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Background: Diaphanous-related formins (DRFs), actin necleator, have been known to participate in the progression of cancer
cells. We previously reported that FMNL2 (Formin-like2), a member of DRFs, was a positive regulator in colorectal cancer (CRC)
metastasis, yet proteins and pathways required for the function of this pro-invasive DRFs remain to be identified.

Methods: The relationship between FMNL2 and COMMD10 was examined using Co-IP, GST pull-down, immunofluorescence
and in vitro ubiquitination assay. The in vitro and in vivo function of COMMD10 in CRC was evaluated using CCK-8 proliferation
assay, plate colony formation, cell cycle, apoptosis and animal models. The inhibition of NF-kB signalling by COMMD10 was
detected using dual-luciferase reporter assay and western blotting. Co-IP, GST pull-down and nuclear protein extraction assay
were performed to evaluate the effect on p65 by COMMD10. Real-time PCR and western blotting were performed to detect
expressions of FMNL2, COMMD10 and p65 in paired tissues.

Results: FMNL2 targets COMMD10 for ubiquitin-mediated proteasome degradation in CRC cells. COMMD10 targets p65 NF-kB
(nuclear factor-kB) subunit and reduces its nuclear translocation, thereby leading to the inactivation of NF-kB pathway and
suppression of CRC invasion and metastasis. Inhibition of NF-kB signalling by COMMD10 is necessary for FMNL2-mediated CRC
cell behaviours. Downregulation of COMMD10 predicts poor prognosis of CRC patients. The expressions of FMNL2, COMMD10
and p65 are highly linked in CRC tissues.

Conclusions: These data demonstrate that the FMNL2/COMMD10/p65 axis acts as a critical regulator in the maintenance of
metastatic phenotypes and is strongly associated with negative clinical outcomes.
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Colorectal cancer (CRC) is one of the most common types of
malignant tumours worldwide with about 1.2 million new cases
diagnosed every year, of which around 600 000 ended in death
(Siegel et al, 2016). Although there are many diagnostic strategies
for CRC, tumour metastasis is the main reason for the high
morbidity and poor survival of CRC patients (Brenner et al, 2014).
So it is urged to better understand the mechanism of CRC
metastasis for reducing the morbidity of clinical patients.

Formins are an actin nucleating protein family with diverse
actin-regulating and potentially pro-invasive functions (Faix and
Grosse, 2006). Formin-like2 (FMNL2), a member of formins, is
dysregulated in several cancers such as CRC, melanoma and
involved in invasive behaviours and progression of cancer cells
(Zhu et al, 2008, 2011; Wang et al, 2015; Peladeau et al, 2016).
FMNL2 drives amoeboid invasive cell motility downstream of
RhoC (Kitzing et al, 2010). Our previous study showed that
FMNL2 promotes motility, invasion and metastasis of CRC cells
(Li et al, 2010; Zhu et al, 2011; Liang et al, 2013), but the
underlying molecular mechanisms and interacting proteins are not
well understood.

Copper metabolism MURR1 domain (COMMD) is a newly
discovered protein family. They are characterised by the possession
of a conserved and unique motif named the COMM domain,
which functions as an interface for interactions between proteins
(de Bie et al, 2006). COMMD family has been reported to regulate
numerous biology processes such as the transportation of copper
and sodium (van De Sluis et al, 2002), the transcription activity of
NF-kB, cell proliferation and adaption to hypoxia (de Bie et al,
2006; Maine and Burstein, 2007a, b). There are 10 members of the
family, among which COMMD1 has been most extensively
studied. COMMD1 inhibits human tumour cell invasion (van de
Sluis et al, 2010). COMMD1 regulates inflammation and colitis-
associated cancer progression (Li and Burstein, 2014). However,
the role of COMMD10 in tumours remains unknown.

In this study, we identify that FMNL2 targets COMMD10 for
ubiquitin-mediated proteasome degradation, which is required for
FMNL2-induced invasion of metastasis of CRC. COMMD10
triggers less nuclear accumulation of p65, resulting in the
termination of NF-kB pathway in CRC cells. In addition, we show
high expression correlations of FMNL2 with COMMD10 and p65
in CRC tissues and the significance of COMMD10 as a valuable
prognostic maker for CRC patients.

MATERIALS AND METHODS

Construction of plasmids and transfection. The N-terminal
(NT) domain, the FH1 and FH2 regions and the mutant of
FMNL2 were amplified respectively by PCR utilising the primers
(Supplementary Table S1) and inserted into pCDNA3.1-FLAG
vector (Invitrogen, Foster city, CA, USA). The complete sequence
in open reading frame of COMMD10 was amplified by PCR using
the primers (Supplementary Table S1) and subcloned into the
pEGFP-C1 vector at the KpnI-XhoI site. The C-terminal (CT) and
NT domains were amplified by PCR using the primers
(Supplementary Table S1) and the fragments of COMMD10
digested with BamHI and XhoI were subcloned into the pEGX-6p-
1 vector at the BamHI-XhoI site. The PCR conditions were as
follows: 95 1C for 3 min, followed by 30 cycles of amplification
(94 1C for 30 s, 55 1C for 40 s with outer primers or 68 1C for 40 s
with inner primers, and 72 1C for 2 min). The correct coding
regions of all plasmids were confirmed by sequencing. Transient
transfection was performed using Lipofectamine2000 as a vehicle
according to the manufacturer’s instructions (Invitrogen, Beijing,
China). Lentiviral construct expressing or repressing COMMD10
was purchased from GeneCopoeia (Guangzhou, China) and was

used to infect CRC cell lines SW480 and HT29. The eukaryotic
expression vectors of pENTER-FLAG-RELA and pENTER-FLAG-
RELB were purchased from Vigene Biosciences (Shandong, China).

Immunoblotting, immunofluorescence. Immunoblotting and
immunofluorescence were performed as previously described
(Moody et al, 2005). The minimum amount of cells used for
analysis was 20 in immunofluorescence experiments. The primary
antibodies used were as follows: 1 : 100 mouse anti-FMNL2 (Santa
cruz, Guangzhou, China), 1 : 1 000 rabbit anti-COMMD10 and
1 : 200 rabbit anti-NF-kB p65 (Abcam, London, UK), 1 : 1000
rabbit anti-GST and 1 : 1000 rabbit anti-GAPDH and 1 : 1000 anti-
mouse b-actin and 1 : 200 rabbit anti-Flag (Origene, Rockville, MD,
USA), 1 : 200 goat anti-rabbit or anti-mouse Dylight 488 and 594
(Earthox, Beijing, China), 1 : 1000 DAPI (Sigma, Shanghai, China).

Co-immunoprecipitation (Co-IP). Cell extracts were incubated
2 h at 4 1C with IgG and protein A/G Agarose to get rid of
unspecific binding. FMNL2 (2mg) was then added at 4 1C
overnight. The protein A/G-agarose was collected by centrifuga-
tion. The beads were suspended in 2� SDS sample buffer and
heated to 100 1C for 10 min. Immunoprecipitated proteins were
analysed by SDS–PAGE (12%, Minigel) followed by transfer to a
polyvinylidene difluoride membrane at 100 V for 1.5 h. Membranes
were blocked overnight. COMMD10 antibody (Abcam) was diluted
respectively and incubated with membranes at 4 1C overnight. The
secondary antibodies were then incubated for 1 h at room
temperature. Finally, the blots were detected using the Odyssey
Infrared Imaging System (LiCorBioSciences, Lincoln, NE, USA).

GST pull-down assay. GST-pEGX-6p-1-COMMD10 (1–132a)
and (133–202a) were transformed into colibacillus BL21 (DE3),
and induced for expression by IPTG. GST-COMMD10 (1–132a),
GST-COMMD10 (133–202a) and GST proteins were purified by
Glutathione Sepharose4B (GE Healthcare, Little Chalfont, UK)
according to the manufacturer’s instructions. After purification,
the GST fusion proteins were then incubated with the cell lysates
(SW480 transfected with FLAG-FMNL2-CT) for 4 h at 4 1C with
constant shaking. The beads were washed three times with cold
PBS (pH 7.4) and then added with elution buffer (50 mM Tris-Cl,
10 mM reduced glutathione, pH 8.0) shaking at 4 1C for 30 min.
The eluted proteins were subjected to western blot identification.

Luciferase activity assays. Cells were co-transfected with
COMMD10 overexpressing vector (GeneCopoeia, Guangzhou,
China) or COMMD10 shRNA (RIBOBIO, Guangzhou, China)
vector and 100 ng per well REPONF-kB reporter plasmid
(Genomeditech, Shanghai, China) in a six-well plate by using
Lipofectamine 2000 (Invitrogen) according to the manufacturer’s
protocol. Firefly and Renilla luciferase activities were measured
consecutively by using Dual-Luciferase Reporter Assay System
(Promega, Shanghai, China) 48 h post transfection. All assays were
performed in triplicate, and all data shown are representative of at
least three independent experiments.

Proliferation, plate colony formation, cell cycle, apoptosis, cell
migration, cell invasion assays in vitro. The CCK8 (Cell
Counting Kit-8) proliferation assay, plate colony formation, cell
cycle, apoptosis, migration and invasion of transfected CRC cells
were determined as previously described (Liang et al, 2013; Ren
et al, 2016).

Subcutaneous tumour implantation and metastasis assay. All
animal care and experiments were approved by the Institutional
Animal Care and Use Committee of Nanfang hospital, Southern
Medical University, Guangzhou. A number of 5� 106 stable
transfected cells were injected into the left and right flanks of nude
mice for subcutaneous tumour implantation and allowed to grow
for 28 days before mice were killed. Primary tumour size was
measured every 7 days. For metastasis assay, a total of 1� 106
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stable transfected cells were injected into vein and mice were killed
after 40 days. All tissues were embedded in paraffin, sectioned,
stained with haematoxylin and eosin. Images were taken by
Olympus DP72 upright microscope and were outputted by DP2-
BSW software.

Statistical analysis. All statistical analyses were performed using
SPSS 20.0 statistical software. Quantitative analyses of the
experiments are expressed as the mean±s.d. Statistical significance
was determined using independent samples T-test or one-way
ANOVA. The degree of the linear relationship of gene expression
levels was determined by Spearman’s correlation coefficient.
Po0.05 was considered as statistically significant.

RESULTS

FMNL2 targets COMMD10 for ubiquitin-mediated proteasome
degradation in CRC cells. Our previous study revealed that
FMNL2 was a positive regulator in CRC metastasis (Zhu et al,
2011). To elucidate the molecular mechanisms of FMNL2 involved
in tumour metastasis, we performed yeast two-hybrid assay to
obtain potential FMNL2-interacting proteins (Supplementary
Figure S1A). Among seven FMNL2-interacting proteins initially
identified, we focused on COMMD10, which is a member of
COMMD protein family and its association with tumour has not
been reported. We examined whether COMMD10 interacts with
FMNL2 physically in CRC cells. Results of Co-IP and immuno-
fluorescence analyses showed that FMNL2 bound to COMMD10
(Figure 1A) and co-localisation of FMNL2 and COMMD10 was
observed in the cytoplasm of SW480 and HCT116 cells
(Figure 1B). After that, we generated a series of constructs of
FMNL2 and COMMD10. Results of GST pull-down showed that
FH1 domain of FMNL2 interacted with NT domain of COMMD10
(Figure 1C and D). We also constructed FMNL2 mutant lacking
FH1 domain and found that deletion of FH1 fragment of FMNL2
(FH1-mut) failed to interact with COMMD10 in CRC cells
(Figure 1E and F). In addition, we detected whether the interaction
between FMNL2 and COMMD10 affects protein stability in CRC
cells. Results of western blot analyses showed that ectopic FMNL2
in SW480 and HT29 cells reduced the level of COMM10, while
knockdown of FMNL2 in SW480 and SW620 cells led to increased
expression of COMMD10 (Figure 1G). However, either over-
expression or knockdown of COMMD10 did not affect the
expression of FMNL2 in CRC cells (Figure 1H). Since FMNL2
decreased the protein level of COMMD10 in CRC cells and some
peptides at COMMD10 protein which might be targeted for
ubiquitination were predicted by the CPLM (Compendium of
Protein Lysine Modifications) database (Supplementary Figure
S1B), we raised the possibility that FMNL2 targets COMMD10 for

ubiquitin-mediated proteasome degradation. We examined
whether MG132, an inhibitor of proteasome, could prevent
COMMD10 from degradation induced by FMNL2. Results of
western blot showed that COMMD10 was downregulated by
FMNL2, while MG132 could reverse the effect (Figure 1I), which
was most obvious at 48 h after stimulation (Supplementary Figure
S1C). Results of in vitro ubiquitination assay showed that
overexpression of FMNL2 led to increased recovery of ubiquiti-
nated COMMD10 (Figure 1J). Utilising a complementary
approach, we further corroborated that the ubiquitinated material
recovered was COMMD10 itself (Supplementary Figure S1D).
Increased expression of FMNL2 accelerated COMMD10 ubiquiti-
nation, whereas depletion of FMNL2 reduced the amount of
ubiquitinated COMMD10 (Supplementary Figure S1D and F). In
addition, immunofluorescence analyses showed the co-localisation
effect between FMNL2 and COMMD10 was greatly enhanced after
MG132 stimulation (Figure 1K). These above data suggest that
ubiquitination of COMMD10 is largely, if not exclusively,
mediated by binding to FMNL2.

COMMD10 inhibits the proliferation, invasion and metastasis
of CRC cells. To determine the function of COMMD10 in the
progression of CRC, we performed a series of gain-of-function and
loss-of-function assays. According to endogenous COMMD10
expression in six CRC cells (Supplementary Figure S2A and B), we
overexpressed COMMD10 in SW620 and SW480 cells and silenced
COMMD10 in HT29 and SW480 cells. Results of real-time RT–
PCR and western blot validated high transfection efficiency
(Supplementary Figure S2C–F). CCK-8 assay showed that over-
expression of COMMD10 caused a significant decrease of the
growth rate in SW480 and SW620 cells, while COMMD10
depletion enhanced the proliferative abilities of SW480 and
HT29 cells (Figure 2A, Po0.001). Similarly, overexpression of
COMMD10 reduced the number of colony formation in SW480
cells (Po0.001), while the inhibition of COMMD10 had the
adverse effects (Figure 2B, Po0.001). We also assessed the effect of
COMMD10 on CRC cell cycle and apoptosis. Forced expression of
COMMD10 in SW480 cells induced an evident increase in the
percentage of cells in the G1 peak (Po0.001) and a decrease in the
percentage of cells in the S and G2/M peaks (Supplementary Figure
S3A, Po0.001; Po0.01). Contrarily, depletion of COMMD10 in
SW480 cells led to the reverse effect (Supplementary Figure S3B,
P¼ 0.002; P¼ 0.016; P¼ 0.035). Ectopic COMMD10 in SW480
cells increased the rate of early apoptosis (Supplementary Figure
S3C, P¼ 0.009), while depletion of COMMD10 had the opposite
effect (Supplementary Figure S3D, P¼ 0.009). These results
indicate that COMMD10 negatively regulates cell proliferation by
arresting the tumour cells at the G1 phase and accelerating
apoptosis of tumour cells. In addition, results of Boyden chamber
assay showed that invasive abilities were decreased in COMMD10

Figure 1. FMNL2 targets COMMD10 for ubiquitin degradation in CRC cells. (A) Lysates from SW480 and HCT116 cells were immunoprecipitated
with anti-FMNL2 or anti COMMD10 and immunoblotted with the indicated antibodies. (B) Immunofluorescence microscopy analyses of co-
localisation of FMNL2 and COMMD10 in SW480 and HCT116 cells. Scale bars represented 50mm. (C) Lysates from SW480 cells expressing
ectopic FMNL2 truncate (525–616a), FMNL2 (617–1092a) or FMNL2 (1–524a) were immunoprecipitated with anti-FLAG and immunoblotted with
the indicated antibody. (D) Pull-down of FMNL2 by GST-tagged COMMD10 fragments with indicated boundaries. (E) Pull-down of FH1-wt or FH1-
mut of FMNL2- by GST-tagged COMMD10 fragment (1–132a). (F) Schematics outlines of the binding sites of FMNL2 on COMMD10 and
COMMD10 on FMNL2 as well. (G) Expressions of FMNL2 and COMMD10 in FMNL2 overexpression or depleting cells by western blotting and
were normalised by b-actin expression. (H) Expressions of FMNL2 and COMMD10 in COMMD10 overexpression or depleting cells by western
blotting and were normalised byb-actin expression. (I) Expression of COMMD10 was detected in FMNL2 overexpression SW480 cells before and
after MG132 stimulation by western blotting. (J) COMMMD10 was immunoprecipitated from SW480 cell lysates (cells were transfected with
FMNL2 or vector control or shFMNL2 or scrambled control) and the recovered material was immunoblotted for ubiquitin (Ubi). (K)
Immunofluorescence microscopy analyses of co-localisation of FMNL2 and COMMD10 after MG132 stimulation in HCT116 cells. Scale bars
represented 50mm. A full colour version of this figure is available at the British Journal of Cancer journal online.
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expressing SW480 and SW620 cells, and contrarily, sharply
increased invasive abilities were observed in COMMD10 depleting
cells (Figure 2C, Po0.001).

After that, we carried out in vivo tumour growth and metastasis
experiments and found that decreased expression of COMMD10
enhanced tumour growth in vivo (Figure 2D, Po0.001). Moreover,
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COMMD10 depleting cells developed more lung metastases than
mock cells (Figure 2E, P¼ 0.033). Collectively, these data
demonstrate that COMMD10 profoundly suppresses proliferation,
invasion and metastasis in CRC cells.

COMMD10 inhibits the proliferation and invasion of CRC cells
by inactivating NF-kB pathway. NF-kB signalling pathway plays
an important role in a variety of cancer and participates in tumour
proliferation, survival and metastasis (Xia et al, 2014). COMMD1
was recently reported to be capable of strongly inhibiting NF-kB-
mediated transcription (Zoubeidi et al, 2010; Bartuzi et al, 2013).

Thus we tested whether COMMD10 is involved in the regulation
of NF-kB signalling pathway in CRC cells. Results showed that a
consistent reduction of luciferase activity of NF-kB was observed in
COMMD10 expressing SW480 and SW620 cells (P¼ 0.005;
P¼ 0.028), while TNF-a stimulation increased the luciferase
activity in COMMD10 expressing cells (Figure 3A, Po0.001;
P¼ 0.030). On the contrary, depletion of COMMD10 induced an
increase of luciferase activity in SW480 and HT29 cell lines
(Po0.001; Po0.001), while transfection of IkBa-mut, an inhibitor
of the NF-kB signalling pathway, eliminated the changes induced
by COMMD10 knockdown (Figure 3B, Po0.001; Po0.001).
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Figure 2. COMMD10 inhibits the proliferation, invasion and metastasis of CRC cells. (A) Effects of COMMD10 overexpression and knockdown on
CRC cell proliferation in vitro. (B) Effect of COMMD10 overexpression and knockdownon on plate colony formation of CRC cells. *Po0.001.
(C) Effects of COMMD10 overexpression and knockdown on CRC cell invasion in vitro by Boyden chamber. Scale bars represented 50mm.
*Po0.001. (D) Effect of COMMD10 knockdown on subcutaneous tumour growth in vivo. **Po0.001. (E) Effect of COMMD10 knockdown on lung
metastasis in nude mice. Error bars represent mean±s.d. from three independent experiments. Scale bars represent 50mm. *P¼0.033. A full
colour version of this figure is available at the British Journal of Cancer journal online.
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Consistent with the results obtained from the luciferase activity
assays, the levels of phosphorylated IKKa/b and IkBa as well as
p65 in nucleus were obviously decreased, while the levels of IKKa/
b and IkBa in total were greatly increased in COMMD10
expressing SW480 cells (Figure 3C). However, knockdown of
COMMD10 showed the opposite results and it could be reversed
by IkBa-mut (Figure 3D). We then investigated whether
COMMD10 affects CRC cell behaviours through inhibiting NF-
kB signalling pathway. Results of CCK8 assay showed that
transfection of IkBa-mut obviously abolished the promotion of
COMMD10 knockdown in cell proliferation (Figure 3E, Po0.001).
IkBa-mut also decreased invasive abilities of CRC cells induced by
COMMD10 knockdown (Figure 3F, Po0.01). The above results
make it clear that COMMD10 inactivates NF-kB signalling to
suppress CRC cell proliferation and invasion.

COMMD10 reduces the nuclear translocation of NF-kB subunit
p65 in CRC cells. Recent studies reveal that the ability of
COMMD1 to inhibit NF-kB-mediated transcription depends on its
association with the NF-kB complex (Xia et al, 2014). COMMD1 is
able to interact with all five subunits of NF-kB, whereas other
COMMD members interact with NF-kB subunits selectively
(Maine and Burstein, 2007a; Zoubeidi et al, 2010). To understand
how COMMD10 inhibits NF-kB signalling, we observed the
interactions between COMMD10 with the NF-kB complex. Results
of Co-IP showed that COMMD10 was capable of binding NF-kB

complex, particularly NF-kB subunits p105, RelB and p65
(Figure 4A and B). We focused on p65 and RelB for the reason
that among the three subunits detected in the co-immunopreci-
pitation assay, both of them had the transcriptional activation
domain (TAD) which is important for the transcription of NF-kB
target genes (Xia et al, 2014). Results of GST pull-down assays
further validated that only p65 presented the direct interaction
with COMMD10 (Figure 4C). After that, we examined whether
COMMD10 regulates nuclear translocation of p65 in CRC cells.
Results showed that ectopic COMMD10 decreased the level of p65
in total, nuclear and cytoplasm, and contrarily, depletion of
COMMD10 resulted in greater accumulation of p65 in nuclear
(Figure 4D). Similarly, an increase of nuclear p65 was observed in
COMMD10 depleting SW620 cells by immunofluorescence
(Figure 4E). Moreover, depletion of COMMD10 in SW480 cells
resulted in prolonged nuclear p65 levels upon TNF-a stimulated
NF-kB activation (Figure 4F), which coincided with increased and
sustained expression of a specific group of NF-kB target genes such
as CCL2, IL1A, CXCL2 and CXCL8 in COMMD10 depleting
SW480 cells (Figure 4G). All the results demonstrate that
COMMD10 suppresses NF-kB activity by reducing the nuclear
translocation of p65 in CRC.

Inhibition of NF-kB signalling by COMMD10 is necessary for
FMNL2-mediated CRC cell behaviours. To ascertain whether
FMNL2 could functionally target COMMD10 thereby regulating
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CRC invasion and metastasis, we performed the rescue experi-
ments to evaluate the role of COMMD10 in FMNL2-mediated NF-
kB activity and CRC cell behaviours. Results of western blot
showed that overexpression of FMNL2 in SW480 cells increased
the level of p-IKKa/b, p-IkBa and p65 in nucleus. However, these
effects were compromised when COMMD10 was introduced in
FMNL2-expressing cells (Figure 5A). On the contrary, knockdown
of FMNL2 showed the opposite effects and it could be reversed by
COMMD10 depletion (Figure 5B), indicating that FMNL2
activates NF-kB signalling through COMMD10. In vitro functional
rescue results showed that constitutive COMMD10 expression
obviously reversed the promotive effects of FMNL2 on cell
proliferation and invasion (Figure 5C and D, Po0.001). Similarly,
knockdown of COMMD10 rescued the proliferative and invasive
phenotypes in FMNL2-depleting cells (Figure 5C and D,
Po0.001). In vivo tumour growth and metastasis assays further
revealed that depletion of FMNL2 significantly inhibited tumour
growth and lung metastases(P¼ 0.001, P¼ 0.007), while these
effects were significantly abolished when COMMD10 was knocked
down in FMNL2-depleting cells (Figure 5E and F, P¼ 0.001,

P¼ 0.033). Thus, these results indicate that COMMD10 is required
for FMNL2-mediated CRC cell proliferation, invasion and
metastasis.

Downregulation of COMMD10 predicts poor prognosis of CRC
patients. To assess the expression pattern and clinicopathological
value of COMMD10 in CRC tissues, we detected the expression of
COMMD10 in 120 cases of clinical paraffin-embedded CRC tissues
by IHC. Positive signal of COMMD10 was located in the
cytoplasm. Strong staining of COMMD10 was observed mainly
in adjacent normal tissues, while negative or weak COMMD10
staining was observed in CRC tissues (Figure 6A). The expression
of COMMD10 was significantly lower in CRC tissues or lymphatic
metastatic tissues than that in paired normal tissues, respectively
(Supplementary Table S2, Po0.001, w2¼ � 4.921; Po0.001,
w2¼ � 6.335). There were no significant differences of COMMD10
expression between CRC tissues with lymph metastasis and
lymphatic metastatic tissues or those without lymph metastasis
(Supplementary Table S2, P40.05; P¼ 0.064, w2¼ � 1.853).
Clinicopathologic analyses showed that COMMD10 expression
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was relevant with lymphatic metastasis and distant metastasis
(P¼ 0.013, P¼ 0.014, Supplementary Table S3). By Kaplan–Meier
curve assessment, CRC patients with low COMMD10 expression
had a lower 5-year survival rate than those with high COMMD10
protein level (Figure 6B, Po0.01). From univariate analyses, the
significant prognostic factors were COMMD10 expression
(P¼ 0.026), serosal invasion (P¼ 0.024), lymph metastasis
(Po0.001), Dukes’ stage (Po0.001), remote metastasis
(Supplementary Table S4, Po0.001). Multivariate analyses results
showed that remote metastasis might play an important role in
predicting the overall survival in CRC patients (Supplementary
Table S5, Po0.001). The above data clearly show that low
COMMD10 expression level was accompanied by a worse clinical
outcome, and that it could be an independent prognostic marker
for survival of CRC patients.

The expressions of FMNL2, COMMD10 and p65 are highly
linked in CRC tissues. To evaluate the expression correlation of
FMNL2, COMMD10 and p65 in CRC tissues, we detected the
expressions of FMNL2, COMMD10 and p65 in 31 paired samples
of CRC patients. Results of real-time RT–PCR and western blotting
showed that FMNL2 and p65 was upregulated in CRC tissues,
while COMMD10 was downregulated in CRC tissues (Figure 6C
and D, t¼ 5.226, Po0.001). Moreover, the expressions of FMNL2
and p65 were negatively correlated with COMMD10, and FMNL2
expression was positively correlated with p65 (Figure 6E and F,
P¼ 0.0001, r¼ � 0.6306; P¼ 0.002, r¼ � 0.5335; Po0.0001,
r¼ 0.7689). Together, these data provide further support for direct
and functional associations among FMNL2, COMMD10 and NF-
kB pathway in CRC tissues.

DISCUSSION

Diaphanous-related formins (DRFs) are a highly conserved family
of cytoskeletal remodelling proteins. A growing body of evidence
suggests that DRFs play key roles in the progression and spread of
a variety of cancers (Schwartzberg, 2007). FMNL2 is a novel
member of DRFs and has been strongly implicated in driving
tumourigenesis and invasion of specific tumours (Kitzing et al,
2010; Wang et al, 2015; Gardberg et al, 2016; Peladeau et al, 2016).
We previously found that FMNL2 was upregulated in metastatic
CRC tissue and a positive regulator in CRC cell motility and
metastasis (Zhu et al, 2008, 2011; Li et al, 2010; Liang et al, 2013).
However, the underlying mechanisms and interacting proteins of
FMNL2 in the regulation of cancer metastasis need to be further
investigated.

In our study, COMMD10 was identified as one of FMNL2
interacting proteins by yeast two-hybrid assay. Our presented data
perfectly validated that N-terminal domain of COMMD10
specifically bound to FH1 domain of FMNL2. Also, the results
displayed that the protein expression of COMMD10 was decreased
by FMNL2 by the ubiquitin-mediated proteasome pathway. Since
FMNL2 is not an ubiquitin ligase and cause accelerated
ubiquitinaion of COMMD10 directly. There might be some other
ubiquitin ligases involved in the ubiquitination of COMMD10
induced by FMNL2, which is worth further exploration. The
COMMD family has been reported to be involved in several
biological processes including the regulation of copper and sodium
transport, NF-kB activity and cell cycle progression (Maine and
Burstein, 2007b). Regarding the involvement of the COMMD
family in tumour development, only COMMD1 and COMMD5
were described (Solban et al, 2000; van de Sluis et al, 2010;
Zoubeidi et al, 2010; Gkiafi and Panayotou, 2011; Li and Burstein,
2014; Taskinen et al, 2014; Yeh et al, 2016), while little is known
about COMMD10. Recent studies of the COMMD family have
mostly focused on the prototype of this family, COMMD1,

demonstrating its dysregulation and molecular mechanism in
several human cancer types (van de Sluis et al, 2010; Li and
Burstein, 2014; Taskinen et al, 2014). Here, our accumulating data
including in vitro and in vivo functional experiments showed that
COMMD10 inhibited CRC cell proliferation, invasion and
metastasis.

Having established COMMD10 as a suppressor in the
progression of CRC, we investigated possible pathways by which
COMMD10 could be involved in CRC. The COMMD family has
been identified as a new group of proteins involved in NF-kB
termination (Maine and Burstein, 2007a). All 10 COMMD
members seem to play distinct and non-redundant roles in various
physiological processes, including NF-kB signalling (Maine and
Burstein, 2007a). NF-kB signalling plays a critical role in many
biological processes including cell survival, inflammation and
oncogenesis (Karin and Lin, 2002). NF-kB-mediated transcription
is mainly regulated by the cytoplasmic sequestration of NF-kB
dimeric complexs bound to the inhibitory IkB proteins (Baldwin,
1996). Thus, we examined whether COMMD10 regulates NF-kB
signalling and found that COMMD10 inactivated NF-kB signalling
pathway in CRC cells. Moreover, COMMD10 inhibited CRC cell
proliferation and invasion by terminating NF-kB signalling.

In recent years more insight into the mechanisms of COMMD
family inhibiting NF-kB activity has been obtained. COMMD1
controls the ubiquitination of NF-kB subunits, an event linked to
transcriptional termination (Maine and Burstein, 2007a). In
contrast with COMMD1, COMMD6 does not bind to IkBa (de
Bie et al, 2006), indicating that different COMMD proteins inhibit
NF-kB in an overlapping, but not completely similar, manner.
Then we investigated that how COMMD10 mediates NF-kB
activity in CRC cells. We found that COMMD10 inhibited NF-kB
by targeting NF-kB subunit p65 and reducing its nuclear
translocation in CRC. However, the total p65 was decreased after
overexpressing COMMD10, suggesting that COMMD10 might
accelerate the ubiquitination of p65 as COMMD1 does. It needs to
be further investigated in our research. Moreover, we chose some
NF-kB target genes that involved in immunoregulatory, inflamma-
tory, vascular cell adhesion and cell proliferation processes (Song
et al, 2012) and found that CXCL2, CXCL8, IL1A and CCL2 were
increased upon COMMD10 silencing, while VCAM and MAPK1
were decreased in COMMD10 depleting cells. CXCL2 and CXCL8
are involved in the outcomes of metastatic CRC patients due to the
oxaliplatin (OXA)-acquired resistance through NF-kB signalling
pathway (Ruiz et al, 2016). IL1A and CCL2 participate in immune
responses and inflammatory processes. CCL2 is a pro-inflammatory
chemokine with known roles in metastasis (Volpato et al, 2016).
IL1A has pro-inflammatory effect through NF-kB signalling path-
way (Papacleovoulou et al, 2011). Upregulations of CXCL2, CXCL8,
IL1A and CCL2 after depletion of COMM10 further demonstrate
that COMMD10 can suppress the NF-kB signalling pathway.
Interesting, VCAM and MAPK1 were decreased in COMMD10
depleting cells in CRC cells. VCAM-1 is stimulated by TNF-a and
accelerated monocyte adhesion in a NF-kB-dependent manner
(Li et al, 2017). MAPK1 is involved in a wide variety of cellular
processes, such as proliferation, differentiation, transcription
regulation and development. Some studies also suggest that MAPK1
acts as a transcriptional repressor independent of its kinase activity
(Hu et al, 2009). These above data provide new mechanistic insight
of COMMD10 into the regulation of NF-kB activity. After that, we
examined the involvement of COMMD10 in FMNL2-mediated cell
behaviours in CRC. Our data proved that FMNL2 activated NF-kB
signalling through COMMD10 and enhanced NF-kB-mediated
cellular responses in CRC.

Finally, we detected the expression correlations of FMNL2,
COMMD10 and p65 in CRC cells. High FMNL2 level is linked
with invasive behaviours of CRC and melanoma cells and predicts
worse outcome of patients (Zhu et al, 2008; Peladeau et al, 2016).
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However, FMNL2 is downregulated in hepatocellular cancer (Liang
et al, 2011). The COMMD family seems to be a tumour suppressor
and has been shown to inhibit both NF-kB and HIF-mediated gene
expression (de Bie et al, 2006). COMMD1 is downregulated and a
potential novel prognostic factor in diffuse large B-cell lymphoma
(Taskinen et al, 2014). COMMD5 level is decreased in many
cancerous cell lines (Solban et al, 2000). Our data showed that
COMMD10 was apparently downregulated in CRC tissues and low
level of COMMD10 was relevant to CRC patients’ worse overall
survival. Moreover, the expressions of FMNL2, COMMD10 and
p65 were highly linked in CRC tissues.

In summary, our study reveals that FMNL2 targets COMMD10
for ubiquitin degradation and subsequently activates NF-kB
signalling pathway by increasing the nuclear accumulation of p65
in CRC cells. COMMD10 is necessary for FMNL2-induced
proliferation, invasion and metastasis of CRC. Downregulation of
COMMD10 is associated with the survival and clinical stage of
CRC patients. Our study provides a new mechanism to understand
the development of CRC and that will be a challenge for future
studies and a potential, novel therapeutic target for clinical CRC
patients.
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