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ABSTRACT

Conventional genotyping-by-sequencing (cGBS)
strategies suffer from high rates of missing data
and genotyping errors, particularly at heterozy-
gous sites. tGBS® genotyping-by-sequencing is a
novel method of genome reduction that employs
two restriction enzymes to generate overhangs
in opposite orientations to which (single-strand)
oligos rather than (double-stranded) adaptors are
ligated. This strategy ensures that only double-
digested fragments are amplified and sequenced.
The use of oligos avoids the necessity of prepar-
ing adaptors and the problems associated with
inter-adaptor annealing/ligation. Hence, the tGBS
protocol simplifies the preparation of high-quality
GBS sequencing libraries. During polymerase chain
reaction (PCR) amplification, selective nucleotides
included at the 3′-end of the PCR primers result
in additional genome reduction as compared to
cGBS. By adjusting the number of selective bases,
different numbers of genomic sites are targeted for
sequencing. Therefore, for equivalent amounts of
sequencing, more reads per site are available for
SNP calling. Hence, as compared to cGBS, tGBS
delivers higher SNP calling accuracy (>97–99%),
even at heterozygous sites, less missing data per
marker across a population of samples, and an
enhanced ability to genotype rare alleles. tGBS is
particularly well suited for genomic selection, which
often requires the ability to genotype populations of
individuals that are heterozygous at many loci.

INTRODUCTION

A fundamental goal of biology is to link variation in geno-
type with variation in phenotype. Achieving this goal re-
quires accurate methods for measuring both genotypes and
phenotypes. The development of polymerase chain reaction
(PCR) made feasible assays of genotypic variation between
individuals on a scale never before achieved (1). The intro-
duction of fluorescent dyes and hybridization technology
have enhanced the reliability, improved the sensitivity and
increased the throughput of genotyping assays (2–4). In the
last decade, advances in DNA sequencing technologies and
substantial cost reduction have made it possible to geno-
type individual organisms via sequencing (5,6). Genotyping
using sequence data can incorporate marker discovery and
marker scoring into a single process, reducing the ascertain-
ment bias inherent in many other PCR- or hybridization-
based genotyping approaches which are designed to score a
pre-defined set of markers.

The most comprehensive form of genotyping using se-
quence data is complete resequencing of the genomes of
individuals of interest at sufficient depth to identify poly-
morphisms. However, for many eukaryotic species this ap-
proach is still cost prohibitive given their genome sizes. Vari-
ous genome reduction strategies have been developed to tar-
get only a subset of an organism’s genome for sequencing,
thereby reducing the total amount of sequence data needed
per individual. The most common genome reduction ap-
proach is to sequence genomic loci flanked by restriction
enzymes (REs). Other methods substitute amplification for
enzymatic digestion, e.g. SLAF-seq (7) and NextRAD (8).

One well-known next generation sequencing-based geno-
typing strategy that utilizes REs as a method of genome re-
duction is RAD-Seq (9). While RAD-Seq and related meth-
ods such as CRoPS (10), MGS (11), GBS (12), double di-
gest RADseq (13), 2b-RAD (14) and RESTSeq (15) repre-
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sented a significant advance in reducing cost and increas-
ing throughput relative to whole genome resequencing, the
initial protocols included labor intensive and costly steps
such as physical shearing of DNA molecules and enzymatic
end repair to process DNA. A number of modified proto-
cols focused on increasing the stringency of genome reduc-
tion. Even so, current methods often still target hundreds
of thousands to millions of sites per genome. As a result,
given a reasonable amount of sequencing, read depths per
site are often quite low, resulting in any given site not being
sequenced in a subset of individuals, leading to high levels of
missing data and problems detecting rare alleles (16). Low
read depths also result in higher error rates especially at het-
erozygous loci where low numbers of aligned reads increase
the risk that only one of the two alleles present will be rep-
resented (17). This limits the use of these methods primar-
ily to inbred lines, or requires more sequencing per individ-
ual to increase read depths, thereby reducing the advantages
gained from genome reduction.

In practice, the ideal level of genome reduction varies
depending on the size of the target genome, the nature of
the population being sequenced, the prevalence of poly-
morphic loci in a population, and the research goals. As-
certaining phylogenetic relationships can often be achieved
using only a few hundred markers. Mapping QTLs within
an F2 or RIL population will generally benefit from geno-
typing several thousand markers. Genome-wide association
studies (GWAS) may require anywhere from tens of thou-
sands to millions of markers depending on the level of link-
age disequilibrium in the population. In principle each of
these needs could be addressed by separate genome reduc-
tion methods. However, such an approach would mean very
few markers would be shared across different datasets gen-
erated for different initial aims, limiting interoperability and
data reusability.

Here, we describe a new method of genotyping-by-
sequencing. This method provides the ability to adjust the
number of targeted sites according to research goals by
modifying a single primer in the protocol. In addition, un-
like the genome reduction methods described above, this
method utilizes oligonucleotides (oligos, which by defini-
tion consist of a single strand of DNA) in place of adap-
tors, which by definition consist of two annealed olgios and
are therefore always double-stranded. The use of adaptors
requires the careful annealing of the two oligos prior to
use, and accurate quantification to obtain the proper ratio
of adaptors to DNA templates to achieve efficient ligation.
In contrast, the preparation and accurate quantification of
oligos are simple, substantially enhancing the reliability of
tGBS library preparation.

Our results demonstrate that sequencing reads from
tGBS libraries are highly enriched at target sites and pro-
duce higher average read depths per target site given the
same number of reads per sample employed by conventional
genotyping-by-sequencing (cGBS) strategies. As a conse-
quence of the high average read depth per site, a low frac-
tion of missing data and high repeatability in single nu-
cleotide polymorphism (SNP) calls among individuals is
obtained, avoiding the need for extensive imputation. Fi-
nally, tGBS exhibits high accuracy in genotyping both ho-
mozygous (>97%) and heterozygous (>98%) loci, which

makes it possible to accurately genotype non-inbred pop-
ulations such as F1BC1s and F2s which are widely used in
both genetic research and selective breeding programs, in-
cluding those involving genomic selection (18).

MATERIALS AND METHODS

Extraction of DNA samples

DNA samples from the inbred lines B73, Mo17 and the
nested association mapping (NAM) founders (19) were ex-
tracted from 6-day-old seedling tissue using the DNeasy
Plant Maxi Kit [QIAGEN (Valencia, CA, USA), No.
68163]. The 232 B73xMo17 recombinant inbred lines (IBM
RILs) (20) and the 192 F2 individuals were extracted from
6-day-old seedling leaf tissue using the MagAttract 96
DNA Plant Core Kit [QIAGEN (Valencia, CA, USA), No.
67163]. Samples were normalized using the Qubit dsDNA
Broad Range Assay [ThermoFisher (Waltham, MA, USA),
no Q32853].

tGBS procedure

Approximately 120 ng of genomic DNA from each sample
was digested with 100 units of NspI [New England Biolabs
(Beverly, MA, USA), No. R0602L] and 400 units of BfuCI
[New England Biolabs (Beverly, MA, USA), No. R0636L]
in NEB CutSmart Buffer 4 in a 30-�l volume at 37◦C for
1.5 h following the manufacturer’s protocol. Unique, bar-
coded oligos (100 �M) and a universal single-strand oligo
(100 �M) were added to each sample for ligation with T4
DNA ligase [New England Biolabs (Beverly, MA, USA),
No. R0602L]. Ligation was performed at 16◦C for 1.5 h
in a 60 �l volume following the manufacturer’s protocol.
The T4 DNA ligase was inactivated by incubation at 80◦C
for 20 min. All digestion-ligation products were pooled and
1 ml of pooled product was purified using the QiaQuick
PCR purification kit [QIAGEN (Valencia, CA, USA), No.
28106]. The pooled, purified digestion-ligation product was
used as the template for a single selective PCR reaction us-
ing a selective primer (100 �M), an amplification primer
(100 �M) and Phusion High-Fidelity PCR Master Mix with
HF Buffer [New England Biolabs (Beverly, MA, USA), No.
M0531L]. The PCR program consisted of 95◦C for 3 min;
15 cycles of 98◦C for 15 s, 65◦C for 20 s, 72◦C for 20 s; and a
final extension at 72◦C for 5 min. The selective PCR prod-
uct was purified using a 1:1 ratio of Agencourt AMPure
XP Beads [Beckman Coulter, Inc. (Brea, CA, USA), No.
A63880]. The purified selective PCR product was used as
the template for a single, final PCR reaction using primers
for the Proton platform and Phusion High-Fidelity PCR
Master Mix with HF Buffer [New England Biolabs (Bev-
erly, MA, USA), No. M0531L]. The PCR program con-
sisted of 98◦C for 3 min; 10 cycles of 95◦C for 15 s, 65◦C
for 20 s, 72◦C for 20 s; and a final extension at 72◦C for
5 min. The final PCR product was purified using Agen-
court AMPure XP Beads [Beckman Coulter, Inc. (Brea,
CA, USA), No. A63880]. The purified final PCR product
underwent size selection for a target of 200–300 bp using the
1.5% Agarose DNA cassette for the BluePippin [Sage Sci-
ence (Beverly, MA, USA), No. HTC2010]. The size-selected
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final PCR product was run on a Bioanalyzer High Sensitiv-
ity DNA chip to quantify and ensure proper size selection
[Agilent Technologies (Santa Clara, CA, USA), No. 5067–
4626]. Oligo and primer sequences for the Proton and Illu-
mina sequencing platforms are provided in Supplementary
Tables S1 and 2, respectively.

Sequencing on the Ion proton

tGBS libraries were sequenced on Life Technologies’ Ion
Proton Systems following the Ion PI Hi-Q Sequencing 200
Kit User Guide (Revision C.0) at Iowa State University’s
Genomics Technologies Facility. Template preparation was
performed with the Ion PI Hi-Q OT2 200 Kit [Thermo
Fisher (Waltham, MA, USA), No. A26434] on the Ion
Onetouch 2 System. Sequencing runs were performed us-
ing the Ion PI Hi-Q Sequencing 200 Kit [Thermo Fisher
(Waltham, MA, USA), No. A26433] and the Ion PI Chip
Kit v3 [Thermo Fisher (Waltham, MA, USA), No. A26771]
at 300 flows.

Debarcoding and cleaning of tGBS reads

Sequencing reads were analyzed with a custom Perl script
(available at https://github.com/orgs/schnablelab) which as-
signed each read to a sample and removed the associ-
ated barcode. Each debarcoded read was further trimmed
to remove Proton adaptor sequences using Seqclean
(sourceforge.net/projects/seqclean) and to remove poten-
tially chimeric reads harboring internal restriction sites
of NspI or BfuCI. Only reads with the correct barcodes
and RE sites were retained for further processing. Re-
tained reads were subjected to quality trimming. Bases with
PHRED quality value <15 (out of 40) (21,22), i.e. error
rates of ≤3%, were further removed with another custom
Perl script. Each read was examined in two phases. In the
first phase reads were scanned starting at each end and nu-
cleotides with quality values lower than the threshold were
removed. The remaining nucleotides were then scanned us-
ing overlapping windows of 10 bp and sequences beyond the
last window with average quality value less than the spec-
ified threshold were truncated. The trimming parameters
were as referred to in the trimming software, Lucy (23,24).

Alignment of reads to reference genome

Cleaned reads were aligned to the B73 reference genome
(AGP v2) (25) using GSNAP (26). Only confidently mapped
reads were used for subsequent analyses, which are uniquely
mapped with at least 50 bp aligned, at most two mismatches
every 40 bp and tail of <3 bp for every 100 bp of read.

SNP discovery

The resulting confident alignments were used for SNP dis-
covery. Reads at each potential SNP site were counted. A
site was considered interrogated if it was covered by at least
five reads. At each interrogated site, each sample was geno-
typed individually using the following criteria: an SNP was
called as homozygous in a given sample if at least five reads
supported the genotype at that site and at least 90% of all

aligned reads covering that site shared the same nucleotide;
an SNP was called as heterozygous in a given sample if at
least two reads supported each of at least two different alle-
les, each of the two read types separately comprised more
than 20% of the reads aligning to that site, and the sum
of the reads supporting those two alleles comprised at least
90% of all reads covering the site. To compare samples with
equal data, SNP discovery was performed in subsets of the
data where equal numbers of randomly selected trimmed
reads were processed from each sample individually.

Determination of selectivity

Sequencing reads obtained from Life Technology’s Proton
instrument are single-end and only include the barcode,
NspI digestion site and the adjacent sequence. For this rea-
son, selectivity could not be directly determined from reads.
Based on the closest BfuCI site of uniquely aligned reads in
the B73 genome, the complementary bases that target the
selective sequences in each read were predicted. On-target
and off-target reads were categorized based on this selected
sequence prediction. ‘On-target sites’ in the genome are de-
fined as those that contain both an NspI RE recognition
site and a BfuCI RE recognition site which are separated
by 100–300 bp and that contain the appropriate selected se-
quence adjacent to the BfuCI recognition site. ‘On-target
reads’ align to on-target sites. The number of interrogated
sites was determined by identifying all the bases in the ref-
erence genome that had ≥5 reads uniquely aligned to that
site.

In silico digestion of the B73 reference genome was per-
formed to identify all possible NspI and BfuCI RE frag-
ments. Reads were aligned to this digested genome to deter-
mine which fragments have coverage.

Accuracy of tGBS calls

Concordance of genotyping calls among methods was used
as a proxy for accuracy. The accuracy of tGBS calls in
the NAM founders was determined by identifying concor-
dant and non-concordant genotypes between tGBS calls
and calls from TASSEL SNPs (27) and RNA-sequencing
SNPs (28) (SRA050790 and SRA050451). The HapMap2
TASSEL SNP genotypes from Panzea were used directly,
while RNA-sequencing SNPs were called as described for
tGBS SNP calling. Polymorphic sites (i.e. at least one of the
NAM founders has a non-reference allele) that were in com-
mon across the three SNP calling methods were compared.
For each sample with no missing data at that site, the geno-
typing calls from each method were compared. If the call
in one method disagreed, then the method in disagreement
was considered non-concordant.

To assess accuracy of tGBS SNP calls in the IBM RILs,
tGBS SNP calls were compared to genotypes from RNA-
sequencing (29) and Sequenom data in the IBM RILs (30).
Because the RILs are expected to have low levels of het-
erozygosity and be segregating ∼1:1 for B73-like versus
Mo17-like alleles, the tGBS and RNA-sequencing SNPs
were filtered independently for sites with minor allele fre-
quencies >0.3 and heterozygosity <0.05. A total of 67
RILs were genotyped with all three methods and could

https://github.com/orgs/schnablelab
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be compared for accuracy. To increase the number of sites
that could be compared between the tGBS and RNA-
sequencing genotyping, segmentation was performed on
each set of SNPs to identify B73-like and Mo17-like regions
in each RIL. Segments were identified from each SNP set by
running DNAcopy (31) using the segment function with the
parameters � = 0.01, nperm = 10000, p.method = ‘perm’,
eta = 0.01 and min.width = 3. A segment genotype was de-
termined by identifying which genotype was the majority
in the given segment. The SNP genotyping calls from the
each filtered SNP set were compared to the segmentation
genotype from each method. Each putative error was ex-
amined to determine the genotypes of flanking markers. If
the genotype of the putative error agreed with at least one of
the flanking markers, the marker was no longer considered
an error. Individual SNPs that did not match the segment
genotype and had no flanking markers that would indicate
the segment was generated incorrectly were considered er-
rors.

The accuracy of tGBS calls conducted in the B73 ×
Mo17 F2 individuals was also determined by using segmen-
tation. tGBS was performed on 192 F2 individuals at tGBS
(GRL2). Because an F2 population is expected to segregate
∼1:2:1 at sites that are polymorphic for the two different
parental alleles, the 4032 SNP sites with a 70% minimum
call rate (MCR; i.e. at least 70% of the samples were geno-
typed), minor allele frequencies ≥0.35 and a proportion of
heterozygous genotypes between 0.35 and 0.65 were used
for segmentation. Using the same parameters for DNAcopy
described above, segments of similar genotypes were iden-
tified in each of the F2 individuals. Within each individual,
marker genotypes that did not agree with the segment geno-
type (reference, heterozygous or non-reference) were flagged
as putative errors.

The accuracy of tGBS (GRL2) and cGBS was compared
as described above for the NAM concordance where SNP
genotypes obtained from three methods are expected to
agree and if one genotype does not agree, that genotype
call is considered an error. The HapMap2 genotypes from
Panzea were used as the third comparison. SNP genotypes
from the cGBS data were called in three ways: SNP calling
using a method that allows for heterozygous calls (equiva-
lent to previous SNP calling descriptions), SNP calling us-
ing a method that allows for only homozygous calls (the
most common allele must be supported by at least 80% of
all aligned reads instead of at least 30%), or downloaded
from Panzea. tGBS SNPs were obtained from either the het-
erozygous or homozygous SNP calling methods.

Construction of genetic maps

Genetic maps were constructed from 70% MCR, 50% MCR
and 20% MCR tGBS (GRL2) SNP sets in the IBM RILs
with the same filtering described for segmentation using
ASMap (32). LinkImpute (33) was run with the default
settings. SNPs imputed from LinkImpute and unimputed
SNPs for each MCR were imported into ASMap (32) for
map construction. RILs with high similarity were detected
using the comparegeno function. Six RILs (M0122, M0173,
M0177, M0187, M0209, M0252) were removed for having
>90% similarity with another RIL. Markers with segre-

gation distortion were identified and any markers with a
P-value < 1e-10 were removed. Genetic maps were con-
structed using the mstmap.cross function. The P-value cut-
off for genetic map construction (with and without imputa-
tion) was adjusted so that 10 or more distinct linkage groups
were identified, and the detection of bad markers was set
to ‘yes’. The genotyping error of genetically mapped mark-
ers was estimated by determining the maximum likelihood
from a range of potential errors using R/qtl (34).

Genetic maps were also constructed from 70% MCR
tGBS (GRL2) filtered SNP set for 192 B73 × Mo17 F2 in-
dividuals using ASMap. Imputation and genetic mapping
were performed as described for the IBM RILs but using a
more stringent P-value (<1e-5) for segregation distortion.

Comparisons between tGBS and cGBS

cGBS data were downloaded from GenBank SRP021921
(32). Barcodes were removed and reads were trimmed for
quality as described above for tGBS reads. However, be-
cause tGBS data were generated using Ion Proton technol-
ogy and cGBS data were generated using Illumina sequenc-
ing technology and these technologies produce reads of dif-
ferent lengths, it was necessary to control for read length
before conducting comparisons. To compare read depth per
interrogated site, tGBS and cGBS were standardized by
trimming all reads to 75 bp. The observed reduction in read
number from raw to standardized reads is primarily due
to the removal of reads <75 bp in length, which were not
used in this analysis. These ‘standardized reads’ were then
aligned to the B73 reference genome.

Similarly, to compare the number of interrogated sites at
various MCR values standardized tGBS (GRL2) and cGBS
reads were subsampled to obtain equal numbers of reads for
each method (0.25, 0.5, 0.75 and 1 million reads). Samples
that had fewer than the desired number of subsampled reads
were not used in this analysis. Because MCR is affected by
the number of samples included in the comparison, equal
numbers of tGBS and cGBS samples were selected based
on the method with the smaller number of samples having
the appropriate number of subsampled reads.

RESULTS

tGBS for genome reduction

During tGBS, genomic DNA is subjected to double diges-
tion with two enzymes, producing DNA fragments with a
5′ overhang on one end and a 3′ overhang on the other
(Figure 1). In contrast to other methods (7–12) that employ
adaptors, a unique oligo is ligated to each overhang. This
strategy ensures that only double-digested fragments are se-
quenced, thereby increasing specificity. One of the oligos is
unique to an individual sample and contains a DNA bar-
code (35) (barcode oligo) while the other oligo is common
to all samples and contains a universal sequence (universal
oligo) for subsequent construction of sequencing libraries.
Following ligation, two PCR steps complete the construc-
tion of the sequencing library. For the first PCR (selective
PCR), two PCR primers that partially match the ligation
oligos are used. The primer matching the universal oligo
(selective primer) is designed to be the reverse complement
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Figure 1. Diagram of tGBS. Digestion. Genomic DNA is digested with two REs: NspI leaves a 3′overhang and BfuCI leaves a 5′ overhang. Ligation.
Two distinct oligos are ligated to the complementary 3′ and 5′ overhangs. The oligo matching the 3′ overhang contains a sample-specific internal barcode
sequence for sample identification. The oligo matching the 5′ overhang is universal and present in every reaction for later amplification. Selective PCR.
Target sites are selected using a selective primer with variable selective bases (‘CA’) that match selected sequences in the digested genome fragments and a
non-selective primer. When properly amplified, the selected sequence is complementary to the selective bases. Final PCR. Primers matching the amplification
primer and the selective primer which contain the full Proton adaptor sequence are used for amplification of the final library. Final on-target sequence. The
final sequence contains the 5′ Proton adaptor sequence, an internal barcode, the NspI RE site, the target molecule, selective bases, the BfuCI RE site and
the 3′ Proton adaptor sequence. It is possible to adapt the tGBS protocol for sequencing on an Illumina instrument by redesigning the ligation oligos and
PCR primers.

of the universal ligation oligo; however, it extends an addi-
tional 1–3 nt (selective bases) at its 3′ end which can only
perfectly anneal to a subset of the genomic fragments cre-
ated by RE digestion and oligo ligation, thus reducing the
number of targeted sites to be amplified. As a result, ge-
nomic fragments that include the complement of the se-
lective bases and the universal oligo will be preferentially
amplified. The non-selective primer used in selective PCR
matches the 5′ end of the barcode oligo. Because this primer
will anneal and amplify the sequence preceding the bar-
code, the primer itself does not need to be designed to match
the barcode, reducing primer complexity and cost. For the
second PCR (final PCR), two primers (Proton/Illumina
primer 1 and 2) compatible with the appropriate sequencing
platform are used to create the sequencing library.

Based on their cutting frequencies and abilities to gen-
erate appropriate overhangs (one 5′ overhang and one 3′
overhang), NspI and BfuCI were selected for tGBS. Sim-
ulation analysis of the maize genome constrained to only
non-repetitive DNA-fragments with different cut sites on
each end with a total size between 100 and 300 bp yielded a
total of 246 124, 44 372 and 8645 non-repetitive DNA frag-
ments for 1-, 2- or 3-bp of selective bases (T, TG and TGT)
respectively.

tGBS strongly selects for reads at target sites

The maize inbreds B73, Mo17 and the 25 parents of the
NAM population (19) were genotyped via tGBS using the
enzymes NspI and BfuCI and 1, 2 and 3 selective bases
(Supplementary Table S3). Each level of selection is named
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Figure 2. Selectivity in B73, Mo17 and the NAM founders. In the absence
of selection, the proportion of random reads in the target size range from
the B73 genome with ‘T’, ‘TG’ and ‘TGT’ selection in GRL1, GLR2 and
GRL3 would be ∼25, ∼6 and ∼2%, respectively.

based on the number of selective bases: e.g. genome reduc-
tion level 1 (GRL1) involves a single selective base. An av-
erage of 6.4M (GRL1), 8.1M (GRL2) and 6.3M (GRL3)
reads were generated per line. These reads were then sub-
jected to quality trimming and aligned to the B73 reference
genome.

At all tGBS GRLs, over 90% of the aligned reads con-
tain the expected RE recognition sites. For tGBS (GRL2),
the selective primer had the selective bases ‘TG’ at its 3′
end. Ideally, all amplified reads will be derived from re-
striction fragment that contain the selected ‘AC’ sequence.
However, mis-annealing of primers during PCR can lead
to off-target amplification. To measure the specificity of
selection during our PCR protocol, the bases adjacent to
the BfuCI restriction recognition site of sequenced reads
were examined. Target sites in the genome contain the ap-
propriate RE recognition site adjacent to the selected nu-
cleotides (‘AC’ in the case of GRL2 ‘TG’ selection); reads
that align to such target sites are termed on-target reads.
tGBS (GRL1) had the highest percent of on-target reads,
with an average of ∼68% of the reads across all samples
containing both the RE sites and the correct selective bases
based on the B73 genome. For tGBS (GRL2) and tGBS
(GRL3) the average percent of on-target reads were 58 and
44%, respectively, across all samples (Figure 2). Note that
for each additional selective base, genome-wide the num-
ber of on-target sites decreases by ∼1/4 (Supplementary
Table S4). Therefore, even though the on-target rate was
somewhat lower for tGBS (GRL3) than for tGBS (GRL1)
and tGBS (GRL2), the read depth of covered bases at on-
target sites was highest for tGBS (GRL3) (Supplementary
Table S4). As a consequence of the size selection conducted
prior to Proton sequencing, 68% of all uniquely aligning
reads (4248, 425/6271,577) and 88% of on-target reads
(3569,220/4071,296) were from on-target sites consisting of
between 100 and 300 bp.

Genotyping the founders of the nested association mapping
(NAM) population

Genotyping genetically diverse lines such as the NAM
founders is important for GWAS and genomic selection
(Supplementary Table S6). A MCR cutoff was imple-
mented. At 70% MCR, each SNP must have been geno-
typed in ≥70% of the samples. Among the 25 NAM
founders, 6665 (GRL1), 11 883 (GRL2) and 3253 (GRL3)
SNPs were identified at 70% MCR (Supplementary Table
S5). These SNPs are distributed relatively evenly across the
genome (Figure 3 and Supplementary Figure S1), and the
number of reads per SNP site per sample had a mean of 63
and a median of 31 (Supplementary Figure S2.).

The numbers of SNPs discovered in the NAM founders
are not directly comparable across tGBS GRLs due to the
variation in the average read number per sample (Supple-
mentary Table S7). To overcome this limitation, a subset
of NAM founders with comparable minimum numbers of
reads were used in the analysis described below. To examine
the trade-offs in SNP discovery associated with variation
in the amount of sequencing data generated we subsam-
pled the sequencing reads from each of the NAM founders
independently. In our dataset 11 of the 25 NAM founders
had a sufficient number of reads across all three tGBS GRL
to perform comparable subsampling (Supplementary Ta-
ble S6). From this analysis, the diminishing returns of SNP
discovery with increased sequencing can be seen in tGBS
(GRL3), which begins to plateau after 3 million raw reads.
At tGBS (GRL2), additional sequencing exhibits diminish-
ing returns such that the benefits of additional sequencing
begin to level off around 4 million subsampled reads (Sup-
plementary Figure S3). tGBS (GRL1) had not reached the
point of diminishing returns, which is expected to be much
higher than 4 million reads (Supplementary Figure S3).

The minimum accuracy rate of SNP calling in the 25
NAM founders was determined by calculating the concor-
dance of tGBS SNPs with those derived from HapMap2
(36) and RNA-sequencing data (28) from the same lines.
The HapMap2 and RNA-sequencing data were obtained
via whole genome resequencing and transcriptome se-
quencing of five maize tissues for each of the NAM
founders, respectively. For this analysis, individual SNPs
were compared, therefore an MCR cut-off was not em-
ployed. Across the 25 founders, 90 902 (GRL1), 95 028
(GRL2) and 30 051 (GRL3) SNPs were genotyped in all
three experiments (Supplementary Table S7). To calculate
minimum accuracy rates, if only two of the three experi-
ments yielded a concordant genotyping call at a particular
site, the non-concordant call at that site was considered an
error. tGBS had >99% concordant calls for all GRL, which
was higher than the other two methods (Supplementary Ta-
ble S7). Note that this approach probably over-estimates
genotyping errors because the lack of concordance between
methods may be due to biological differences among the dif-
ferent pedigrees of samples used in the three experiments.
Hence, the minimum SNP calling accuracy of tGBS as de-
termined in this analysis of inbred lines is >99%.
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Figure 3. Genomic distribution of SNPs discovered in the 25 NAM founders using tGBS (GRL2) at 70% MCR. Each horizontal line represents the physical
position of a SNP identified by alignment to the B73 reference genome. The circles to the left of each chromosome represent the location of the centromere.

Genotyping recombinant inbred lines (RILs) and construction
of a genetic map

The IBM RILs were developed by crossing B73 and Mo17
(37). Random mating was performed for several genera-
tions before extensive inbreeding (37). tGBS was conducted
on 232 IBM RILs (Supplementary Table S8) using tGBS
(GRL2). A mean of 2.1 M reads and a median of 1.8 M
reads were obtained per sample which is similar to target
sequencing read numbers per SNP generally employed by
other GBS protocols (12).

The accuracy of the 70% MCR SNP calls was assessed by
comparing tGBS SNP calls with Sequenom-based genotyp-
ing results (30) and RNA-sequencing (29) for 67 IBM RILs
genotyped with all three methods, similar to the compari-
son performed for the NAM founders. However, unlike the
NAM founders, it was possible to use SNP genotypes to
subdivide the genome of each RIL into segments, each of
which was derived from one of the two RIL parents: B73 or
Mo17. This segmentation allowed us to compare all of the
SNPs within a segment, rather than only those SNPs that
had been genotyped with multiple methods. Thus, this ap-
proach enabled us to compare most SNPs (Supplementary
Table S9). Another difference in this analysis as compared
to the analysis of the NAM founders was that heterozygos-
ity and minor allele frequency filters (based on expected seg-
regation patterns in RILs) were employed to exclude errors
due simply to mis-alignment of reads to the genome. Fol-
lowing filtering, each of the three datasets was used to gen-
erate segments, which were compared to the original SNP
calls used as input data for segmentation. As expected, the
agreement between the input data and the segmented data
was high. In this analysis tGBS also had a minimum accu-
racy of 99% (Supplementary Table S9).

Genetic maps were constructed using the tGBS data from
the IBM RILs, both with and without SNP imputation
at various MCR cutoffs (Figure 4). Based on Spearman
rank correlation, marker orders were well conserved be-
tween the genetic and physical maps (Supplementary Ta-

ble S10). At 70% MCR, about 4000 (∼90%) SNPs were
mapped using both imputed and non-imputed data. As ex-
pected, more SNPs were obtained using more relaxed MCR
cut-offs (50 or 20% MCR). At an MCR of only 20%, im-
putation increased both the number and the percentage of
SNPs successfully placed on the genetic map. The genera-
tion of ∼10 linkage groups corresponding to the 10 maize
chromosomes, the high percentage of markers that were
mapped, the extremely low proportion of markers assigned
to an incorrect chromosome, the low estimated error rate of
markers on the genetic map and the high Spearman correla-
tion values demonstrate the accuracy of the tGBS genotyp-
ing calls for these homozygous RILs (Supplementary Table
S10).

Genotyping heterozygous loci

To assess the accuracy of genotyping heterozygous sites,
SNPs were called in 192 F2 progeny of the B73 × Mo17
cross at tGBS (GRL2). After filtering for MCR, minor al-
lele frequency and heterozygosity, the set of 70% MCR
(‘Materials and Methods’ section) SNPs called in the F2
population were used to create a genetic map consisting of
3498 markers. Because we were able to map similar numbers
of markers in this F2 population as compared to IBM RILs,
and considering the low rate of genotyping errors (0.5%),
and the high correlations of physical and genetic marker or-
ders (0.99) we concluded that tGBS performs well on both
inbred and heterozygous populations (Supplementary Ta-
ble S10). The presence of both homozygous and heterozy-
gous genotypes also allowed us to classify genotyping er-
rors identified in the F2 population as being false homozy-
gous or false heterozygous calls using segmentation (see
‘Materials and Methods’ section). Only a small proportion
(1.7%, 11 848/677 929) of genotyping calls at polymorphic
sites were putative errors, and heterozygous calls were as
accurate as homozygous calls (Supplementary Table S11).
Additionally, the intersection of SNPs in the F2 and IBM
RIL populations was examined. The majority of overlap-
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Figure 4. Genetic mapping in the IBM RILs. Comparisons of genetic and physical positions on chromosome 1 generated from ASMap for various MCRs,
without and with LinkImpute-based imputation. Each dot represents the positon of a single SNP on a genetic and physical map.

ping high MCR SNPs are at on-target sites (Supplementary
Table S12).

Comparisons between tGBS and cGBS

We compared read depths for tGBS data from the NAM
founders, IBM RILs and B73 × Mo17 F2 reported in this
study with read depths for cGBS data from a large maize di-
versity panel generated using ApeKI as the RE (N = 3172)
by Romay et al. (38). For each technology we determined
the median read depth at interrogated sites, i.e. those sites
covered by at least five reads (‘Materials and Methods’ sec-
tion). When comparing libraries with similar numbers of
raw reads that are controlled for read length (‘Materials and
Methods’ section; Supplementary Figures S4 and 5), the
median read depths for tGBS (GRL1) and cGBS were sim-
ilar, while in contrast and as expected tGBS (GRL2) and
tGBS (GRL3) have greater read depth per interrogated site
than cGBS (Figure 5).

We also compared the numbers of interrogated sites for
tGBS (GRL2) and cGBS after controlling for read length
and library size (‘Materials and Methods’ section). To con-
duct this analysis we subsampled standardized reads, i.e.
both mapped and unmapped reads and both on- and off-
target reads that have been truncated to equal lengths (‘Ma-
terials and Methods’ section) from the two datasets. At
modest read depths and for a given MCR, tGBS yielded
more interrogated sites than did cGBS (Figure 6). This ad-

Figure 5. Median read depth per interrogated site for tGBS and cGBS
data. Each dot represents a sample. For each GRL, tGBS data were ana-
lyzed for each of 25 NAM founders. Additionally, the IBM RIL (N = 232)
and F2 samples (N = 192) were analyzed for tGBS (GRL2). The evaluation
of cGBS is based on 3172 samples (38).
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Figure 6. Numbers of interrogated sites from equal numbers of standard-
ized tGBS (GRL2) and cGBS reads at various MCR cut-offs. As a conse-
quence of data availability, data points (dots) are based on different num-
bers of samples: 198 samples were assessed using 1M subsampled reads
and 433 samples were assessed using 0.75 M, 0.5 M and 0.25 M subsam-
pled reads.

vantage of tGBS relative to cGBS increases at higher MCR
values. In summary, although tGBS targets fewer sites than
cGBS, when considering only sites that are consistently
scored across many individuals within a population, tGBS
yields more interrogated sites than cGBS.

The greater read depth of tGBS as compared to cGBS
would be expected to result in higher SNP calling accu-
racy. The large maize diversity panel analyzed via cGBS
includes the NAM founders which, as discussed earlier,
were also genotyped via tGBS. It was therefore possible
to compare the accuracies of tGBS and cGBS, using SNP
calls from HapMap2 data to establish truth in cases where
tGBS and cGBS SNP calls disagreed. HapMap2 was se-
lected due to its accuracy (>98%) as demonstrated via com-
parison to tGBS and RNA-sequencing, and because calls
from the Panzea SNP calling pipeline were available. Be-
cause tGBS and cGBS target only partially overlapping
regions of the genome the number of sites that could be
compared in this analysis was limited. Even so, this com-
parison demonstrated that tGBS provides greater accuracy
than cGBS. When consistent heterozygous SNP genotyp-
ing (‘Materials and Methods’ section) was performed on
both cGBS and tGBS sequencing reads, the accuracy of
cGBS was only 90.5% as compared to 99.7% for tGBS (Ta-
ble 1). The accuracy of cGBS genotyping can be improved
if one can assume that most loci are homozygous, as is the
case of the NAM founders. When SNP calls were gener-
ated from cGBS and tGBS sequencing reads using a more
stringent homozygous SNP genotyping pipeline (‘Materi-
als and Methods’ section), the accuracy of cGBS improved
to 94.3% as compared to 98.6% for tGBS. However, this as-
sumption of homozygosity is only appropriate when dealing

with inbred lines or natural populations of self-pollinating
species. Given the accuracy of tGBS at calling heterozy-
gous loci we can conclude that tGBS in superior to cGBS
when genotyping samples that are expected to be heterozy-
gous such as the individuals from many types of genomic
selection experiments and natural populations of outcross-
ing species.

It is possible to increase the accuracy of cGBS via the in-
troduction of a minor allele frequency filter. For example,
if similar comparisons are performed using Panzea’s SNP
calling of the cGBS reads described above, the accuracy in-
creases to 99.3% (comparable to that of tGBS). Unfortu-
nately, this increased accuracy achieved via the introduction
of a 10% minor allele frequency filter substantially degrades
the utility of cGBS for the discovery of rare novel alleles,
highlighting the superiority of tGBS for analyzing diversity
panels.

DISCUSSION

Here, we present a novel approach to genotyping using se-
quence data, tGBS, which uses selection at the 3′ ends of a
PCR primer to enhance genome reduction in an adjustable
manner. tGBS employs oligos instead of adaptors, which
has a number of technical advantages (20). This genotyp-
ing approach is simple and cost-efficient. We have demon-
strated its high accuracy for genotyping both homozygous
and heterozygous sites in diversity populations, RILs and
F2s.

Technical advantages of tGBS

Our strategy of selecting only a subset of restriction diges-
tion fragments for amplification and sequencing provides
for flexible genome reduction. Adjusting GRLs provides
different numbers of target sites for sequencing. While fewer
SNPs are obtained at higher GRL levels, the number of
reads per sample necessary to saturate the genotyping of on-
target SNPs is also reduced (Supplementary Figure S3 and
Table S4). Importantly, this results in more of the same sites
across panels of samples having genotyping calls, resulting
in lower levels of missing data per marker (Supplementary
Figure S3). Additionally, the increased read depth at target
sites allows for accurate genotyping of both homozygous
and heterozygous sites (Figure 5 and Table 1).

The fact that higher GRL sites are a subset of lower GRL
sites (i.e. ‘TG’ sites from GRL2 are a subset of ‘T’ sites from
GRL1) offers advantages both within and across experi-
ments. For example, in a given population, it is possible to
use a lower GRL level to obtain more markers for higher
resolution mapping subsequent to conducting a pilot study
with a higher GRL. Perhaps more significantly, haplotypes
can easily be tracked across populations even if these pop-
ulations were analyzed using differing GRLs.

We have been unable to find published studies report-
ing RAD-Seq based genotyping of maize lines and thus it
was not possible to directly compare the number of SNP
sites identified by this method and tGBS. However, a re-
port has recently been published using double digestion
RAD-Seq and the REs PstI and Alw1 to genotype Sitka
spruce (39). This study relied on pilot sequencing studies
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Table 1. Concordant SNP calls summed across the NAM founders

Genotyping pipeline used
for cGBS No. (%) concordant Total comparisons

tGBS (GRL2) cGBS HapMap2

Heterozygous 30 309 (99.7) 27 525 (90.5) 29 831 (98.1) 30 412
Homozygous 26 073 (98.6) 24 926 (94.3) 26 245 (99.3) 26 440
Panzea1 24 772 (98.9) 25 125 (99.3) 25 098 (99.1) 25 307

1tGBS SNPs were genotyped using the heterozygous method.
cGBS SNPs were genotyped using three different methods. The heterozygous genotyping pipeline allows for heterozygous calls (‘Materials and Methods’
section). The homozygous SNP calling pipeline discards genotyping calls that appear to be heterozygous (‘Materials and Methods’ section). The cGBS
and HapMap2 SNPs downloaded from the Panzea website were genotyped using a SNP calling pipeline that is similar to our homozygous genotyping
pipeline, though using a different software and with the addition of a minor allele frequency filter (37). tGBS and cGBS SNPs reported in the same row of
this table were genotyped using the same SNP calling pipelines unless indicated otherwise.

to select the REs. If different enzymes are selected for dif-
ferent experiments, the resulting targeted sites will not be
comparable among experiments. Considering the respec-
tive RE recognition sites and the selective bases of tGBS
the estimated levels of genome reduction for this version
of RAD-Seq and tGBS (GRL2) are similar; however, PstI
(like the ApeKI used in cGBS) is methylation sensitive at
sites which are often methylated in plants. Consequently, the
number of RAD-Seq sites sequenced following the proto-
col of Fuentes-Utrilla et al. would be expected to be smaller
than for GRL2. On the other hand, differential methylation
among individuals has the potential to increase the amount
of missing data when a GBS method relies on a RE that
unlike BfuCI (see below) relies on pronounced methylation
sensitivity to achieve genome reduction. There is, however
no technical barrier to employing methylation sensitive REs
within tGBS.

cGBS as described by Elshire et al., (12) relies on the re-
striction enyzme ApeKI which is sensitive to CpG methy-
lation which is prevalent in plant genomes. BfuCI has also
been reported exhibit sensitivity to CpG methylation. How-
ever, in our data 89% of predicted on-target BfuCI sites in
the maize genome were represented by tGBS sequencing
reads (data not shown), indicating that most of the asso-
ciated BfuCI restriction sites had been digested by BfuCI.
Given the prevalence of CpG methylation in the maize
genome, this result is not consistent with BfuCI exhibiting
substantial sensitivity to CpG methylation. Hence, to the
extent that samples differ in their methylation patterns, the
use of ApeKI may contribute to the higher missing rate of
missing genotype calls from cGBS as compared to tGBS.

Conventional GBS methods (including RAD-
Seq and other protocols) use adaptors. Because
annealing/ligation can occur between adaptors (inter-
adaptor-annealing/ligation) via overhang pairing, it is
critical to control the ratio of adaptors and input genomic
DNAs in the ligation reaction. In contrast, tGBS uses oli-
gos thereby avoiding the serious problem of inter-adaptor
annealing/ligation. In our tGBS experiments, satisfactory
results were obtained despite the fact that we did not
conduct titration experiments to optimize the ratio of
oligos to template. When combined with REs that generate
opposite direction overhangs, the use of oligos increases the
specificity of the PCR because the PCR reaction will always
begin with extension on the BfuCI end of the fragment,
and extension from the NspI side will only proceed after

this first extension has occurred. Consequently, fragments
that do not contain a BfuI oligo will not be extended
during selective PCR, thereby essentially eliminating the
amplification of off-target NspI/NspI fragments. Further,
because sequencing is initiated from the NspI side, any
fragments that lack the BfuCI oligo would not be amplified
in the final PCR and therefore would not be sequenced.

In breeding and diagnostics projects quick turn-around
can be essential. Hence we used the Ion Proton sequenc-
ing platform which offers one-day turn-around at a per
data point cost comparable to the low cost but slower
turn-around Illumina sequencing platforms and a much
lower cost than Illumina’s fast-turnaround MiSeq technol-
ogy. However, tGBS can also be conducted using Illumina
platforms. We have tested Illumina oligos and barcodes
(Supplementary Table S2) and obtained similar levels of ac-
curacy as reported for the Ion Proton platform (data not
shown). Combining tGBS oligo barcodes with barcodes on
Illumina adaptors increases the ability to pool large num-
bers of samples without the need to synthesize a large num-
ber of barcoded oligos.

Determination of selection levels and pooling size

One of the critical decisions in any GBS experiment is how
much sequencing data to generate per sample to obtain the
desired number of SNPs. In maize, ∼12 000 and ∼2000
consistently covered SNPs were obtained across 11 sam-
ples from 3 million raw tGBS (GRL2) reads and 1 mil-
lion raw tGBS (GRL3) reads per sample, respectively (Sup-
plementary Figure S3). In the case of the IBM RILs with
tGBS (GRL2), 4293 high MCR SNPs and 10 736 low MCR
SNPs were identified from an average of 2 million raw reads
across all the RILs (Supplementary Table S10). SNPs with
high missing data come predominantly from off-target sites
and can be imputed or disregarded, while high MCR SNPs
are predominantly from on-target sites and are consistently
genotyped from one experiment to the next (Supplemen-
tary Table S12). The appropriate GRL and number of reads
per sample will vary based on the organism and project
goals; however, regardless of genome complexity and di-
versity among individuals, sequencing depths required to
cover on-target sites at any given threshold are linearly re-
lated to genome size. tGBS has been conducted at various
GRLs with the described REs and selective bases in over
two dozen species with excellent results (40–43).
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Accuracy of genotyping with tGBS

Complementary methods were used to assess the accuracy
of tGBS for genotyping inbreds. For the NAM founders and
the IBM RILs, genotyping calls made at polymorphic sites
were compared using three independent genotyping meth-
ods. Concordance was considered an indication of accuracy.
Hence, if one method disagreed with the other two methods,
the discordant method was assumed have been generated
via a genotyping error. Even considering the potential of
biological differences among samples used in the different
methods to inflate estimates of errors, the genotyping accu-
racy estimated from the tGBS NAM concordance study was
>99% (Supplementary Table S7). While concordance in the
NAM founders was limited to polymorphic sites that had
been genotyped by each of the three methods, segmentation
of the IBM RILs could be used to identify regions in each
RIL that are derived from either the B73 or Mo17 parent.
By comparing each SNP call from multiple methods within
a segment to the consensus genotype of that segment, it was
possible to compare genotype calls at more sites. The con-
cordance was high for all three methods, regardless of which
SNP set was used to define the segments, with tGBS hav-
ing a concordance >99% (Supplementary Table S9). The
reported values should be considered minimum estimates
of accuracy because true genotyping errors and small re-
gions with double cross overs are confounded, resulting in a
potentially inflated estimate of genotyping error rates. Fur-
ther support for the accuracy of tGBS data is that the RIL
genetic maps exhibited a high correlation with the physical
marker order (>0.997), even in genetic maps constructed
using non-imputed SNP sets that include markers with high
levels of missing data (Supplementary Table S10). Because
tGBS has an enhanced ability to discover and genotype rare
alleles as compared to cGBS, it is also the preferred tech-
nology for genotyping diversity panels, even if these panels
consist of inbred lines.

tGBS also provides accurate genotyping of heterozygous
loci without the extensive filtering relied upon by other GBS
methods. The accuracy of tGBS genotyping calls were be-
tween 98 and 99% in a segregating F2 population using
a similar segmentation-based metric (Supplementary Ta-
ble S11), and the correlation between the physical maize
genome sequence and marker order on a genetic map con-
structed using these data was >0.999 (Supplementary Table
S10). In contrast, the accuracy of cGBS genotype calls suf-
fers even at homozygous sites when a SNP calling pipeline is
allowed to make heterozygous calls (Table 1). The accuracy
of cGBS genotyping calls only reaches the level of tGBS
when minor allele frequency filters are employed, which pre-
vents the discovery of rare alleles. The high genotyping ac-
curacy of tGBS at heterozygous loci makes it suitable for
genotyping F2 and F1BC1 mapping populations where 50%
of segregating markers are expected to be heterozygous, as
well as in natural populations of outcrossing species that are
expected to exhibit high levels of heterozygosity. The accu-
racy of tGBS heterozygous genotyping will be particularly
useful for conducting genomic selection, which requires the
ability to genotype populations of individuals that are het-
erozygous at many loci.

ACCESSION NUMBERS

Debarcoded tGBS sequencing reads generated in this study
are available in the Sequence Read Archive with the
identifiers SRP095743 (RILs), SRP095751, SRP095750,
SRP095749 (NAM GRL1, GRL2, and GRL3, respec-
tively), and SRP095555 (F2s).
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