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Defective transcription of ATF3 
responsive genes, a marker for 
Cockayne Syndrome
Alexey Epanchintsev1,2,3,4,9,10, Marc-Alexander Rauschendorf1,2,3,4,8,10, Federico Costanzo1,2,3,4, 
Nadege Calmels4,5,6, Cathy Obringer4,5,6, Alain Sarasin7, Frederic Coin1,2,3,4, Vincent Laugel5,6* 
& Jean-Marc Egly1,2,3,4*

Cockayne syndrome (CS) is a rare genetic disorder caused by mutations (dysfunction) in CSA and CSB. 
CS patients exhibit mild photosensitivity and severe neurological problems. Currently, CS diagnosis is 
based on the inefficiency of CS cells to recover RNA synthesis upon genotoxic (UV) stress. Indeed, upon 
genotoxic stress, ATF3, an immediate early gene is activated to repress up to 5000 genes encompassing 
its responsive element for a short period of time. On the contrary in CS cells, CSA and CSB dysfunction 
impairs the degradation of the chromatin-bound ATF3, leading to a permanent transcriptional arrest 
as observed by immunofluorescence and ChIP followed by RT-PCR. We analysed ChIP-seq of Pol II 
and ATF3 promoter occupation analysis and RNA sequencing-based gene expression profiling in 
CS cells, as well as performed immunofluorescence study of ATF3 protein stability and quantitative 
RT-PCR screening in 64 patient cell lines. We show that the analysis of few amount (as for example 
CDK5RAP2, NIPBL and NRG1) of ATF3 dependent genes, could serve as prominent molecular markers to 
discriminate between CS and non-CS patient’s cells. Such assay can significantly simplify the timing and 
the complexity of the CS diagnostic procedure in comparison to the currently available methods.

The human genome is constantly exposed to genotoxic attack, which might lead, in absence of proper DNA repair, 
to genomic instability thus resulting in rare disorders such as xeroderma pigmentosum (XP), trichothiodystro-
phy (TTD) and Cockayne syndrome (CS). CS patients exhibit photosensitivity, developmental and neurological 
abnormalities as well as progeroid features1,2 and could be ranged from the most severe prenatal and neonatal 
subtypes (COFS syndrome and CS type II) to infantile (CS type I) and juvenile subtypes (CS type III) leading to 
severe handicap and premature death. The CS incidence has been estimated in Western Europe at 2.7 cases per 
million births3. However, it seems that CS seems to be underdiagnosed. CS can be caused by mutations in ERCC6 
(CSB, [MIM: 609413]) or ERCC8 (CSA, [MIM: 609412]) while certain mutations in XPB (MIM: 610651), XPD 
(MIM: 278730) and XPG (MIM: 278780) genes also develop some CS clinical features4–7. CS patient cells have a 
defect in transcription-coupled repair (TCR), a sub-pathway of Nucleotide Excision Repair (NER)8. CSB as well 
as XPB and XPD (two subunits of transcription factor TFIIH) and XPG appear likewise to play a role in general 
transcription9–12, suggesting that transcriptional defects are the underlying cause of growth and developmental 
abnormalities in CS. It has been hypothesized that RNA polymerase II (Pol II) stalled in front of a DNA lesion 
might be targeted by CSB and CSA to further recruit the other NER factors and proceed to eliminate the lesion 
from the transcribed strand13,14. However accumulating evidence pointed out their involvement in transcriptional 
regulation besides their defined role as TCR factors. Although defective DNA repair provided some explanation 
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for the sun sensitivity phenotype, other clinical features of CS such as neurological dysfunction require additional 
explanations.

Despites the hypothesis suggesting the lesion-stalled Pol II as the main cause of transcription arrest, transcrip-
tion of undamaged genes was also found to be dysregulated after genotoxic stress15. Indeed, we later have shown 
that genotoxic stress triggered the overexpression of immediate early genes such as the Activating Transcription 
Factor 3 (ATF3, MIM: 603148)16. ATF3 bound and repressed genes containing a CRE/ATF responsive element 
(Fig. 1 and Supplementary Fig. S1a) for a short period of time. The arrival of CSA and CSB as part of an ubiquitin 
machinery together with CUL4A and MDM2 ubiquitin ligases then triggered ATF3 elimination from its binding 
site16,17. On the contrary in CS cells, CSA and CSB dysfunction impaired ATF3 degradation. In these cells, ATF3 
remained bound to the CRE/ATF3 response element, thereby preventing the comeback of Pol II and the restart of 
transcription (Fig. 1 and Supplementary Fig. S1a).

ATF3, an immediate early gene, overexpressed following cellular stress, is closely linked to motor and sensory 
neuron degeneration and sometimes used as a neuronal damage marker18,19. We thus hypothesized that ATF3 
direct downstream transcriptional targets may be responsible for mediating CS clinical outcomes.

In this study, we show how the analysis of a certain set of ATF3 responsive genes help to discriminate between 
CS and non-CS cells. Indeed, in UV treated non-CS cells, ATF3 is overexpressed and targets the ATF/CRE 
responsive elements of a large set of genes to repress them for a short period of time. On the contrary in CS defi-
cient cells, ATF3 is maintained on its binding site and the expression of its responsive genes is abrogated. Such 
assay focuses on the expression profile of only three of these genes such as CDK5RAP2, NIPBL and NRG1 that 
could serve as prominent molecular markers to identify patients with CS phenotype.

Methods
Cell lines and UV-C treatment.  All primary or immortalized fibroblasts were grown, expanded or sub-
jected to analysis in DMEM/HamF10 (1:1) medium containing 10% FCS and 40 μg/ml gentamycin. Conditionally 
expressing WT-CSA CS3BE20,21, WT-CSB CS1AN and ATF3 knockout cells were originally described in17. To 
induce CSA or CSB expression, cells were exposed to growth medium containing Doxycycline (final concentra-
tion 0,5 μg/mL). For UV irradiation with a UV-C (254 nm) lamp the medium was removed and the cells were 
rinsed with PBS. After UV-C irradiation (12 J/m2) fresh medium was added and the cells were returned to the 
incubator for the times indicated in the figures.

All experiments on patient’s fibroblasts were conducted in accordance with French regulations. Informed 
consent for genetic assays was obtained from all patients or their legal guardians and the use of this human mate-
rial for research purposes received a specific approval of the Local Ethics Committee (Comite de Protection des 
Personnes EST-IV).
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Figure 1.  ATF3-dependent gene suppression upon genotoxic stress in patients CSA, CSB and non-CS cells. 
(a) Immunofluorescence showing ATF3 staining in CS3BE, CS3BE + CSAWT, CS3BE ATF3−/− cells (upper 
panel) and AS466, AS509 cells (lower panel) as well as the ATF3 staining in CS1AN, CS1AN + CSBWT, 
CS1AN ATF3−/− cells (upper panel) and AS548, AS766 cells (lower panel) The actual percentage of ATF3 
positive cells is depicted for each condition. Several fields with on average 200 cells per condition were taken. 
UV-C irradiation 12 J/m2. (b) Heatmaps of ATF3 and Pol II ChIP sequencing 24 h after UV irradiation of 
CS1AN + CSBWT and CS1AN cells.
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Immuno-staining.  Cells were plated on coverslips and as soon as they rich proper density treated with 
UV and finally fixed 4% PFA. After permeabilization with triton-X cells were stained with anti-ATF3 antibody 
(Abcam, 44C3a). Images were acquired on confocal Leica SP8 microscope.

ChIP assay.  For ChIP assays, cells were seeded in 15 cm dishes and grown to subconfluency before irradia-
tion with UV-C. A descriptive protocol for ChIP could be found elsewhere22–24. Antibodies were purchased or 
obtained from Santa Cruz: ATF3 (sc-188x), RNA Pol II (sc-9001x). The IP-ed DNA was subjected to purification 
and concentration by QIAquick PCR purification kit. For each time point, both, eluted IP or the initial input DNA 
were amplified by qPCR using “QuantiTect SYBR Green PCR MasterMix” kit using primer pairs flanking CRE/
ATF or promoter/TSS region of respective gene. Primer oligonucleotides have been described in16,17.

ChIP-seq, RNA-seq and NGS NGS sequencing of XP genes.  Sample preparation for ChIP-seq and 
RNA-seq as well as NGS sequencing was described in17,25. The raw and processed ChIP-seq data are available at 
GEO: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE87562. Gene expression was uploaded at GEO: 
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE87540). Sample preparation and NGS sequencing of 
XP genes were described in the same way as in26. All primer sequences are available upon request.

RNA isolation qRT-PCR analyses.  Step-by-step protocol describing standard procedures of gene expres-
sion profiling attached as Supplementary Protocol.

Results
ATF3 regulation in CS deficient cells upon UV stress.  To study the transcriptional response of CS 
cells following genotoxic attack, immuno-staining in CS3BE (CSA deficient) and CS1AN (CSB deficient) cells 
as well as in the corresponding rescued cells 24 h after UV irradiation (12 J/m2) was performed. In both CS3BE 
and CS1AN cells, ATF3 was still present 24 h post UV treatment, while in the CS1AN + CSB and CS3BE + CSA 
rescued cells, ATF3 appeared shortly peaking at 8 h and was gone by 24 h (Fig. 1a, upper panels). Similarly, the 
ATF3 cellular pattern at 24 h post UV irradiation, could discriminate between the CS patient’s AS466 (CSAm) and 
AS548 (CSBm) and non-CS patient’s fibroblasts (lower panels). As a control, ATF3−/− knockout cells showed no 
detection of ATF3 staining (middle panels).

RNA-Seq and ChIP-seq showed that both UV treated CSA and CSB deficient cells shared up to 70% (6,000) 
of commonly deregulated genes, most of them (85%) being targeted by ATF317. UV-induced ATF3 was found 
occupying promoters of around 85% (4988 genes) of the down-regulated genes 24 h post UV treatment in both 
wild type and CS cells. Furthermore, heat maps of signal distribution from ChIP-seq, discriminate between ATF3 
and Pol II following UV irradiation at genes encompassing a CRE/ATF element (Fig. 1b). In CS cells, ATF3 was 
still bound to chromatin 24 h post UV irradiation, preventing the recruitment of Pol II. Inversely, in WT cells, 
the disappearance of ATF3 at 24 h, allowed the proper arrival of Pol II at gene promoters to restart transcription.

Altogether, our data suggest that following genotoxic stress, the non-degradation of ATF3 by CSA and CSB, 
could serve a discriminative marker to distinguish CS among the other diseases.

CDK5RAP2, NIPBL and NRG1 as potential markers for CS patients.  We have further analyzed origi-
nal RNA-seq and ChIP-seq data and selected 153 (among the 4988) of the most down-regulated ATF3-dependent 
genes in both CSA and CSB cells (Fig. 2a, Supplementary Table S1); these genes showed complete recovery in 
CSA and CSB rescued (WT) cells within 24 hours. Further analyzing this pattern, we shortened the list and 
focused on 10 target genes, all of them encompassing the ATF3 binding site. Some of these genes, when mutated 
resulted in clinical features (including severe neurodegenerative ones) overlapping with those of CS (Table 1). 
RT-PCR experiments further showed that these genes failed to recover normal transcription activity 24 h post 
UV irradiation in both CS3BE and CS1AN cells as indicated by the ratio of the value obtained at 24 relative to that 
of the untreated time (t = 0) (Fig. 2b). On the contrary, in UV treated CS3BE/ATF3−/− and CS1AN/ATF3−/− 
cells, these genes were not down regulated (compare ATF3 with ATF3−/−). Strikingly, ChIP experiments using 
antibodies against ATF3 and Pol II, further showed that promoters of these genes were still occupied by ATF3 in 
CS-A and CS-B cells 24 h after UV irradiation (Fig. 2c), thus abrogating the comeback of Pol II and the restart 
of transcription (see also16,17). We also tested 15 additional genes and found all of them being down-regulated in 
CS1AN (Supplementary Fig. S1b), meaning they were repressed by ATF3; the latter one being maintained on its 
CRE/ATF binding site.

These findings prompted us to set up an assay to identify CS patients. We thus blindly tested 64 cell lines after 
being UV treated by considering three genes with a reliable biological relevance to CS (Table 1): (i) CDK5RAP2 
is involved in brain development27,28; dysfunctional alleles of CDK5RAP2 are associated with autosomal recessive 
primary microcephaly (MCPH327; (ii) NIPBL mutations result in Cornelia De Lange syndrome (MIM: 122470), 
which is characterized by smaller brain size resulted from impaired neuron production in the developing cortex29; 
(iii) NRG1 encodes for a multifunctional neurotrophin that mediates neurodevelopment. NRG1 signaling in oli-
godendrocytes has indeed been involved in prefrontal cortex myelination30,31 and peripheral myelination32 result-
ing in defect in normal cognitive function33. Some of these features overlap the clinical picture of CS. RT-PCR 
next showed that CDK5RAP2, NRG1 and NIPBL as well as DHFR, here used as a standard16 all of them encom-
passing a CRE/ATF binding site and being ATF3 responsive genes, were downregulated and unable to recover 
normal RNA synthesis past 24 hours post UV irradiation in both CS3BE and CS1AN cells (Supplementary 
Fig. S1c, the kinetic of expression of these genes). On the contrary, in CS3BE + CSA-WT and CS1AN CSB-WT 
rescued cells, these genes that were down regulated few hours after UV treatment, recovered their normal expres-
sion past 24 hours.

Hence, genotoxic attack in CS cells induces a reproducible downregulation of ATF3 dependent genes that, 
when defective, were shown to be responsible of features resembling CS phenotype.

https://doi.org/10.1038/s41598-020-57999-4
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Identification of the CS phenotype.  We next wondered if a simple screening of CDK5RAP2, NRG1 and 
NIPBL would be sufficient to identify CS phenotype among the 64 blindly tested cell lines (summarized in Fig. 3a 
and Supplementary Fig. S1d). Out of these cell lines, 29 were diagnosed as CS: 8 and 21 with mutations in CSA 
and CSB respectively, were associated with CS type I, II, III and COFS syndrome (Fig. 3b and Supplementary 
Table S2)1. We observed a clear decrease in the expression profile of the three genes for the 29 CS cell lines com-
pared to the non-CS. No difference has been shown between CSA and CSB cell lines, neither between the cell lines 
derived from patients with various levels of clinical severity (CS type I, type II and type III).
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Figure 2.  Expression profile in CS cells upon genotoxic stress. (a) RNA-seq gene expression profile of 
CS3BE + CSAWT, CS3BE, CS1AN + CSBWT and CS1AN cell lines. Data of the 153 most down-regulated genes 
in both CS3BE and CS1AN cells 24 hours after UV irradiation. At the right side of the panel are mentioned the 
10 selected genes. (b) Quantitative RT-PCR analysis of the 10 selected ATF3-dependent genes in CSA (CS3BE) 
and CSB (CS1AN) deficient cells as well as respective ATF3−/− cells 24 hours after UV irradiation. Results 
are presented as the ratio of the value obtained at 24 relative to that of the untreated time (t = 0). Each point 
represents the average of at least 3 independent experiments. (c) ChIP assay determining the presence of ATF3 
and Pol II at CRE/ATF sites of the 10 selected genes in CS1AN cells 24 hours after UV irradiation.

Gene MIM Related disease

NRG1 #142445 Control meylination, neurodevelopment

AGTPBP1 #606830 Purkinje cell degeneration phenotype

ATG7 #608760 Purkinje axonal degeneration

TRIM2 #614141 Axonal nuropathies, neorodegeneration

CDK5RAP2 #608201 Microcephaly 3, primary, autosomal recessive

TRIM44 #612298 Predominant expression in cerebellum, cerebrum

FOXN3 #602628

DYRK1A #600855 Mental retardation, autosomal dominant 7

NIPBL #608667 Cornelia de Lange syndrome 1

PLCB4 #600810 Retinal degeneration

Table 1.  ATF3 target genes associated with genetic disorders. For each gene is given the relative dysfunctional 
phenotype documented in MIM.
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Among the cells that recovered a normal RNA synthesis 24 h past UV irradiation, (i) 4 were wild type, (ii) 14 
patients were named “non-CS patients”. These patients included in the blind assay, presented overlapping clinical 
features (microcephaly, growth retardation and mental disability) with CS but did not show any mutations in NER 
genes nor any DNA repair defect in functional assays. In some of these cases, a mitochondrial defect or others 
neurodegenerative disorders were suspected, (iii) 10 were cell lines from patients with known mutations in XPB, 
XPD, TTD-A/p8, XPA (MIM: 278700), XPC (MIM: 78720) or XPF (MIM: 278760); All cells derived from patients 
who only showed classical dermatological symptoms (either pure TTD phenotype or pure XP phenotype) as well 
as an XPA silenced cell line (695/6, shXPA34 displayed a normal transcription profile for the three tested genes 
(CDK5RAP2, NRG1 and NIPBL). To show that others among the downregulated genes were able to give the same 
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Figure 3.  Blind assay: mRNA expression patterns in patient-derived primary fibroblasts. (a) Quantitative RT-
PCR analysis of the CDK5RAP2, NIPBL and NRG1 ATF3 dependent genes in CSA, CSB, non-CS patients. All 
the measurements represent a comparison between 0 and 24 hours time point after UV treatment. All the 64 
cells were grown in parallel and UV (12 J/m2) irradiated; RT-PCR was done on cDNA from cells collected 0 
and 24 hours after UV irradiation. Values are presented as fold expression in relation to the internal expression 
control GAPDH and to expression level of each gene at time point t = 0 (w/o UV irradiation). (b) Maps of CSA 
and CSB proteins showing all the mutations involved in this study (Supplementary Table S2).
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expression signature, we tested other 6 genes instead of three to discriminate CS versus non-CS cells and got sim-
ilar result (Supplementary Fig. S1g and S1h). We also observed a reduced expression profile for VL8 and AS634 
cells (previously defined as non-CS) derived from patients characterized by microcephaly, growth failure, and 
cutaneous sensitivity and pigmentary anomalies. Sequencing showed mutations in ERCC5/XPG and ERCC2/
XPD, prompting the diagnosis towards XP-G/CS for VL8 and as XP-D/CS for AS634 cells. In addition, cells from 
patients presenting the combined CS symptoms (XP/CS patients with mutation in XPD (XP8BR, XPSC235) and 
XPG (GM0361636, VL8, AS634) showed a severe down-regulation of the three marker genes, similar to the VL8 
and AS634 cell lines. The same pattern was also identified in UV treated cells from a patient previously character-
ized as severe-TTD (TTD8PV37 showing a diffuse demyelination of the cerebral white matter reminiscent of CS38) 
and a XP-A patient (XP12ROSV39) characterized by De Sanctis–Cacchione phenotype (dermatological symptoms 
of XP, associated with neurological deterioration and growth failure). In these two cell lines and similarly to what 
was observed in XP/CS cases, the down regulation of the three marker genes was again associated with clinical 
features reminiscent of the CS phenotype. As a further control, ChIP experiments showed that in all the CSA/
CSB deficient cells as pointed out in AS493, AS548, AS179, AS655, XPCS2 (as * noted Supplementary Fig. S1e), 
ATF3 was recruited and remained bound to the CRE/ATF site throughout the entire 24 h time course following 
UV treatment. In some other cell lines (AS766, AS509, AS525) where gene expression remained unchanged after 
UV treatment, ATF3 remained recruited for a short period after which RNA synthesis was restored.

Although the same results were observed with larger panel of chosen candidates, screening of only three genes 
seems to be sufficient to identify and diagnose CS phenotype.

Discussion
The present study proposes an easy and straightforward molecular assay for identifying CS patients based on the 
inability of CSA and CSB to perform their ubiquitin/proteasome degradation function. In response to cellular 
stress, ATF3 immediate early gene is activated and rapidly transiently targets genes harboring a CRE/ATF binding 
site to repress their expression. In CS deficient cells, the ATF3 is maintained on its target site, thus abrogating the 
expression of amount of ATF3 responsive genes leading to subsequent cellular defects as exemplified in our blind 
assay (Fig. 3a and Supplementary Fig. S1d). Immuno-staining using anti ATF3 antibodies might also quickly 
discriminate between CS and non-CS cells: in the first set of cells, ATF3 was visible at 24 hours while in the latter 
ones, ATF3 was eliminated few hours post UV irradiation (Fig. 1a).

Although that practically any of the top 153 ATF3 responsive genes could have served as markers, we focused 
on CDK5RAP2, NRG1 and NIPBL, three genes involved in neurodevelopmental or neurodegenerative processes. 
The same pattern is indeed observed in all proven CS patients (all of them showing neurological symptoms (Fig. 3 
and Supplementary Table S2)1,2 but also in patients carrying mutations in XP genes whenever these mutations 
are associated with neurological symptoms. However, this gene expression pattern is not observed in patients 
carrying mutations in XP genes, when these mutations are associated with dermatological symptoms only or in 
patients showing neurological defects but no mutation in the CS or XP genes. This transcriptional pattern could 
therefore be regarded as a molecular signature for CS. This could help to diagnose CS even before the identifi-
cation of the molecular defect or in the absence of identified mutations in the known CS genes, beside already 
existing DNA repair tests. In addition, our assay could lead to the identification of patients presenting similar 
neurological phenotypes and transcriptional profile with no visible defects in DNA repair. Indeed, the clinical 
sensitivity to sunlight is usually mild in CS patients and is actually not a prominent feature of the clinical picture. 
When clinically assessed by dermatological photo-tests, a vast majority of CS patients are defined as photosen-
sitive40 but the clinical relevance and awareness of this sun sensitivity in the everyday life of the patients largely 
depends on the country they live in and on their way of life (which can imply various levels of sun exposure). This 
is in sharp contrast with the very severe sensitivity to UV observed in CS cells. Neither the classical RRS assay nor 
the present assay is correlated with the clinical picture of CS patients: the most severe and the mildest CS patients 
have a similar RRS defect at the cellular level. Although there is a trend pointing to a more severe defect in XP-CS 
patients than in CS patients, there is no clear difference between CSA and CSB patients nor between CS type I 
(classical), type II (severe) or type III (mild)1. Our results also indicate that the present assay could also suggest 
the diagnostic of CS, regardless of the gene involved (CSA, CSB, XPB, XPD, XPG). This assay actually relies on the 
same paradigm as the classical RRS (it evaluates the restart of transcription after UV irradiation) but focuses only 
on the transcription of a more specific (ATF3 responsive) subset of clinically relevant genes rather than on the 
global transcription of the genome. In fact, our assay investigates the function of CSA and CSB in the regulation 
of gene expression upon genotoxic stress. In a clinical purpose however, it seemed relevant to validate markers 
that could be easily and unambiguously tested in fibroblasts, which are one of the only cell types that is available 
in clinical routine for obvious ethical issues.

We believe that our assay would also be clinically more relevant for diagnostic purposes than the classical 
DNA repair tests which were unable to discriminate neurological and non-neurological phenotypes linked to 
mutations in the NER genes. Of course it would be over simplistic to pretend that the few markers genes used here 
can alone account for pathophysiology of CS. Our assay might help to clarify overlapping NER clinical subtypes 
even in the absence of any identified molecular defect or in the very early stages of the disease although we are 
not excluding defects due to DNA lesions originated by UV irradiation which gets masked by the pool of ATF3 
dependent transcription arrest.
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