
scenarios involving incentives for extortionate human players to 
receive additional bonuses based on their competitiveness (10), 
unbending players may give up their disciplinary efforts against 
extortioners, ultimately losing to them. Nevertheless, these un
bending players can still sabotage the extortioners’ success 
through occasional defections, causing a decline in the extor
tioners’ payoffs compared to other control conditions (10). Thus, 
the success of ZD’s extortion attempt can be undermined and be
come less effective in reaching the fullest possible extent. 
Moreover, ZD players need to prescribe their strategies in a sophis
ticated way that explicitly depends on the underlying payoff ma
trix in the first place. It remains unknown how potential variations 

in the payoff matrix, which can arise from the uncertainty of 
evolving game environment (22), will impact the pairwise domin
ance of ZD strategies and in particular their extortion ability, since 
not all PD games are qualitatively the same (23).

These considerations lead us to reveal the previously unfore
seen Achilles’ heel of ZD strategies, specifically in one-on-one en
counters. Namely, there exist simple strategies (including 
TFT-like strategies and WSLS as particular examples) that are un
bending to extortion and can cause an unfair demand to backfire 
on extortioners. When against a fixed unbending player, the best 
response of any payoff-maximizing extortioner, characterized by 
their prescribed smallest possible level of generosity, is to offer a 
fair split, thereby guaranteeing equal payoffs for both parties.

Moreover, we show that in interactions of more adversarial na
ture (24), characterized by the payoff structure condition 
T + S < 2P, ZD’s dominance is drastically impaired, and extor
tioners tempting to dominate the coplayer are likely to become 
victims of their own success. The fixed unbending strategies, dis
covered in the present study, are able to not only force greedy ZD 
coplayers to be fair in their own interest but also more important
ly, steer adapting coplayers (including those ZD coplayers) to
wards fairness and cooperation in adaptive learning settings. 
Our work provides useful insights into understanding the import
ant role played by unbending strategies as an enforcer and stabil
izer of fairness and cooperation in dyadic interactions, of 
relevance and interest for studying direct reciprocity.

Results
We begin with studying the effectiveness of ZD strategies in payoff 
control and extortion and how it depends on their prescribed par
ameter choices and the underlying payoff matrix. Doing so will 
provide a new perspective on understanding specific conditions 
required for intended extortion to be successful or lack thereof. 
These critical considerations ultimately lead us to reveal unbend
ing strategies that are able to outlearn ZD players and foster fair
ness and cooperation in pairwise interactions (see Figs. S1–S15
and Tables S1–S7 in the Online Supplementary Material).

Following common practice (6), we denote memory-one IPD 
strategies by p = [p1, p2, p3, p4], where pi, for i = 1, . . . , 4, is the con
ditional probability to cooperate, respectively, after experiencing 
one of the four possible outcomes each round {CC, CD, DC, DD}, 
that is, written from the perspective of a focal player X (the first 
letter represents X’s last move, and the second letter for the co
player Y’s). Suppose that player X uses a ZD strategy p and the co
player Y uses an arbitrary strategy q = [q1, q2, q3, q4], and let sX 

denote the average payoff of player X and sY that of player Y. A 
general yet intuitive parameterization of memory-one ZD strat
egies are based on three control parameters (O, χ′, ϕ):

p1 = 1 − ϕ(R − O)(χ′ − 1) ,
p2 = 1 − ϕ[(T − O)χ′ + (O − S)],
p3 = ϕ[(O − S)χ′ + (T − O)],
p4 = ϕ(O − P)(χ′ − 1),

⎧
⎪⎪⎨

⎪⎪⎩

(1) 

including the extortion factor χ′ > 1, the baseline payoff O ∈ [P, R], 
and the normalization factor ϕ that ensures p to be a proper prob
ability vector. A complete discussion of the admissible ranges of 
these parameters can be found in the Online Supplementary 
Material.

Regardless of the strategy q used by Y, X unilaterally enforces a 
linear relative payoff relation of the form (8, 19):

sX − O = χ′(sY − O), (2) 
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which represents a straight line in the parametric plot of (sX, sY) 
with the slope 1/χ′ (the reciprocal of the extortion factor χ) 
(Fig. 1a and b). In this plane, the baseline payoff O ∈ [P, R] deter
mines the intercept to the line of equal payoffs, sX = sY, and also 
dictates the level of generosity (19).

The payoff control as given in Eq. 2 enables an implicit form of 
extortion where ZD player X can prescribe their strategies in a way 
that they reciprocate cooperation less frequently than their co
player Y (8, 14). For ZD players, the way to attempt such domin
ance and extortion is to deliberately choose their parameters O 
and χ in advance, which will in turn determine admissible values 
of ϕ. The chosen values of O and χ can be observed directly from 
pairwise payoff plots (Fig. 1a and b), and together with the under
lying payoff matrix, they jointly determine the upper bound of ad
missible ϕ values. For example, a widely used parameterization of 
this ZD class, which is called extortionate ZD strategy (8), ensures 
that sX − P = χ′(sY − P) holds with χ′ > 1. The admissible range of ϕ 
for extortionate ZD is given by

0 < ϕ ≤ ϕupper =
1

(T−P)χ′+ (P−S) , T + S ≥ 2P.
1

(P−S)χ′+ (T−P) , T + S < 2P.

􏼨

(3) 

Notably, the parameter ϕ has an upper bound that explicitly de
pends on the sign of T + S − 2P. We emphasize that this previously 
overlooked payoff structure condition, whether T + S > 2P holds or 
not, surprisingly strikes out as an important condition for deter
mining the optimality of ZD strategies and their extortion ability 
(see Fig. S16 in the Online Supplementary Material). As shown in 
Fig. 1c and d, as long as a ZD player uses the minimal O = P and 
χ′ > 1, they secure the most favorable position to dominate 
and get higher payoffs than their opponent as compared to other 
O values, regardless of the underlying payoff matrix (Fig. 1c and d). 
Despite such a contextual difference of ZD’s extortion ability 
owing to the change in the underlying payoff structure, we still re
fer to this class of “extortionate ZD” as extortioner as in Ref. (14), 
for the sake of consistency. First, the effect of varying their control 
parameter O on their resulting level of generosity and extortion 
ability remains qualitatively consistent across IPD games of 
drastically different nature. Second, for ZD players with O = P, 
no matter what types of IPD games they are engaged in, the chos
en value of P characterizes the least level of generosity, and thus 
preemptively sets their extortion ability at maximum, even 
though these so-called extortioners will not always succeed in 
securing advantage as intended, particularly when T + S < 2P 
(cf. Fig. 1c and d).

On the other hand, given the uncertainty of vastly possible strat
egies the coplayer could use against ZD players, it is worthwhile to 
quantify the robustness of the dominance and the performance of 
ZD strategies with particular respect to varying their baseline pay
off O. It is likely that ZD players choose O = P + ε deviating from P 
for plausible reasons like the trembling hand (25) or “blurred 
minds” (4), and as a consequence, they will respond with nonzero 
cooperation (i.e. p4 > 0) after entering mutual defection state with 
their coplayer. Even so, any ZD player using O < R still has extor
tion ability to some extent unless they use the generous ZD with 
O = R that ensures their average payoffs are never above the co
player’s (19) (Fig. 1). It is thus reasonable to consider the extortion 
ability of ZD strategies as a continuous spectrum—“the likelihood 
of getting better payoffs than any kind of opponent”—instead of a 
binary character (either always or not at all). In doing so, we are 
able to quantify and compare the extortion ability of ZD strategies 
and how it depends on their control parameters (O, χ′, ϕ), and 

more remarkably, on the underlying payoff structure specified 
by the sign of T + S − 2P (Figs. 1 and 2).

We further note that ϕ is a hidden parameter, which has re
ceived little attention in prior studies. However, we find that albeit 
the normalization factor ϕ has no impact on the linear payoff re
lation, it can nontrivially affect the average payoff values that a 
ZD player will receive (Fig. 2). Mathematically, ZD’s average payoff 
sX is given by the ratio of the determinants of two matrices, giving 
rise to a rational function (8). We can show that sX is a monotonic 
function of ϕ (Figs. S17 and S18 in the Online Supplementary 
Material) but can have strict nonmonotonicity with respect to χ, 
exhibiting as a one-humped function of χ (see Online 
Supplementary Material for derivation details). Fig. 2 plots an ex
tortionate ZD’s average payoff sX (with the baseline payoff O = P) 
against a fixed coplayer Y using a specific strategy as a function 
of the parameter space (ϕ, χ′). This result further demonstrates 
that ZD can unilaterally fine tune their control parameters, in par
ticular the previously overlooked parameter ϕ to their own advan
tage (which would be boundary values of its admissible interval, 
either infinitely small or the upper bound).

Only if T + S > 2P is an extortionate ZD unbeatable, ensuring no 
less payoffs than their opponent (the worst scenario is a tie, e.g. 
against TFT as shown in Fig. 2c and f). In this case, making the ex
tortion factor χ excessively larger surely can help ZD impose a 
greater relative advantage over their opponent, but their actual 
average payoff can be seriously comprised (Fig. 2a). Even worse, 
when T + S < 2P, sX can drop below P and due to sX − P = χ′(sY − P) 
we have sX < sY < P (Fig. 2e). In accordance with Fig. 1, the payoff 
structure can completely change the impact of varying ϕ and χ 
on ZD’s performance (cf. Fig. 2a and d, cf. 2b and e). This is one 
of the novel insights stemming from the present study, comple
menting the prior finding that ZD strategies are disfavored in 
population dynamics settings (14, 19, 20). Altogether, these results 
are key to improving our understanding of previously unforeseen 
limitations of ZD strategies in head-to-head matches in IPD 
games.

When an individual is knowingly confronted with extortion and 
especially has known the limitations of ZD strategies (Figs. 1 and 
2), should this player be subdued or otherwise unbending? Prior 
work demonstrates that if an individual accedes by fully cooperat
ing with an extortioner who fixes their strategies, both their pay
offs are maximized (Fig. 1a and b). Conversely, here we ask 
whether there exist unbending players who choose to fix their strat
egies such that extortioners could maximize their payoffs only if 
they try to be fair by letting χ′ → 1. Otherwise, extortioners would 
have experienced a decline in their average payoffs if they ever de
manded an unequal share by increasing χ.

Motivated by these, we further explore unbending strategies 
that are able to force adapting ZD strategies, among these least 
generous ones with O = P and hence equipped with the greatest 
level of extortion ability, to offer a fair split by letting χ′ → 1 in 
their own interest and guarantee equal pay for both sides. 
Considering that any ZD player can always modulate their hidden 
parameter ϕ to extreme values to favor their gains in the interac
tions (Fig. 2), we suppose unbending strategies, without loss of 
generality, will need to (i) neutralize the parameter ϕ in the first 
place such that both of their average payoffs are independent of 
ϕ, ∂sX/∂ϕ = 0, and (ii) guarantee that the derivative of sX with re
spect to χ is strictly negative, ∂sX/∂χ′ < 0.

These required properties of unbending strategies lead us to 
search and identify general classes of strategy candidates that 
can counteract the adversary imposed by extortioners, provided 
that they can trigger the backfire of being extortionate. To put it 
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simply, when confronted with a fixed unbending player, any ex
tortionate ZD player is disciplined with payoff reductions in the 
way that a higher degree of extortion leads to a smaller average 
payoff. Here, we simplify the interaction process by assuming tar
geted interactions between an unbending player and an extortion
ate ZD coplayer, without requiring the recognition and 
assessment of the possibility of coplayer’s extortion as discussed 
in Ref. (26). However, we later relax this assumption during our 
study of steering learning dynamics of adaptive players to con
sider more general strategies beyond extortionate ZD.

Thus, a potential candidate q of unbending strategies outlearn
ing any extortionate ZD coplayer p needs to mitigate the impact 
of χ and ϕ, which are unilaterally controlled by the extortioner. 
To this end, we find that four classes of unbending strategies 

q = [q1, q2, q3, q4] that can make their average payoffs independ
ent of ϕ (as detailed in the Online Supplementary Material):

Here in class D, hD = [T − R − P + S − (T + S − 2P)q1 + (R − P) 
(q2 + q3)]/(2R − T − S), which is exactly the same linear relation sat
isfied by any ZD strategy. Class B only exists when T + S < 2P and 
the maximum payoffs for both sides can receive is R (which is 
an equal-pay outcome). Class C contains “willing” [1, 1, 1, 0] on 
the boundary (27), against which an extortioner can only maxi
mize their own payoffs by being fair (χ′ → 1), thereby ensuring 

A

C

B

D

Fig. 1. Pairwise dominance and extortion ability of ZD strategies. The baseline payoff O used by the ZD player X is regarded as extortionate P (least level of 
generosity), generous R (maximum level of generosity), and in between (P + R)/2 (intermediate level of generosity). The optimality of extortionate ZD 
strategies (with O = P) nontrivially depends on both the strategy of their coplayer and the payoff structure. When playing against a certain type of 
coplayers (which we call unbending strategies), extortioners can maximize their prospective payoffs only if aiming for an equal split by letting the 
extortion factor χ′ → 1. Moreover, when T + S < 2P, extortioners can even be outperformed. In panels a) and b), we show the scatter plot of payoff pairs 
(sX, sY) of ZD players against random coplayers uniformly drawn from all possible memory-one strategies [0, 1]4 in a) T + S > 2P and in b) T + S < 2P. Shown 
in c) and d) is the probability that a ZD player X actually gets better payoff than their coplayer Y (sX > sY) who uses a random strategy uniformly drawn 
from memory-one strategies [0, 1]4, with respect to varying their baseline payoff O ∈ [P, R]. The parameter O controls the level of generosity of a ZD player 
but also impacts their chance to outperform their coplayers (“extortion ability”). Increasing O above P makes ZD less likely to be able to ensure the 
dominance over their coplayers. Noticeably, the payoff structure plays an even more pronounced role than does the parameter O: c) for T + S > 2P the 
curvature is concave downward and ZD is able to maintain dominance for most of the time even using intermediate O > P values, d) whereas concave 
upward for T + S > 2P and ZD is more likely to lose dominance for any P < O ≤ R. In line with a) and b), extortion with O = P always leads to superior payoff 
than the coplayers a) when T + S > 2P, but not necessarily true for b) T + S < 2P. Parameters: a–d) ZD player X’s extortion factor χ′ = 2, and ϕ is uniformly 
distributed and truncated at the admissible upper bound, a,c) R = 3, S = 0, T = 5, P = 1, b,d) R = 1, S = −3, T = 2, P = 0.

Class A: q1 = 1 and q3 = 0 Class B: q2 = q3 = 0
Class C: q1 = q2 = q3 Class D: q4 = hD(q1, q2, q3)
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equal payoffs (sX = sY → R) with unbending “willing” (1 − δ, 1 − 
δ, 1 − δ, ε) for δ→ 0, and ε→ 0 (Table S12 in the Online 
Supplementary Material). The complete analysis and discussion 
of these two classes B and C can be found in the Online 
Supplementary Material.

Furthermore, the entire strategy space comprised of all admis
sible unbending strategies can be characterized by requiring the de
rivative ∂sX/∂χ′ < 0 (Fig. 3). Again, the sign of T + S − 2P determines 
the geometry of the strategy space satisfying unbending properties 
(see Fig. 3a and b for class A, Fig. 3c and d for class D). Of particular 
interest, the memory-one particle swarm optimization (PSO) 
Gambler q = [1, 0.5217, 0, 0.1205], an optimized strategy using PSO 
algorithms in IPD games with the conventional payoff values (13), 
belongs to class A of unbending strategies (Fig. 3a), and WSLS is 
an unbending strategy only if T + S < 2P (Fig. 3b).

Interestingly and coincidentally, we find that all ZD strategies 
with O > P and χ′ > 1 are unbending to extortionate ZD (Fig. 3c 
and d). It is worth noting that these planes specifying the bound
ary of class D have particular meanings. As shown in Fig. 3c, the 
shaded triangle ADE represents the set of extortionate ZD strat
egies with O = P and χ′ > 1, and the shaded area by the four-sided 
polygon BCDE represents the set of equalizer strategies, and all 
unbending strategies in class D are in between these two planes 
and bounded by the unit cube. Besides, the triangle ACD repre
sents the set of generous ZD strategies with O = R, and the triangle 
ABD represents the set of ZD strategies with O = (T + S)/2. For T + 
S < 2P (Fig. 3d), the strategy space degenerates into the region 

between the triangle ABD (extortionate ZD) and triangle BCD 
(equalizer). Hence, we conclude that class D contains all ZD strat
egies with O > P.

We also have extended our search of fixed unbending strategies 
with respect to an even broader class of ZD strategies just with posi
tive χ′ > 1 (namely, using the baseline payoff O = P + ε ≥ P and still 
having extortion ability to some degree as shown in Fig. 1c and d), 
such that ZD’s payoff is independent of the normalization factor 
ϕ and monotonically decreases with their extortion factor χ. As 
shown in Fig. 3 (highlighted with dashed lines) and the Online 
Supplementary Material, our classification of unbending strategies 
(especially nontrivial classes A and D) remains largely robust with 
respect to this important extension. Unexpectedly, we also find a 
set of nonlinear memory-one (non-ZD) strategies, when having 
the knowledge of the ZD coplayer’s baseline payoff O, will always 
be able to ensure equal payoffs O for both (see Fig. S21 and 
Table S27 in the Online Supplementary Material for details).

To provide further intuition about why extortion against un
bending players fails to yield better average payoffs, we consider 
the case where an extortioner X with (P, χ′, ϕ) plays against a fixed 
generous ZD player Y with (R, χ′, ϕ) which in fact belongs to class D 
of unbending strategies. Both of their resulting payoffs are inde
pendent of their ϕ values, and the extortioner X has an average pay
off given by

sX(χ′) =
P(χ′ − 1) + Rχ′(χ′′ − 1)

χ′χ′′ − 1
. (4) 

A B C

D E F

Fig. 2. Impacts of control parameters (ϕ, χ′) on the average payoff of a ZD player when playing against a fixed coplayer. The ZD player X’s payoff, sX, is 
shown as a function of the normalization factor ϕ and the extortion factor χ, along with contour lines projected on the (ϕ, χ′)-plane: a–c) for T + S > 2P and 
d–f) for T + S < 2P. The ZD player X’s payoff is either monotonic or remains constant with respect to ϕ while it can exhibit nonmonotonic behavior with 
respect to χ. Despite being able to enforce a linear payoff relationship sX − P = χ′(sY − P), ZD player X that unilaterally uses a larger extortion factor χ does 
not necessarily lead to further payoff gains as demonstrated in a). As long as “winning isn’t everything” (actual payoff performance is concerned in 
wide-ranging scenarios), ZD can subtly tune their control parameters to optimize their own payoff performance against a fixed coplayer. Parameters: a–f): 
X uses the most formidable ZD strategy with O = P (also known as extortionate ZD), a–c) R = 3, S = 0, T = 5, P = 1, the upper bound of 
ϕ = 1/[(T − P)χ′ + (P − S)], d–f) R = 1, S = −3, T = 2, P = 0, the upper bound of ϕ = 1/[(P − S)χ′ + (T − P)], coplayer Y’s strategy q1 = [0.05, 0.95, 0.05, 0.1], 
q2 = [0.4, 0.1, 0.9, 0.2], q3 = TFT = [1, 0, 1, 0].

http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad176#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad176#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad176#supplementary-data
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We see that sX(χ′) is monotonically decreasing with χ, as the de

rivative dsX/dχ′ = −(R − P)(χ′ − 1)/(χ′χ′ − 1)2 < 0 for R > P, χ′ > 1, and 
χ′ > 1 (Fig. 4a).

Geometrically visualizing this specific example, the generous 
ZD player Y enforces a linear payoff relation as 
sY − R = χ′(sX − R), whereas the extortioner X enforces 
sX − P = χ′(sY − P), and the resulting payoff pair (sX, sY) lies in the 
intersection of these two straight lines. If the extortioner X in
creases the extortion factor χ, the intersection point will move 
down along the line of sY − R = χ′(sX − R) (if the generous ZD player 
Y remains unchanged). Therefore, the more unfair demand 

towards a fixed generous ZD player, the less payoff extortion 
yields. This previously unforeseen “backfire” is self-inflicted by 
the attempt to extort. For a self-interested individual who cares 
about how much they get, not just about monopolizing control 
of relative payoff, it does not pay to extort a generous ZD coplayer, 
and unfair demand backfires on extortioners who would have re
ceived the maximum R if trying to be fair by setting χ′ → 1 (Fig. 4a).

We now turn to explain the intuition behind the payoff struc
ture of IPD games that can impact the dominance (optimality) of 
ZD strategies. It is well known that the condition T + S < 2R is 
needed for mutual cooperation to fare better than alternating C 

A B

C D

Fig. 3. Revealing strategies that are unbending to extortioners in IPD games. Shown is the strategy space of unbending players that are able to cause the 
monotonic decrease of an extortionate ZD (parameterized with O = P, namely, the least generous type regardless of the sign T + S − 2P) player’s payoff 
with respect to the extortion factor χ. Extortioners can demand an even more unfair share by unilaterally raising their extortion factor χ. However, an 
unexpected drop in their prospective payoffs if intentionally being more extortionate is likely to compel self-interested extortioners who want to 
maximize their payoffs to be fair. In this sense, unbending strategies can be used to steer their coplayers from extortion to fairness. The strategy space of 
unbending players depends on the sign of T + S − 2P, and we show two general classes of interest (see Online Supplementary Material for the complete 
classification): one class has the form [1, q2, 0, q4] with combinations of q2 and q4 shown in a) and b), and another class has the form [q1, q2, q3, q4] where 
q4 = [T − R − P + S − (T + S − 2P)q1 + (R − P)(q2 + q3)]/(2R − T − S). This latter class in fact contains all ZD strategies that enforce a linear payoff relation sX − 
O = χ′(sY − O) with O > P. Particular examples of unbending strategies include a) the memory-one PSO Gambler which is optimized by using particle 
swarm algorithms, b) WSLS, and c, d) all ZD strategies with O > P. The dashed lines show the altered boundary of unbending strategies against the ZD 
player X using O = P + ε as opposed to O = P; the region of unbending strategies for class A (T + S < 2P) remains unchanged as shown in panel (b). The shaded 
area in b) shows the region where ZD player X, even though using minimal O = P, can be outperformed by unbending strategies (see Table S9 in the Online 
Supplementary Material for details). This result is in line with Fig. 1, which shows that the payoff structure T + S < 2P drastically hinders a ZD player’s 
ability to extort and dominate their coplayers, let alone those unbending ones. Parameters: a, b) R = 3, S = 0, T = 5, P = 1, ε = 0.05; c, d) R = 1, S = −3, T = 2, 
P = 0, ε = 0.5.

http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad176#supplementary-data
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and D pairs in the IPD. Yet another condition T + S > 2P comes into 
sight if one ponders the condition under which the average payoff 
of any IPD strategy cannot be worse than P, the payoff for ending 
up with the deadlock of mutual defection. IPD is typically studied 
using the conventional values R = 3, S = 0, T = 5, P = 1, satisfying 
2P < T + S < 2R, and thus it ensures the average payoff of any IPD 
strategy cannot be less than P. Extortionate ZD players attain pay
off control and extortion as desired sX − P = χ′(sY − P) in this scen
ario using the conventional payoff values (Fig. 1a and c), but the 
tide will turn against extortioners if the payoff structure satisfies 
T + S < 2P. In this latter case, the average payoff of extortionate 
ZD strategies can be lower than P when facing off certain IPD strat
egies (Fig. 1b and d).

As ZD strategies are explicitly dependent on the underlying 
payoff matrix whose elements are (R, S, T, P), we discover that 
the particular payoff structure, which is governed by the sign of 
T + S − 2P, can fundamentally change the dominance of extortion
ate ZD strategies (Fig. 1, also see Tables S8–S16 in the Online 
Supplementary Material). For example, when an extortionate ZD 
player is pitted against WSLS with q = [1, 0, 0, 1], the stationary 
distribution v of pairwise outcomes {CC, CD, DC, DD} is, up to a 
positive normalization factor, given by

vCC = 0, vCD =
T − P + χ′(P − S)
χ′(T − P) + P − S

, vDC = 1, vDD = 1. (5) 

Therefore, in order to gain an advantage, extortion ZD must en
sure vCD < vDC. However, this condition cannot always be satis

fied when T + S < 2P (the shaded region in Fig. 3b, see Tables S9 
and S13 in the Online Supplementary Material for details). On 
the contrary, the extortionate ZD player in fact reciprocates uni
lateral cooperation more frequently than WSLS if vCD > vDC 
holds, which is equivalent to requiring T + S < 2P. Under this pay
off structure condition, WSLS outperforms any extortionate ZD 
player (Fig. 4b); the more greedy extortion, the more ZD loses. 
Noteworthy, there is absolutely no mutual cooperation between 
WSLS and extortionate ZD players. Extortionate ZD does not fully 
cooperate after a mutual cooperation move, and thus ZD and 
WSLS will eventually end up with mutual defection from which 
ZD will never respond with cooperation while WSLS will always 

respond with cooperation; they will never be back to mutual co
operation. As a consequence, in the long run, no mutual cooper
ation between them can be established at all.

To further understand fixed unbending player’s unprecedent
ed steering role in enforcing fairness and cooperation, we consider 
adaptive learning dynamics of a focal player X using a much 
broader space of strategies, rather than being limited to extortion
ate ZD, in a donation game which is a simplified PD (14, 19) (see 
Tables S17 and S18 in the Online Supplementary Material). 
Under this donation game satisfying the “equal gains from switch
ing” (i.e. T + S = R + P), the memory-one reactive strategies p = 
[p1, p2, p1, p2] is actually a subset of ZD strategies (14) (also see 
Fig. S19 in the Online Supplementary Material). The shaded tri
angle in Fig. 5 indicates all such ZD strategies with positive 
χ′ > 1: BA represents extortionate ZD with χ′ > 1; point A is TFT 
with χ′ → 1 and O = P; point B is equalizer with O = P and χ′ →∞; 
point C is GTFT with O = R and χ′ →∞; BC represents the class 
of “equalizer” strategies. We find that if the benefit-to-cost ratio 
b/c > (

��
5
√

+ 1)/2 (“golden ratio”), the cooperative edge (1, p2) is 
guaranteed to have the maximum average payoff value for player 
X when interacting with any fixed unbending player from class A 
(the region highlighted in Fig. 3a). Depending on the specific strat
egy of the unbending player Y from class A (see Fig. S20 and 
Table S23 for more details in the Online Supplementary 
Material), there could exist bistable learning outcomes of X’s final 
strategies: X can converge to the all defection corner (0, 0) or 
otherwise to the cooperative edge (1, p2) (Fig. 5a), but there is a 
subset of class A of unbending strategies that ensures the global 
convergence to the cooperative edge (1, p2) (Fig. 5b, and Fig. S20, 
Tables S19–S22 in the Online Supplementary Material).

The steered learning dynamics under the influence of the co
player Y from class D of unbending strategies is shown in Fig. 5c 
and d (also see Table S24 in the Online Supplementary Material). 
Generally speaking, the learning dynamics of a focal player X 
against class D of unbending strategies (in other words, ZD strat
egies with a higher level of generosity than player X) adds useful 
insights by complementing previous results in Ref. (8) that focuses 
on adapting coplayer Y against an extortionate ZD player X. Here, 
we show that the final strategy of player X converges to the 

BA

Fig. 4. Intuition for how unfair demand can backfire on extortioners. As shown in panel a), despite being able to enforce payoff control against generous 
ZD (with χ′ = 2), the prospective payoff of extortionate ZD monotonically decreases with their extortion factor χ. The unfair extortion backfires on ZD 
which intended to demand a higher proportion but ended up with less payoff than what they would have obtained if being fairer otherwise. Even more, 
extortioners are outperformed by WSLS, as shown in panel b) when T + S < 2P. The payoffs of the extortioner and WSLS, sX and sY, are both less than P, but 
intended extortion inflicts the unprecedented opposite outcomes: extortioner suffers more, whereas WSLS gains more. Targeted at extortioners, 
unbending strategies can be used to foster fairness in IPD games. The inset plots in a) and b) show the zoomed-in view of the scatter plot of payoffs, in a 
fashion similar to Fig. 1a and b, with their arrows to indicate their directions of change starting from fair, equal split as ZD increases χ above one. 
Parameters: a) R = 3, S = 0, T = 5, P = 1, b) R = 1, S = −3, T = 2, P = 0.

http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad176#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad176#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad176#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad176#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad176#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad176#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad176#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad176#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad176#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad176#supplementary-data
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cooperative edge, reaching full cooperation if against an unbend
ing strategy from class D with O < R (still more generous than any 
extortionate ZD strategies on the edge BA with O = P) (Fig. 5c) or re
mains neutral on the cooperative edge once reaching there when 
against an unbending strategy from class D with O = R (generous 
ZD) (Fig. 5d).

In the Online Supplementary Material, we study the corre
sponding learning dynamics of a general ZD player within the par
ameter space (O, χ′) (see Tables S25 and S26 in the Online 
Supplementary Material) and confirm qualitatively similar results 
as reported here. In particular, when against a fixed unbending 
player, an adapting extortioner with the intended extortion factor 
χ unexpectedly suffers greater payoff reductions than their coun
terpart who chooses not to accede unless offering a fair split. For 
this reason, any evolutionary extortioner who aspires to maxi
mize their own payoff will be compelled from extortion to fairness 
by adjusting their χ values. Since there is no interference by the 
parameter ϕ as ∂sX(χ′, ϕ)/∂ϕ = 0, such reactive learning dynamics 

of extortioners is governed solely by the evolution of χ towards 
payoff optimization:

dχ′
dt

= τ
∂sX(χ′, ϕ)

∂χ′
< 0, (6) 

where the properly chosen timescale parameter τ guarantees 
that the state of Markov chains of gameplay reaches equilibrium 
faster than the learning dynamics (see Online Supplementary 
Material).

Thus, a self-interested extortioner tends to adjust χ as small as 
possible and ultimately behaves like TFT by letting χ′ → 1, thereby 
guaranteeing equal payoffs for both parties (see the change of dir
ection on the edge of O = P in Tables S25 and S26 in the Online 
Supplementary Material). In evolving populations, natural selec
tion favors generosity over extortion (19), and in head-to-head 
matches as demonstrated here, players with the knowledge of un
bending strategies can outlearn extortioners and foster fairness 
and reciprocity in dyadic interactions.

A B

C D

Fig. 5. Steering learning dynamics towards fairness and cooperation with unbending strategies. Shown are the stream plots (vector fields) from the 
adaptive learning dynamics of a self-interested focal player X who uses a general reactive strategy [p1, p2, p1, p2] against a fixed unbending coplayer Y: a, 
b) from class A and c, d) from class D. Class A of unbending strategies are able to steer their coplayer X ultimately to behave like GTFT. Panel a) 
demonstrates that, depending on the specific unbending strategy player Y uses, the direction of change of player X’s p1 can exhibit bistability (separated 
by the dashed line in (a)), which further depends on the initial state of X’s strategy. Panel b) shows that there exists a subset of class A that is able to direct 
the change of p1 always towards full cooperation. In a, b), on the edge p1 = 1, the direction of change of p2 is neutral, and the line segment of AC indicates 
the set of compliers; on the line segment of the edge p2 = 0, indicated by BA, which represents a subset of extortionate ZD players (extortioners), the 
learning dynamics of the ZD player X always converges to TFT (1, 0). Panels c) and d) show that class D of unbending strategies are able to steer adaptive 
learning dynamics of X globally to the cooperative edge p1 = 1 on which the direction of change of p2 c) either is increasing if Y uses a strategy from class D 
that is an intermediate ZD with P < O < R) d) or remains neutral if Y uses a strategy from class D that happens to be the generous ZD with O = R. In both a) 
and b), the global maximum for X’s payoff is reached at the edge p1 = 1 if b/c > (

��
5
√

+ 1)/2, and in c) only at (1, 1) does the global payoff maximum for X 
occur whereas so does the entire cooperative edge p1 = 1 in d). The shaded triangle ABC in each panel indicates the part of reactive strategies which belong 
to the subset of general ZD strategies with positive χ. The color of the curves and dots corresponds to the payoff values of X in situ, as specified by the given 
colorbar. The PD game is parameterized using a donation game R = b − c, S = −c, T = b, P = 0 with b = 4 and c = 1.

http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad176#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad176#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad176#supplementary-data
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Noteworthy, in the aforementioned steering learning dynam
ics, we have focused on an adaptive payoff-maximizing player 
against a fixed unbending coplayer in various scenarios that dir
ectly complement the original study by Press and Dyson, where 
they assume an evolutionary adaptive player against a fixed ex
tortionate ZD coplayer (8). In previous experiments with human 
subjects, it was observed that while some players refuse to comply 
with unfair demands to discourage extortionate behavior, some 
players who consistently refuse to be extorted may eventually 
give up on punishing extortionists (10, 21). This situation can arise 
when the extortionists are known to be preprogrammed computer 
agents (21) or when they are incentivized to win an advantage (10), 
making it challenging to discipline them effectively. To address 
this tug-of-war situation in the adaptive dynamics of behavior re
sponse, we introduce a relative time scale ω that governs the time 
evolution of the behavioral change of an unbending player as 
compared to their coplayer. Specifically, the coadaptive dynamics 
between a ZD player X (p = [p1, p2, p1, p2]) and an unbending play
er Y from class A (starting from a prescribed q = [1, q2, 0, q4]) 
under the previous donation games can be described by the fol
lowing system of differential equations:

dp1
dt = (1 − ω) ∂sX (p, q)

∂p1
,

dp2
dt = (1 − ω) ∂sX (p, q)

∂p2
,

dq2
dt = ω ∂sY (p, q)

∂q2
,

dq4
dt = ω ∂sY (p, q)

∂q4
.

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(7) 

As ω approaches 0, the dynamics revert back to the original scen
ario we studied (Fig. 5), where an unbending player is fixed in their 
behavior. Conversely, when ω approaches 1, the dynamics con
verge to the scenario studied by Press and Dyson, which features 
a fixed ZD player. For intermediate values of ω, an interesting 
arms race emerges between the two adaptive players, which is 
similar to the Red Queen dynamics. Namely, adapting quickly 
means being responsive to instant payoff improvement, but this 
may lead to unexpected shifts in the game where one player turns 
out to have more influence than the other in the long run. Our the
oretical findings are supported by an analysis of the extended co
adaptive dynamics between a ZD player and their unbending 
coplayer from class A or class D. Our results show that unbending 
players, even when their learning rates are high, can enforce fair
ness and cooperation in pairwise interactions as long as they re
tain some degree of unbending characteristics, as demonstrated 
in Fig. S22 in the Online Supplementary Material.

Taken together, these results suggest that unbending strategies 
cannot just outlearn self-interested extortionate ZD and force 
them to be fair and cooperative (that is, both parties eventually 
get equal payoffs out of mutual cooperation, Figs. S22a and b, 
S22d and e in the Online Supplementary Material), but also steer 
the evolution of TFT-like strategies out of any focal player using 
a much broader strategy space (represented by the unit square 
[0, 1]2 in Fig. 5) including but not necessarily limited to extortion
ate ZD strategies (namely, the edge BA in Fig. 5).

So far, we have focused on characterizing properties of un
bending strategies and demonstrating their steering role in enfor
cing fairness and cooperation in pairwise interactions that only 
involve two parties. It is equally, if not less, worthy of studying 
the evolutionary dynamics of unbending strategies in stochastic 
population dynamics together with a set of other prescribed IPD 
strategies. As shown in Fig. 6, we demonstrate the evolutionary 
advantage of unbending strategies and their stability in stochastic 

dynamics of invasion and fixation under the limit of rare muta
tions (28). We see that unbending strategies, including class A 
(i.e. the PSO Gambler) and class D (i.e. generous ZD and TFT), 
are favored by natural selection; their abundance is greater than 
the population average, which holds from weak selection 
(β = 0.01) to strong selection (β = 1). Noticeably, the abundance of 
extortionate ZD almost vanishes under strong selection (see 
Fig. 6a). In pairwise competition dynamics (arising from the limit 
of rare mutations such that the system has at most two IPD strat
egies simultaneously present in the population), the PSO Gambler, 
generous ZD, and TFT all have an evolutionary advantage over ex
tortionate ZD (see Fig. 6b). Namely, the fixation probability of an 
unbending strategy is greater than that of an extortionate ZD 
(see Online Supplementary Material for details).

Nevertheless, we note that the general picture depicted here 
could qualitatively change for extremely small population size N 
(see Online Supplementary Material, and Fig. S23). In fact, extor
tionate ZD can be favored over unbending strategies (UB), such 
as the PSO Gambler, if N = 2. To see this, let us express the 2 × 2 
average payoff matrix for their game interactions as follows:

UB ZD
UB

􏼌
􏼌 a11 a12

ZD
􏼌
􏼌 a21 a22

(8) 

In a population of size N, UB is favored over ZD if and only if

(N − 2)a11 + Na12 > Na21 + (N − 2)a22. (9) 

This condition holds for any selection strength and for any mu
tation rate (29). As for the PSO Gambler vs an extortionate ZD 
(with χ′ = 2) using conventional payoff values, we have 
a11 = R = 3, a12 = 1.5, a21 = 2.0 (ZD enforcing a linear relation, 
a21 − P = χ′(a12 − P)), and a22 = P = 1. For N = 2, ZD completely dom
inates UB as a21 > a12. Only for population size N > 8/3 (i.e. N ≥ 3) 
is it possible for natural selection to favor UB over ZD.

Moreover, the presence of noise can have an impact on 
the evolutionary performance of IPD strategies, as demonstrated 
by the susceptibility of TFT against noise (4). In the Online 
Supplementary Material, we quantify how the level of implementa
tion errors ϵ impacts the ability to foster mutual cooperation among 
unbending strategies themselves (see Online Supplementary 
Material for further details, Fig. S24). Like WSLS, unbending strat
egies, such as the PSO Gambler, are robust against noise; their mu
tual cooperation level vCC is impacted only as 1 −O(ϵ). Altogether, 
our results demonstrate that previously unforeseen unbending 
properties actually exist in some common IPD strategies and that 
they can be leveraged to foster fairness and cooperation not only 
in pairwise interactions but also in population dynamics settings.

Discussions
It is thought that an evolutionary (adapting) player should be sub
dued to a fixed extortionate ZD player by fully cooperating as the 
best response (8). In contrast, recent experimental evidence sug
gests that human players often choose not to accede to extortion 
out of concern for fairness (10, 15). Inspired by this empirical find
ing, here we show that there exist general classes of unbending 
strategies such that the best response of any payoff-maximizing 
extortioner against a fixed unbending player is to be fair, thereby 
ensuring equal pay for both parties. From this perspective, the 
witting of unbending strategies has effectively turned the oppo
nent’s choices of whether or not to adopt extortionate ZD strategy 
into an Ultimatum game (30): to demand unfair division via uni
laterally setting a large χ value, or to guarantee fair share by letting 

http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad176#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad176#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad176#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad176#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad176#supplementary-data
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χ′ → 1. In the former, the extortion effort is sabotaged by unbend
ing, and both sides will be hurt, whereas in the latter, both sides 
will get an equal split of the payoffs. Our results demonstrate 
that unbending strategies can be used to rein in seemingly formid
able extortionate ZD players, whose fair offer ultimately can be 
cultivated in their own interest.

In light of unbending strategies, there is no guarantee that ex
tortioners will be able to subdue their opponents with certainty 
and get their own way as desired. Extortion cannot be successful 
unless their coplayers give up resistance in the first place. The ex
tortion ZD exerts on the coplayer can backfire on themselves. For 
example, an extortionate ZD player will not be able to rein in 
TFT-like players (a limiting case belonging to class D of unbending 
strategies) who are fair-minded but willing to punish defection by 
responding with defection. They will end up in a tie both receiving 
P (Fig. 2). Even if an extortionate ZD player X does end up with 
dominance over the coplayer Y, namely, sX > sY > P, a higher ratio 
of relative payoff surplus, χ′ = (sX − P)/(sY − P), does not necessarily 
translate to higher actual payoffs (Fig. 2a). Increasing χ appears to 
put ZD in a more advantageous position, but such unfair demand 
would be pushed back by unbending players such as generous ZD 
and TFT-like players and hence does not always yield higher ac
tual payoffs (Fig. 4a). As recently demonstrated in experiments in
volving human players against fixed machine extortioners (15), 
human players respond to more extortionate ZD players with 
much lower cooperation levels, which are in essence passive pun
ishment measures to counter ZD’s intended extortion.

Unbending behavior is related to the concept of fairness, which 
has been extensively studied in economics and game theory, par
ticularly through the Ultimatum game (31–34). In such games, in
dividuals may refuse to make concessions they perceive as unfair, 
even if it would be rational to do so. Third-party mechanisms such 
as punishment (35) and reputation effects (30) are often necessary 
to enforce cooperative behavior or fairness. However, in repeated 
games like the PD, individuals can employ a variety of strategies to 
balance their expectations of fair play and reinforce niceness, 

which can lead to reciprocal fairness and cooperation. The un
bending strategies we discovered may be part of the repertoires 
used to counteract the ZD’s extortion and foster mutual cooper
ation and cultivate fairness, given the ubiquity of unbending prop
erties in some common IPD strategies (Fig. 3).

Our work highlights the importance of payoff structure in de
termining the optimality of ZD strategies in IPD games (Fig. 1). 
In particular, if the condition T + S < 2P holds, which means the to
tal payoff, T + S, from alternating C and D pairs of two players is 
worse than that of their mutual defection, 2P, extortionate ZD 
players can be outperformed (Fig. 1b and d). This surprising find
ing is an important new insight that stems from the present study. 
Moreover, the sign of T + S − 2P qualitatively determines the ad
missible strategy space of unbending players that can cause the 
backfire on extortioners (Fig. 3). Noticeably, only if T + S < 2P is 
WSLS an unbending strategy, and in this case, WSLS dominates 
any extortionate ZD strategy (Fig. 4b).

The payoff condition T + S < 2P implies a more adversarial nature 
in pairwise interactions than the conventional IPD games where T + 
S > 2P typically holds (24). Intuitively, this means that the best re
sponse for a pair of individuals alternating between (C, D) and 
(D, C) is always to switch to mutual defection (D, D) (cf. Fig. 1a 
and b). Unbending strategies (those highlighted in the shaded area 
in Fig. 3b) can outcompete seemingly invincible extortionate ZD 
players who would have the greatest potential to dominate by using 
the minimal O = P and χ′ > 1 (Fig. 1). As aforementioned, since ZD’s 
strategy is parameterized explicitly by the underlying payoff matrix, 
variations in the payoff structure can have a previously unforeseen 
effect that will turn the tables on ZD (Fig. 4b): an extortionate ZD 
may become a victim of their own success in IPD games satisfying 
T + S < 2P and more broadly, in social dilemmas of more adversarial 
nature as discussed in Ref. (24).

In the presence of errors and noises (36, 37), complex strategies 
informed by longer memory of past moves are likely at an advan
tage against simple memory-one strategies. Beyond pairwise in
teractions, higher order ones in multiperson games (38), such as 

A B

Fig. 6. Evolutionary dynamics of unbending strategies in finite populations. Shown are a) the stationary abundance of IPD strategies (as indicated on the 
x-axis) under the limit of rare mutations and for different selection strengths β and b) the evolutionary pathways in pairwise competition dynamics (the 
direction of the arrows indicates dominance where the IPD strategy at the end is favored over that at the start; double arrows indicate neutral evolution). 
We consider a set of prescribed IPD strategies, including members belonging to unbending strategies from class A (the PSO Gambler) and from class D 
(generous ZD with χ′ = 2). TFT is an extreme boundary case of unbending strategies from class D (cf. point A in Fig. 3c). We use the Moran process for 
evolutionary updating and study the long-term mutation-selection equilibrium. Parameters: population size N = 100, mutation rate μ→ 0, selection 
strength β = 0.01, 0.1, 1, payoff values: R = 3, S = 0, T = 5, P = 1.
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the public goods game, as well as asymmetric interactions (39), 
are also of relevance in studying reciprocity in these generalized 
situations. Extensions incorporating these considerations are 
meaningful, but incur computational and theoretical challenges 
in search of robust optimal strategies. Nevertheless, the recent 
breakthrough in reinforcement (deep) learning of zero-sum games 
(40), like the Go (41), can lend some insight into the study of 
nonzero-sum games where learning agents, despite being self- 
serving, can mutually foster cooperation for the greater good 
under certain conditions (42). Thus, the classic framework of 
IPD still has the potential to be used as a primary testbed for syn
ergistically combining artificial intelligence (AI) and game theory 
in future work (13, 43, 44), all with an eye towards helping us to en
hance global cooperation in many challenging issues confronting 
our common humanity (45).

While the theoretical and modeling insights of unbending 
strategies are enlightening, we would like to briefly discuss the 
limitations of their practical success. First, when individuals en
counter unknown coplayers with limited prior information, ac
curately detecting and assessing potential extortion during 
repeated interactions may prove challenging due to cognitive con
straints. This presents an obstacle to effectively countering extor
tion using unbending strategies in real time. Second, even when 
unbending players are made fully aware of the extortion, they 
may give up their resistance efforts all too quickly, as it could be 
more beneficial for them to do so, according to recent empirical 
findings that show extortion prevails under incentive (10) or 
power (46, 47) asymmetries (see Ref. (48) for a mini review). 
Moving forward, we hope the present study will help stimulate fu
ture studies, both empirical and theoretical, to assess the efficacy 
of unbending strategies in more realistic scenarios, such as those 
involving unknown coplayers or short-term incentives that en
courage self-interest.

In summary, we have found and characterized general classes 
of unbending strategies that are fair-minded and can outlearn ex
tortioners in their head-to-head encounters. When an extortion
ate ZD player attempts to demand an unfair greater share from 
an unbending player who instead uses a fixed strategy, the un
bending player is able to restrain the extortioner from profiting 
more. The intent to extort an unbending player has unprecedent
ed consequences: extortioners would fare worse than if being fair
er, and they can even be outperformed by, for example, WSLS, if 
the payoff matrix satisfies T + S < 2P. Such previously unforeseen 
backfires caused by unbending players can steer reactive learning 
dynamics of extortionate ZD players from extortion to fairness. 
Our work offers novel insights into fostering fairness and sup
pressing extortion for a more equitable and just society.

Model and methods
Model and analytical approach
We use the same analytical approach invented by Press and 
Dyson (8) to calculate the expected payoffs of any two given play
ers that are head-to-head in the IPD games. In this work, we focus 
on revealing strategies that are unbending to extortionate ZD 
players using explicit closed-form solutions (see details in the 
Online Supplementary Material). The ZD strategies are usually 
parameterized by three important parameters, the extortion fac
tor χ, the normalization factor ϕ, plus an additional baseline pay
off O ∈ [P, R] which controls the level of generosity (8, 19). Tuning 
the parameter ϕ of extortionate ZD strategies with O = P and χ′ > 1 
does not affect the linear payoff relation sX − P = χ′(sY − P), but will 

impact the dependence of their own average payoffs on the extor
tion factor χ in a nontrivial way (see Fig. 2). Therefore, we restrict 
our search for unbending strategies that can neutralize the im
pact of this parameter ϕ, that is, we find specific classes of strat
egies that are able to render the independence of their payoffs 
on ϕ. Further, we narrow down the search of unbending strategies 
that can cause the “backfire” of extortion, namely, the expected 
payoffs of extortionate ZD strategies against a fixed unbending 
player are monotonically decreasing with χ. Ultimately, these con
siderations lead us to discover multiple general classes of unbend
ing strategies, against which attempt to extort and dominate, if 
any, does not pay off at all for ZD players using O = P + ε ≥ P (in
cluding but not limited to extortionate ZD). In some cases, extor
tionate ZD strategies can even be outperformed by unbending 
coplayers, if the payoff matrix satisfies 2P < T + S (Fig. 3b). We 
also investigate how fixed unbending players can steer the learn
ing dynamics of their adapting coplayers who use a much broader 
range of memory-one strategies beyond the class of extortionate 
ZD towards fairness and cooperation. We detail our comprehen
sive analysis in the Online Supplementary Material (see Figs. S1– 
S24 and Tables S1–S21).
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