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Abstract: The Hummers method is the most commonly used method to prepare graphene oxide (GO).
However, many waste acids remain in the raw reaction mixture after the completion of this reaction.
The aim of this study was to reuse these waste acids efficiently. In this study, microcrystalline cellulose
(MCC) was directly dissolved in the mixture after the high-temperature reaction of the Hummers
method. The residual acid was used to hydrolyze MCC, and the graphene oxide/microcrystalline
cellulose (GO/MCC) composites were prepared, while the acid was reused. The effects of MCC
addition (0.5 g, 1.0 g, and 1.5 g in 20 mL) on the properties of the composites were discussed.
The structure, composition, thermal stability, and hydrophobicity of GO/MCC composites were
characterized and tested by SEM, XRD, FTIR, TG, and contact angle tests. The results showed that
MCC could be acid hydrolyzed into micron and nano-scale cellulose by using the strong acidity
of waste liquid after GO preparation, and it interacted with the prepared GO to form GO/MCC
composites. When the addition amount of MCC was 1 g, the thermal stability of the composite
was the highest due to the interaction between acid-hydrolyzed MCC and GO sheets. At the same
time, the hydrophobic property of the GO/MCC composite is better than that of the GO film. The
freeze-dried GO/MCC composites are more easily dispersed in water and have stronger stability.

Keywords: graphene oxide (GO); microcrystalline cellulose (MCC); composites; Hummers method;
acidic mixture; acid hydrolysis

1. Introduction

As an important oxygen-containing derivative of graphene, graphene oxide (GO) has
the advantages of low production cost, large-scale production, and easy processing [1,2].
It is often used as a precursor for the preparation of reduced graphene oxide (RGO). In
recent years, with the further research on GO, scientists have found that it also has the
excellent performance of rich active oxygen-containing functional groups [3–5]. There
are a large number of oxygen-containing functional groups such as carboxyl, hydroxyl,
and epoxy groups on the surface and edge of GO [6–8]. These oxygen-containing groups
can be used as catalytic activity centers. The covalent/non-covalent modification design
can also be carried out according to the requirements of specific application fields [9]. So
far, the functionalization of graphene oxide has made great progress. It has been applied
to seawater desalination, drug delivery, oil–water separation, fixed catalysis, solar cells,
energy storage, medical care, and other fields [10–14]. At present, relatively mature GO
preparation methods are mainly divided into the Brodie method, Staudenmaier method,
and Hummers method [15–17]. Their preparation process is to first mix graphite with
inorganic strong protonic acid (such as concentrated sulfuric acid, fuming nitric acid, or
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their mixture) in a certain proportion, so that small molecules of strong acid are inserted into
the graphite layer. Then it was oxidized by strong oxidants (such as KMnO4, KC104, etc.).
However, the Staudenmaier method and the Brodie method have the disadvantages of
producing harmful gases such as ClO2 and NO2 during the reaction, consuming too
much time, and consuming too much raw materials under long-term reaction conditions.
Therefore, when GO is put into laboratory preparation and industrial production, the
Hummers method is generally used as the preparation method of GO. The Hummers
method has at least three important advantages over previous technologies. First, the
reaction can be completed within a few hours. Secondly, replacing KClO3 with KMnO4
can improve the reaction safety and avoid the precipitation of explosive ClO2. Thirdly,
NaNO3 was used to replace HNO3, which eliminated the formation of acid mist [18].
However, the Hummers method also has some room to be improved such as having
too much acid residue that is difficult to remove, and the GO oxidation degree is not
enough. Therefore, many researchers have made some improvements on the preparation
of GO by the Hummers method. Marcano et al. have improved the Hummers method
by increasing the amount of KMnO4 used, which increases the oxidation of GO [19].
Yu et al. prepared GO by partially replacing KMnO4 with K2FeO4 without NaNO3. This
approach significantly reduces the consumption of reactants while maintaining sufficient
GO oxidation [20]. However, since all the preparation processes need strong acid to treat
graphite, acid residue is still a problem to be solved. So, we find it inevitable to use strong
acids in the preparation of GO. So, the high-value utilization of residual acid, reducing
the waste of raw materials and avoiding its impact on the environment, will become a
new research starting point. This can also save the time consumed by centrifugation and
dialysis during GO preparation.

Cellulose, a renewable, degradable, and environmentally friendly material, is abun-
dant in nature. It is a natural polymer formed of dehydrated-D-glucose units linked by
β(1→4) glycosidic bonds [21–23]. It is also one of the most common natural linear syndio-
tactic homopolymers [24,25]. Cellulose nanofibers show a high aspect ratio (up to 1 µm
in length and 2–5 nm in thickness), a chemically modifiable surface, and a high elastic
modulus resulting from their high crystallinity, and they are prepared by relatively low-cost
production methods, all of which endow CNFs with great potential for the fabrication of
numerous functional structures [26,27]. Inorganic acids are commonly used to hydrolyze
cellulose-containing raw materials to prepare cellulose [28,29]. Microcrystalline cellulose
(MCC) is a purified, partially depolymerized form of cellulose. It is worth noting that the
numerous hydroxyl groups on the cellulose molecular chain may form hydrogen bonds
with the oxygen-containing groups of GO [30,31]. In recent years, some researchers have
made GO and cellulose into composites. The hydrogen-bonding connection between GO
and MCC was used to prepare the composites with both the strong electrical properties,
strong surface activity, and high thermal conductivity of GO and the green, renewable
and excellent mechanical properties of MCC [32–36]. It is expected that this composite
material can be applied in the adsorption, drug delivery, electrochemistry, and phase
change energy-storage materials [37,38]. The methods used for composite preparation
include solution blending methods, dissolution–combination methods (where ionic, urea-
alkaline, or lithium bromide aqueous solutions are used to dissolve and combine with GO
simultaneously), and cross-linking combination methods [39–46]. Although the research
on GO/MCC composites has made some progress, there are still some problems to be
solved. For example, it is difficult for natural cellulose to combine with GO directly, but the
use of cellulose solvents (e.g., urea-alkaline or ionic liquids) or modified cellulose increases
both composite production cost and the environmental burden.

In this study, from the perspective of conservation and environmental protection, a
large amount of residual acid in the mixture after the reaction of the Hummers method was
reused. After the preparation of GO, no washing and filtration treatment was performed
on the used mixture, and MCC was directly added to make full use of the residual strong
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acid in the mixture to hydrolyze it, so that the GO/MCC composite was prepared while
the agent was reused.

2. Materials and Methods
2.1. Materials and Chemicals

Ink powder is purchased from Tianjin Comiou Chemical Reagent Co., Ltd. (Tianjin,
China); 98 wt % H2SO4 was purchased from Tianjin Kaitong Chemical Reagent Co., Ltd.
(Tianjin, China). NaNO3 was purchased from Tianjin Kemiou Chemical Reagent Co., Ltd.
(Tianjin, China). KMnO4 was purchased from Tianjin Kaitong Chemical Reagent Co.,
Ltd. (Tianjin, China). H2O2 was purchased from Tianjin Kaitong Chemical Reagent Co.,
Ltd. (Tianjin, China). MCC (diameter: 90 µm) was purchased from Shanghai Aladdin
Biochemical Technology Co., Ltd. (Shanghai, China).

2.2. Graphene Oxide (GO) Preparation

GO was prepared according to the modified Hummers method [6], with a slight
adjustment to the amount of water added during the high-temperature reaction. In this
portion of the reaction, 46 mL of concentrated H2SO4 (98 wt.%) was added to a beaker
and cooled in an ice water bath to about 4 ◦C. Next, 2.0 g of graphite powder and 1.0 g
of NaNO3 were added to the beaker, which was followed by the slow addition of 6.0 g
KMnO4. The reaction was allowed to progress at <10 ◦C for 90 min; then, the ice water
bath was replaced with a warm water bath. The reaction proceeded for 30 min at 35 ◦C.
After the 30-minute reaction time, 46 mL of deionized water was added dropwise to the
reaction solution, and the temperature of the reaction was maintained at 95 ◦C for at least
15 min. The concentration of sulfuric acid in the final mixture was about 60 wt.%. An
appropriate amount of 30 wt.% H2O2 was added to the raw reaction mixture until no more
visible bubbles were produced, and the mixture was allowed to stand.

2.3. Preparation of the GO/MCC Composite

After the Hummers acidic mixture was prepared (as described above), it was stirred
evenly. Four 20 mL aliquots were removed. One aliquot, left untreated, was used as the
control. Three MCC samples (0.5 g, 1 g, and 1.5 g) were each dissolved in one aliquot of
the Hummers raw reaction mixture at 45 ◦C for 1 h. Then, all samples were sonicated
for 30 min in an ice water bath, which was followed by dialysis and washing until the
solution was neutral. These samples are herein referred to as “GO/C-0.5 g,” “GO/C-1 g,”
and “GO/C-1.5 g.” The control is referred to as “GO”. All samples were freeze-dried
and then dispersed in deionized water to generate 2 mg mL−1 dispersions, and 12 mL
dispersions of each sample were filtered with vacuum filtration into a thin film for contact
angle measurement.

2.4. Characterization

Scanning electron microscope (SEM) images were obtained using a QUANTA200 (FEI,
Eindhoven, The Netherlands) instrument. Fourier transform infrared spectroscopy (FTIR)
is performed on a Spectrum 400 (PE Company, New York, NY, USA) instrument with a
scanning range of 550–4000 cm−1. X-ray diffraction (XRD) analysis was performed using
XRD-6100 (Shimadzu Corporation, Kyoto, Japan) in the scanning range of 5–60◦ and the
scanning speed of 5◦/min. Raman spectroscopy (RDS) was measured by Renishaw in
Via instrument (Renisho, Wotton-under-Edge, UK). A thermogravimetric analysis (TG)
diagram was obtained by high-precision thermogravimetric analyzer (/TG209F1, Niche,
Berlin, Germany), and the test temperature range was 5–790 ◦C. A contact angle test was
obtained with a Dataphysics-OCA20 instrument (Dataphysics, Filderstadt, Germany).
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3. Results
3.1. FTIR

Obvious characteristic peaks of GO can be seen from FTIR in Figure 1a, including
C=O (1730 cm−1), the conjugated structure C=C (1624 cm−1), the carboxyl group C–O
(1410 cm−1), the epoxy structures C–O (1224 cm−1) and C–O (1056 cm−1), and the strong
broad peak at around 3340 cm−1 [47,48]. The strong broad peak near 3340 cm−1 is the
stretching vibration of –OH [49]. The FTIR spectrum of the MCC was clearly consistent with
the spectral characteristics of cellulose, showing the characteristic stretching vibrations of
–OH at 3334 cm−1 and –CH2 at 2898 cm−1. The peaks at 1200–1500 cm−1 were characteristic
of the bending and rocking vibrations of –CH, –CH2, and –OH, while the multiplet at 800–
1200 cm−1 reflected the skeleton vibration of the diether structure C–O–C–O–C. Although
the FTIR spectra of the GO/C composites were similar to that of MCC, and the main
absorption peaks of the composites were identical to those of cellulose, the interactions
between GO and MCC in the composites were still reflected in the spectra. Compared
with the FTIR spectra of GO or MCC, the O–H and C–H peaks of GO/C composites
were relatively shifted. This indicates that many O–H and C–H in the composites form
hydrogen bonds, and GO is effectively combined with MCC. It is worth noting that for the
GO/nanocrystalline cellulose (MCC) composites prepared using the urea-alkaline system,
the characteristic –COOH peak (≈1730 cm−1) completely disappeared due to acid–base
neutralization [50]. However, when the sample was prepared in the acidic solution, this
peak (at 1735 cm−1) was observed.
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MCC composite (GO/C-1.5 g).

The FTIR spectra of the samples prepared with different amounts of added MCC
were similar without significant shifts in the positions of the absorption peaks (Figure 1b).
Therefore, a different amount of added MCC did not affect the types of functional groups
in the composite sample.

3.2. XRD

Pure GO had a characteristically strong XRD peak at 2θ = 11.4◦ (Figure 2), corre-
sponding to the (001) crystal plane of GO. In addition, according to the Bragg equation,
the layer spacing of GO was estimated at 0.77 nm, which is similar to results reported in
the literature [51]. The MCC XRD peaks appeared at 2θ = 14.8◦, 16.5◦, 22.5◦, and 34.5◦,
corresponding to the crystal planes 101, 101, 002, and 040, respectively. This result in-
dicated that MCC had a cellulose I-type crystal structure [52,53]. The XRD pattern of
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GO/C-1 g was similar to those of GO and MCC: a strong diffraction peak was observed at
10.9◦, which was slightly left-shifted from the characteristic GO diffraction peak, and at
22.5◦, which was consistent with the characteristic peak position of the 002 crystal plane
of cellulose I. Furthermore, two smaller diffraction peaks were found at 2θ = 14.9◦ and
16.7◦, corresponding to the 101 and 101 crystal planes of cellulose I, respectively. The
amount of MCC added had almost no impact on the position of the characteristic peaks
of the composite (Figure 2). As the amount of added MCC increased, the intensity of the
diffraction peak of the composite at around 2θ = 11◦ decreased, but the characteristic peak
intensity of cellulose was somewhat increased. This result indicated that as the amount of
added MCC increased, the interactions between the acid-hydrolyzed cellulose and the GO
sheet layer also increased, disrupting the order of the GO sheet and reducing the intensity
of the characteristic peak. As the added MCC increased, the proportion of cellulose in the
composite material increased concomitantly, increasing the intensity of the characteristic
cellulose peak (Figure 2). A hydrogen bond was formed between GO and MCC, which also
confirmed the results of FTIR.
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3.3. RDS

Figure 3 shows the Raman spectra of GO and GO plus 1 g MCC composite (GO/C-1 g).
The two curves are similar, both showing a D band (1371 cm−1, which corresponds to the
disordered structure of GO sheets) and a G band (1586 cm−1, which represents the first-
order scattering of the E2g vibrational mode). The small difference between the two spectra
may be due to the fact that Raman signals are very sensitive to conjugate structures, and the
complex GO/cellulose still contains a large number of conjugate π bond structure. So, the
GO/C spectrum is extremely similar to the pure GO one without an obvious characteristic
peak of cellulose [54]. There is a wide peak with low intensity between 2500 and 3250 cm−1,
which is caused by the overlapping of the 2D peak, D + G peak, and 2D’ peak, which is
consistent with previous studies [55]. As shown in Table 1, according to determination of
the intensity ratio of the D peak to the G peak, ID/IG, we found that the ID/IG value of the
GO/cellulose composite was 1.62, which was slightly larger than the ID/IG value of GO
(1.57), which proved that there was an interaction between MCC and GO, which increased
the ID/IG value of the GO/cellulose composite.
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Table 1. The analysis result of Raman spectra.

Peak Position Peak Intensity Half-Height Width Integral Area R

D G D G D G D G Value

GO 1371.05 1585.88 959.16 1002.08 282.21 107.28 430,892.93 275,297.52 1.57
GO/C-1 g 1368.72 1588.97 1041.26 1057.33 288.41 103.90 476,112.35 294,397.92 1.62

3.4. TG

It can be seen from the TG/DTG curves in Figure 4 that the thermal decomposition of
MCC, GO, and composites is mainly completed in one stage. The thermal weight loss value
is shown in Table 2. It can be seen from Table 2 that the T0 values of the three composites
are smaller than those of MCC and GO, which is caused by the introduction of sulfonic
acid groups during acid hydrolysis [56–58]. The TG/DTG curves of the composites are
obviously different from those of MCC and GO. However, the thermal decomposition of
MCC occurred in one stage, indicating that the acid hydrolysis of MCC occurred during
the preparation process, and the composite was formed by the interaction between MCC
and GO sheets. This result was consistent with the conclusions of XRD and FTIR. Due to
the poorer thermal conductivity of cellulose than GO, the interlacing of cellulose and GO
sheets in GO/C-1 g hindered the heat transfer. This makes the thermal decomposition
temperature range of GO/C-1 g significantly wider than that of GO, and Tf is higher than
that of GO. With the increase in MCC content, the more sulfonic groups introduced into
the composites during acid hydrolysis, and the lower the T0 value. When the addition
amounts of MCC were 0.5 g and 1 g, the interaction between acid-hydrolyzed cellulose
and the GO sheet could improve the thermal stability of the composites, and the carbon
residue of the composites was also higher. However, as the addition of MCC continues to
increase, the more insufficient the acid hydrolysis reaction is, the more large-scale MCC
remains. The carbon residue of MCC is relatively low, which makes the carbon residue of
GO/C-1.5 g lower than GO/C-1 g. Therefore, when the MCC content is 1 g, the thermal
stability of the composite reaches the maximum.
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Table 2. Thermal analysis data for MCC, GO and GO/C.

Sample Code 1 T0/◦C 2 Tmax/◦C 3 Tf/◦C 4 M800/%

MCC 307 328.8 345.0 11.66
GO 194 211.0 223.1 57.79

GO/C-0.5 g 177 201.7 233.6 45.53
GO/C-1 g 175 201.6 253.7 51.84

GO/C-1.5 g 169 204.0 297.2 48.12
1 T0—the extrapolated onset temperature of the thermal decomposition peak (also the extrapolated onset temper-
ature of the derivative TG (DTG) curve). 2 Tmax—the temperature at the maximum weight loss rate. 3 Tf—the
extrapolated final temperature of the DTG curve 4 M800—the residual carbon content at 800 ◦C.

3.5. Contact Angle Test the Initials

The distilled water contact angles of the GO, GO/C-0.5 g, GO/C-1 g, and GO/C-1.5 g
sample films were tested. Alterations in contact angle were detected within 20 s (Figure 5).
At all time points, the contact angles measured for GO/C-0.5 g, GO/C-1 g, and GO/C-1.5 g
were greater than that of GO (Figure 5a), which was probably because of hydrogen bonding
between cellulose and GO, and the resultant decrease in the number of oxygen-containing
groups on the GO sheet. Thus, the hydrophobicity levels of the composites were higher
than that of GO. As shown in Figure 5b, the hydrophobicity of the composites decreased
with the addition of MCC. The hydrophobicity of GO/C-0.5 g was higher than that of
GO/C-1 g. However, there was no significant difference between them. The water contact
angles of GO/C-0.5 g and GO/C-1 g were 91.85◦ and 90.55◦ at 20 s, respectively. However,
with the addition of MCC, the water contact angle difference is gradually obvious. The
gap between GO/C-1 g and GO/C-1.5 g is larger than that between GO/C-0.5 g and
GO/C-1 g. This is because the hydrophobicity of cellulose is poor. With the continuous
addition of MCC, the hydrophobicity of the composite decreases. In addition, when the
MCC content continues to increase, the incomplete acid hydrolysis of MCC may also affect
the hydrophobicity of the composites. Overall, the composites are more hydrophobic than
GO. The hydrophobicity of GO/C-0.5 g and GO/C-1 g in the composites is more excellent.
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After drying of the GO aqueous dispersion, environmental scanning electron mi-
croscopy (SEM) images were produced (Figure 6a). Folded GO sheets were clear in the
SEM images, indicating that the addition of water to the high-temperature reaction did not
affect the preparation of the GO sheets. In the SEM image of the GO/C-1 g sample, it was
clear that MCC had been acid-hydrolyzed into short rod-shaped cellulose molecules with
non-uniform sizes (Figure 6b). The diameter of all cellulose rods was <1 µm, with a length
of 2–6 µm; the cellulose rods were covered by GO sheets. This indicates that MCC in GO/C-
1 g sample has been mostly or completely hydrolyzed. This also provided a microscopic
explanation for the hydrophobicity similarity of GO/C-0.5 g and GO/C-1 g samples.

Figure 6c–e show photographs of GO (left) freeze-dried powder and GO/C-1 g (right)
freeze-dried powder dispersed in water at a concentration of 2 mg/mL on days 1, 6, and
78, respectively. As shown in Figure 6c, the mixture of the two samples showed a relatively
stable state in the initial three days after dispersion. There is no obvious precipitation at
the bottom of the sample bottle. As shown in Figure 6d, with the passage of time, partial
precipitation appeared at the bottom of the two sample bottles on the sixth day, and the
upper liquid gradually became clear. As shown in Figure 6e, the color of the upper liquid
of GO/C-1 g (right) composite is obviously deeper than that of GO (left) after 78 days of
storage. This shows that the stability of the GO/C-1 g composite dispersion is stronger than
that of GO. This is because the acid hydrolysis cellulose after GO preparation was used
in the experiment, and there were micron and nano-scale cellulose in GO/C composites.
The depolymerization of cellulose macromolecular chains and the breaking of hydrogen
bonds are the main factors leading to the depolymerization of cellulose in sulfuric acid [59].
H2SO4 aqueous solution with adequate concentrations is able to break the hydrogen bonds,
because H+ favors the attack on oxygen atoms of cellulose hydroxyl groups, and bisulfate
and sulfate anions prefer to attract hydrogen atoms of cellulose hydroxyl groups [60].
After acid hydrolysis, a small amount of negative charges are introduced on the surface of
nanocellulose, and the mutual exclusion of negative charges makes these composites have
a strong dispersion ability in water [61,62]. In addition, one-dimensional cellulose was
interspersed between two-dimensional GO sheets. There was a certain steric effect between
the two, which hindered the agglomeration between GO sheets and cellulose, respectively,
which was also conducive to the stable dispersion of GO/C in the solution [63]. Thus, the
stability of GO/C composites in water is higher than that of GO.
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4. Conclusions

In this study, the mixed acid solution of GO prepared by the Hummers method was
used to directly dissolve MCC, and GO/MCC composites were prepared after washing,
dialysis, and ultrasonic treatment. The XRD, FTIR, TG, and SEM test data of the samples
show that this method is feasible. GO and MCC are connected by hydrogen bonding.
The pyrolysis range of the composite is wider than that of GO, and its hydrophobicity to
distilled water is also better than that of the GO film. The composite was easily dispersed
in water again after freeze drying, and the stability of the solution was slightly stronger
than that of GO. When the addition of MCC is 1 g, the composite has better thermal
stability and hydrophobic properties. Compared with the preparation methods such as
the solution blending method and dissolution–composite method, the preparation in this
study realized the secondary utilization of acid, saved the preparation cost, and reduced
the impact on the environment to a certain extent. It also provides a new idea for the
high-value preparation of GO composites. At the same time, this GO/MCC composite
with good thermal stability, hydrophobicity, and long-term storage has a certain potential
application value in hydrophobic materials.
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and W.C.; validation, Y.M., Y.L., Z.L. and W.C.; formal analysis, X.W., Y.L. and W.C.; investigation,
Y.M., X.W. and Y.L.; data curation, Y.L., Z.L. and W.C.; writing—original draft preparation, Y.M., X.W.
and Z.L.; writing—review and editing, Y.L., Z.L. and W.C. All authors have read and agreed to the
published version of the manuscript.
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