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Abstract

Background: Since 2007, bacterial canker caused by Pseudomonas syringae pv. actinidiae (Psa) has become a pandemic
disease leading to important economic losses in every country where kiwifruit is widely cultivated. Options for controlling
this disease are very limited and rely primarily on the use of bactericidal compounds, such as copper, and resistance
inducers. Among the latter, the most widely studied is acibenzolar-S-methyl. To elucidate the early molecular reaction of
kiwifruit plants (Actinidia chinensis var. chinensis) to Psa infection and acibenzolar-S-methyl treatment, a RNA seq analysis
was performed at different phases of the infection process, from the epiphytic phase to the endophytic invasion on
acibenzolar-S-methyl treated and on non-treated plants. The infection process was monitored in vivo by confocal laser
scanning microscopy.

Results: De novo assembly of kiwifruit transcriptome revealed a total of 39,607 transcripts, of which 3360 were
differentially expressed during the infection process, primarily 3 h post inoculation. The study revealed the
coordinated changes of important gene functional categories such as signaling, hormonal balance and transcriptional
regulation. Among the transcription factor families, AP2/ERF, MYB, Myc, bHLH, GATA, NAC, WRKY and GRAS were found
differentially expressed in response to Psa infection and acibenzolar-S-methyl treatment. Finally, in plants treated with
acibenzolar-S-methyl, a number of gene functions related to plant resistance, such as PR proteins, were modulated,
suggesting the set-up of a more effective defense response against the pathogen. Weighted-gene coexpression network
analysis confirmed these results.

Conclusions: Our work provides an in-depth description of the plant molecular reactions to Psa, it highlights the
metabolic pathway related to acibenzolar-S-methyl-induced resistance and it contributes to the development of
effective control strategies in open field.
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Background
Kiwifruit is an economically important crop in several
countries such as New Zealand, Italy, Chile, Iran and
China, with Italy and New Zealand being the largest
exporters of kiwifruit [1]. However, since 2007, kiwifruit
industries suffered from a global outbreak of bacterial
canker caused by the Gram-negative bacterium Pseudo-
monas syringae pv. actinidiae (Psa) [2, 3]. Psa enters plants
through stomata or wounds and successively colonizes the
vascular system, and it can spread systemically to young
twigs a few minutes after penetration [4]. Molecular
studies on Psa populations identified five biovars
named biovar 1, 2, 3, 5 and 6 [3, 5–7]. Biovar 4 is now
classified as a different pathovar called actinidifoliorum
[8]. Biovar 3 is the biovar that caused the global outbreak
[7]. Biovar 3 strains are characterized by the presence of
pathogenesis-related sequences (integrative conjugative
elements, ICEs), horizontally acquired from other P. syrin-
gae pathovars [9], but do not produce any known toxin.
The control of this disease is primarily based on the use of
bactericidal foliar copper application and on the induction
of natural plant resistance [10, 11]. acibenzolar-S-methyl
is among the most effective resistance inducers and it is
able to activate Systemic Acquired Resistance (SAR) in
kiwifruit plants [12]. Plants possess two levels of defense
mechanisms against pests and pathogens: the general
Pathogen associated molecular Pattern-Triggered Immunity
(PTI) and the more specific Effector-Triggered Immunity
(ETI), which is initiated after recognition of specific patho-
gen effector proteins [13]. Plants have evolved surveillance
mechanisms that are activated upon recognition of “non-
self” (or “damaged-self”) molecular patterns or signals by
cell surface located receptors called Pattern Recognition
Receptors (PRRs) [14]. Acute PRR signaling results in the
accumulation of Reactive Oxygen Species (ROS), activation
of ion channels and of defense-related Mitogen-Activated
Protein Kinases (MAPKs), and transcriptional repro-
gramming [15]. Transcriptional reprogramming, driven
by specific transcription factors (TFs), is a main feature
of plant response to biotic stresses [16]. Specific members
of the major TF families (AP2/ERF, bHLH, bZIP, MYB,
NAC and WRKY) are particularly committed to regulating
plant responses to pathogens. Furthermore, a cross-talk
occurs among a core of TFs and genes related to phytohor-
mone biosynthesis and signaling. Phytohormones, such as
jasmonic acid (JA) ethylene (ET) and salicylic acid (SA),
are signaling molecules that regulate the main part of
plant response to pathogens [17] and TFs are involved
in the convergence of different plant hormonal signal-
ing pathways [18]. Often JA and ET work synergistically
to trigger resistance against necrotrophic pathogens,
whereas SA acts on the resistance against biotrophic
ones. SA and JA/ET defense pathways are reciprocally
antagonistic, therefore an elevated resistance against

biotrophs is often correlated with susceptibility to necro-
trophs, and vice versa [19, 20]. Many pathogens have
evolved sophisticated strategies to manipulate the plant
hormonal balance. The best-characterized mechanism
involves the bacterial phytotoxin coronatine (COR), an
analog of methyl-JA, which causes both the repression of
the SA defense pathway and stomata opening, conditions
which facilitate bacterial colonization of host tissues [21].
Little is known on the molecular interactions between

A. chinensis var. chinensis and Psa. Up to very recently,
how infection by Psa or treatment by elicitors of host
resistance modifies gene expression in Actinidia sp. was
still mostly unexplored. It has been demonstrated that
elicitors of the SA pathway, but not of the ET/JA pathway,
limit disease severity in both A. chinensis var. chinensis
and A. chinensis var. deliciosa [12], and that following
elicitation the genes PR1, PR8, ICS and PAL were over
expressed in A. chinensis var. deliciosa and to lesser extent
in A. chinensis var. chinensis [12]. Elicitation by chitosan
also lead to the overexpression of the genes PR1 and PR5
[22]. The genes β 1–3 glucosidase, WRKY40, PR6 and
AP2ERF2 were found overexpressed after infection by Psa
[23] while analysis of the transcriptome of A. deliciosa
found that several WRKY genes as well as several resist-
ance genes (RPS2 and RPM1) were upregulated after
inoculation with Psa [24]. An analysis of the WRKY genes
of Actinidia species lead to the discovery of 97 genes
which could be grouped in three categories [25]. After
inoculation with Psa several of those WRKY genes were
overexpressed (e.g. WRKY38, and WRKY 95) while
some were repressed (e.g. WRKY96) [25]. It is now
known that Psa infection results in massive changes of the
transcriptome and that different species of Actinidia react
differently to the infection [24]. Comparison of the
transcriptome of A. chinensis var. chinensis, A. arguta
and A. eriantha lead to the suggestion that resistance
to Psa was related to the expression of a number of
long non-coding RNAs that act in concert with coding
genes [24]. To date, no comparison has been done of the
whole transcriptome after inoculation of elicited versus
non-elicited plants. This study aimed to compare gene ex-
pression in A. chinensis var. chinensis plants after inoculation
with Psa, on plants which were elicited or not.
Comparative transcriptome profiling of A. chinensis

var. chinensis in response to Psa was carried out to
describe the molecular response of leaf cells to Psa and the
molecular mechanisms underlying the increased resistance
observed after the exogenous application of acibenzolar-S-
methyl. The transcriptome analysis was tailored to the
different steps of the infection process, from the epiphytic
phase until the invasion of the host tissues. The progres-
sion of the infection was monitored in vivo by fluorescent
stereomicroscopy and confocal laser scanning microscopy.
Along with de novo assembly and characterization of the
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transcriptome, analysis of global patterns of gene expression
and functional categorization was performed. Knowledge of
the mechanisms involved in the acquired resistance of
kiwifruit plants after the acibenzolar-S-methyl applica-
tion could be useful to assist in identifying molecular
markers in breeding for resistance.

Methods
Plant material
In vitro rooted plantlets of A. chinensis var. chinensis
from micropropagation, 5–8 cm shoot length, were used
for the experiment. The plants were grown in 1000 mL
plastic jars containing 200 mL of half-strength Murashige
and Skoog basal medium basal medium without sucrose
[26]. The plants were left for 15 days in these jars before
starting the experiments. For the whole duration of the
experiment the plants were kept in a growing chamber at
22 ± 1 °C, with a 16:8 h light:dark period.

Acibenzolar-S-methyl treatment and Psa infection
The experiment was carried out with plants treated
with acibenzolar-S-methyl or with water 15 days before
inoculation with Psa, or mock inoculation using buffer.
Acibenzolar-S-methyl-treated plants were immersed for
5 s in sterile solution 1.7 mM acibenzolar-S-methyl
(Bion®50WG, Syngenta, Basel, Switzerland), whereas
the untreated plants were submerged in water, 15 days
before Psa inoculation [12]. The Psa strain CFBP7286-
GFPuv was used for inoculation [27]; the inoculum was
prepared from 48 h grown colonies resuspended in 10 mM
MgSO4 to a final concentration of 108 cfu/mL. Inoculation
was performed by immersing the plants in the Psa
suspension for 1 min. The mock-inoculated plants were
immersed in sterile 10 mM MgSO4. The Psa-inoculated
plants were indicated as “Inoculated” (I), the mock in-
oculated plants were referred as “Healthy Control”
(HC), the plants treated with acibenzolar-S-methyl only
were indicated as “ASM” (ASM) and the plants treated
with acibenzolar-S-methyl and then inoculated with Psa
were indicated as “ASM-Inoculated” (ASM.I). Samples
for RNA-seq analysis were taken 3, 24 and 48 h
post-inoculation (hpi) and frozen by dipping in liquid
nitrogen. The experiment was carried out with five
biological replicates of five plants each: two replicates
were used for transcriptome analysis according to
recommended RNA-seq standards (Encode project https://
genome.ucsc.edu/ENCODE/protocols/dataStandards/
ENCODE_RNAseq_Standards_V1.0.pdf ), one was kept
till the development of the symptoms to assure the
effectiveness of the inoculation, one was employed to
assess Psa colonization and one was used for the confocal
laser scanning microscope analysis.

Assessment of Psa colonization
Disease incidence and severity were assessed according
to Cellini et al., 2014 [12]. Epiphytic and endophytic Psa
populations were monitored in the first 48 h post inocu-
lation. For this purpose, plants were washed in 10 mL of
sterile 10 mM MgSO4 under gentle agitation for 15 min,
then the washing solution was serially diluted and each
dilution was plated in triplicate to evaluate Psa epiphytic
population as cfu/mL. To assess the endophytic Psa
population, the plants, washed as above, were externally
sterilized by dipping each of them for 1 min in 70%
ethanol, then 1 min in 1% sodium hypochlorite followed
by 2 min in sterile water. After this treatment, the plants
were homogenized in 10 mL of sterile 10 mM MgSO4.
The homogenate was 10 folds serially diluted and each
dilution was plated in triplicate as previously described.
Bacterial colonies were enumerated at 0, 3, 6, 12, 24 and
48 h after inoculation and Psa population was calculated
as cfu g− 1 of plant fresh weight.

Real time monitoring of the colonization of the host
tissues
In order to match the transcriptome analysis to the dif-
ferent steps of the infection process, from the epiphytic
colonization until the invasion of the host tissues, the
infection was monitored in vivo by fluorescent stereomi-
croscopy and confocal laser scanning microscopy. At 3,
6, 12, 24 and 48 h post inoculation, leaves were initially
observed with a Nikon SMZ25 fluorescence microscope
(Nikon Instruments Corporation, Tokyo, JAPAN), with
an optical system providing a zoom ratio of 25:1 (zoom
range 0.63 x - 15.75 x) and epifluorescence filter cube
selection (excitation wavelength of GFP-B: 460–500 nm,
emission wavelength: 510–560 nm). Once Psa colonization
was located on the leaf lamina, further observations were
performed using a NIKON C1-S confocal laser scanning
microscope equipped with an Argon laser. Optical sections
of leaf lamina were acquired at 40, 60 and 100 x with
Nikon PlanApo objectives and the BHS (GHS) filter set.
Images were acquired and analysed by the NIS-Elements C
Microscope Imaging Software.

RNA extraction and libraries preparation
Total RNA was extracted from 100 mg of ground tissue
using Plant/Fungi Total RNA Purification kit (NorgenBiotek
Corp., Canada) following manufacturer’s instructions. RNA
samples were treated with RNase-free DNase I (Ambion,
TX, USA) to remove contaminating DNA. Purity and
concentration of the samples were estimated with a
spectrophotometer. The integrity of the RNA (RIN > 8)
was evaluated on an RNA 6000 Nano LabChiprun on
Agilent 2100 Bioanalyzer (Agilent Technologies, Germany).
Only samples with a RIN over 8 were used for the experi-
ment. Two micrograms of total RNA were subjected to
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library preparation using the TruSeq RNA sample prep-
aration v2 kit (Illumina, San Diego, CA, USA) following
the manufacturer’s instructions. Libraries were amplified
by 15 cycles of PCR and then size selected for an average
size of 300 bp using a 2% low range ultra-agarose gel
(BIO-RAD). Library quality and size were assayed on the
Agilent 2100 Bioanalyzer.

Sequencing, raw reads processing and data analysis
Libraries were paired end sequenced for 75 bp using an
Illumina Genome Analyser (GAIIx) generating about
730 millions of raw reads. FastQ file generation was
performed by CASAVA v1.8. Raw Illumina reads were
processed using the CLC Genomics Workbench software
(CLCbio, Aarhus, Denmark) to remove low-quality reads,
adapters and duplicated sequences. Transcriptome de
novo assembly was performed using Trinity software [28]
using the following parameters: fixed default k-mer size
25, minimum contig length 200 bp and minimum k-mer
coverage 3. Redundant sequences present in the assembly
were removed using CD-HIT software [29] with a simi-
larity threshold of 90%. Moreover, the contigs were
blasted against Pseudomonas syringae genomes (http://
www.pseudomonas-syringae.org) and the contigs show-
ing a significant match were removed.
Contigs annotation was produced with Blast2GO [30]

searching for matches against the NCBI non-redundant
protein database, RefSeq protein, Swiss-Prot/Uniprot
database, NCBI non-redundant nucleotide database, Inter-
Pro database and the Kiwifruit Genome database (http://
bioinfo.bti.cornell.edu/cgi-bin/kiwi/download.cgi) with a E
value threshold of 1e− 5 and by using the functionality of
InterProScan v5.0 that allowed retrieval of domain/motif
information in the InterPro as well as in other domain
databases. Furthermore, local BLASTX alignments were
run against the Clusters of Orthologous Groups (COGs)
database and the Kiwifruit Genome database [31]. Reads
were mapped to the assembled contigs and counted using
the CLC software. Differentially expressed genes (DEG)
were determined using the R package DESeq [32]. Gene
Ontology enrichment analysis was performed using the
GOseq package [33]. For a complete functional annotation
of the transcriptome, a local BLASTx was performed to
query the kiwifruit plant protein databases obtained from
the Kiwifruit Genome database.

MapMan, KEGG tools and WGCNA
MapMan figures were obtained with the Mercator tool,
using default parameters (http://mapman.gabipd.org/web/
guest/mercator), to assign MapMan bins to Kiwifruits
transcripts [34]. Log2 fold changes as obtained from
DESeq output were used as MapMan input to represent
expression changes. The KASS software was used to
generate the KEGG (Kyoto Encyclopedia of Genes and

Genomes) pathway picture. The KEGG database inte-
grates genomic information with higher order functional
information by collecting manually drawn pathway maps
representing current knowledge on cellular processes and
standardized gene annotations [35].
Gene expression was also assessed with weighted-gene

co-expression network analysis (WGCNA) [36]. To analyse
networks co-expression, transcripts were filtered for
normalized count > 10 and the genes that have a high
percentage of missing counts (> 90%) were removed,
leading to a total number of 27.384 transcripts. The
pickSoftThreshold was used to select the lower power for
which the scale-free topology fit index curve flattened out
upon reaching a high value. The weighted adjacency
matrix of a signed network was obtained at power 9 (R
function adjacency). Hierarchical clustering was con-
ducted using the R package flashClust and the cuttreeDy-
namic function (dendro = geneTree, distM = dissTOM,
method = “hybrid”, deepSplit = 2, pamRespectsDendro = F,
minClusterSize = 30) were employed to identify modules.
These functions have been shown to be the best approach
for biologically meaningful results [37].

Validation of DEGs by qRT-PCR
The transcription of twenty DEGs was determined using
quantitative real time PCR (qRT-PCR). Primers were
designed using Primer3 plus Software (http://www.bioin-
formatics.nl/cgi-bin/primer3plus/primer3plus.cgi) and their
specificity was checked by blasting their sequences against
the NCBI database. The genes employed in the validation
experiment and the primer information are reported in
Additional file 1: Table S1.
Samples were collected from three biological replicates

in an experiment conducted in the same conditions as
the one used for the RNA-seq analysis. Total RNA was
treated with RNase-free DNase I (Ambion) to remove
the contaminating DNA and the first cDNA strand was
synthesized from 1.0 μg of total RNA by reverse tran-
scription using Superscript II (Invitrogen, Life Technolo-
gies GmbH, Darmstadt, Germany).
Real-time quantification was performed using the ABI

7300 Real Time System (Applied Biosystems). KAPA
Sybr Fast qPCR kit (Resnova) master mix was used for
40 cycles with the following profile: 95 °C for 15 s, 60 °C
for 20 s, 72 °C for 40 s. Melting curve analysis was
performed to verify single product amplification with
temperature ranging from 55 to 95 °C by increasing of
1 °C every step. All reactions were run in triplicate for
each biological replicate and β-Actin (ACT1, accession
number EF063572) was used as the reference gene.
Primers for β-Actin (Additional file 1: Table S1) were
designed by Primer 3 plus (http://www.bioinformatics.nl/
cgi-bin/primer3plus/primer3plus.cgi) based on complete
mRNA sequence of Actinidia deliciosa ACT1 (ACT1),
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accession number EF063572. Transcript abundances are
given as the mean ± SE of replicates. Relative transcription
levels were calculated using the 2-△△CT method [38].

Results and discussion
Host tissues colonization
Psa epiphytic population reached their maximum con-
centration about 6 h post-inoculation (hpi), a result
determined by the high inoculum used in this experiment
and by Psa epiphytic fitness (Fig. 1a). The acibenzolar-S-me-
thyl treatment did not influence the epiphytic growth on
host leaves. From 6 hpi onwards, Psa was also found inside
the host tissues (Fig. 1b), although in acibenzolar-S-methyl
treated plants, Psa growth was reduced in comparison with
non-treated plants. Furthermore, from 24 hpi onwards, Psa
endophytic populations decreased in acibenzolar-S-methyl
treated plants reaching less than 10 cfu g− 1 fresh tissues at
48 hpi (Fig. 1b).
Observations under a confocal laser scanning micro-

scopyconfirmed the dynamic of Psa colonization. At 6
hpi, Psa was localized around the stomata and on the
edges of the stomata among epidermic cells (Fig. 2b). At
24 hpi, Psa was clearly observed inside the stomatal
chamber and in the spongy mesophyll, indicating that
the bacterium rapidly entered the host tissues via the
stomata and extensively colonized the leaves (Fig. 2c).
The assessment of the endophytic population indicated
that Psa had already entered the leaves at 6 hpi; however,
Psa was visible by confocal laser scanning micrographs
only between 12 and 24 hpi, suggesting that a certain
population threshold was needed to make colonization
visible. At 24 hpi, colonization of secondary and tertiary
leaf veins was observed (Fig. 2d), suggesting the beginning
of systemic invasion of the kiwifruit vine.

RNA sequencing and transcriptome assembly
After quality filtering, between 11 and 46 million reads
were obtained for each RNA sample (Additional file 2:
Table S2 A). Pearson correlations between biological
replicates were always above 0.95 and samples undergoing
the same treatment clustered together. High-quality reads
were used to produce the reference transcriptome of A.
chinensis var. chinensis by de novo assembly. The overall
transcriptome consisted of 63,943 contigs. Then, redun-
dant contigs, as well as those belonging to P. syringae,
were removed leading to 39,584 contigs, for a total assem-
bly size of 39.95 Mbp. The sequence length ranged from
201 bp to 11,870 bp with an average size of 933 bp and a
N50 of 1472 bp.

Annotation and classification of A. chinensis var. chinensis
transcriptome
The main features of the annotation of the A. chinensis
var. chinensis reference transcriptome are summarized in
Additional file 3: Figure S1 A, while the complete infor-
mation is presented in Additional file 2: Table S2 B.
The E-value distribution of the top hits for each contig

in the NR protein database showed that 18,369 contigs
had strong homology with an E value < 1.0 e− 5 (Additional
file 3: Figure S1 B). The sequence similarity distribution of
the contigs against the NR protein database shows that
24,867 contigs (85.93%) have a similarity ranging from
100 to 70% (Additional file 3: Figure S1 C). The BLASTx
performed to query the Actinidia protein databases,
obtained from the Kiwifruit Genome database, led to a
match with 30,634 annotated contigs (77.39%).
The contigs of the reference transcriptome were classi-

fied in 13,619 Clusters of Orthologous Groups (COGs)
functional annotations and grouped into 24 function

Fig. 1 Epiphytic (a) and endophytic (b) colonization of Actinidia chinensis var. chinensis plants by Pseudomonas syringae pv. actinidiae (Psa) strain
CFBP7286-GFPuv at 3, 6, 12, 24 and 48 h after inoculation. Plants were either treated with water (Control) or acibenzolar-S-methyl application
(ASM) 15 days before inoculation
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categories (Additional file 3: Figure S1 D). Moreover,
21,636 contigs of the A. chinensis var. chinensis tran-
scriptome were categorized into 101 functional groups
of Groups of Orthologous (GO) slim plant (Additional
file 3: Figure S1 E). As final result, a total of 34,039
contigs were annotated by integrating the BLAST results
from all the database queried (Additional file 3: Figure S1 F
and H, Additional file 2: Table S2 C and D).
This work identified a total of 4533 DEGs (Additional

file 4: Table S3). The interaction between kiwifruit plants
and Psa revealed 3360 DEGs, most of them were

identified at 3 hpi (2747 DEGs). Few DEGs were
highlighted at 24 hpi and at 48 hpi (272 and 341 DEGs,
respectively; Table 1). The comparison between HC and
Psa-inoculated plants at 3 hpi showed that 1596 DEGs were
up-regulated at least two-fold, with about 37% of them being
up-regulated more than five-fold and 214 more than
ten-fold. About 42% of DEGs were down-regulated. At
24 hpi and 48 hpi the response was dominated by a
down-regulation of gene expression with 57 and 76% of
DEGs repressed, respectively. The small number of DEGs at
24 hpi and 48 hpi, and the prevalence of down-regulation

Fig. 2 Confocal laser scanning micrographs of Actinidia chinensis var. chinensis leaves inoculated with Pseudomonas syringae pv. actinidiae Psa
strain CFBP7286-GFPuv. Panel a: before infection, white arrows indicate stomata; Panel b: 6 h after infection. It is possible to observe Psa cells
colonizing the leaf surface and the stomata entrance (arrows); Panel c: 24 h after infection, vertical sectioning of leaf lamina (Z axis: - 20 μm)
showing Psa invading the spongy mesophyll below stomata (arrows); Panel d: 24 h after infection. Psa colonizing the leaf veins (arrows)

Table 1 Identification of Differentially Expressed Genes (DEGs)

Comparison Total DEGs Up regulated Down regulated

DEGs associated with the infection process HC_vs_I3 2747 1596 1151

HC_vs_I24 272 116 156

HC_vs_I48 341 81 260

DEGs associated with acibenzolar-S-methyl treatment HC_vs_ASM 819 474 345

DEGs associated with infection in acibenzolar-S-methyl treated plants I3_vs_ASM.I3 510 323 187

I24_vs_ASM.I24 1374 552 822

I48_vs_ASM.I48 1252 747 505

HC was healthy control plants; I3, I24, I48 were inoculated plants at 3, 24 and 48 h post-inoculation; ASM represented acibenzolar-S-methyltreated healthy plants;
ASM.I3, ASM.I24, ASM.I48 were acibenzolar-S-methyltreated plant inoculated at 3, 24 and 48 h post-inoculation (hpi)
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may reflect the ability of Psa bacterial cells to suppress the
plant defense pathways.
ASM plants reacted differently to Psa infection than

non-treated ones. At 3 hpi in ASM plants, a substantially
lower number of DEGs (510) were modulated in com-
parison to untreated plants. In contrast, at 24 hpi in
ASM plants, 1374 DEGs were identified and at 48 hpi,
the number of DEGs was 1252 (Table 1). Noteworthy, the
treatment with acibenzolar-S-methyl sustained a much
stronger molecular response to Psa infection at 24 hpi and
48 hpi, in agreement with the observed decreasing of Psa
population inside the leaves (Fig. 1).
In untreated plants, out of 2747 DEGs detected at 3

hpi, only 188 were shared with 24 hpi, and this number
decreased to 145 at 48 hpi. Acibenzolar-S-methyl treated
and untreated plants shared 225 DEGs at 3 hpi, 41 at 24
hpi and 53 at 48 hpi (Fig. 3a).
In inoculated ASM plants, out of 510 DEGs modulated

at 3 hpi, 341 were shared with 24 hpi and this number be-
came 315 at 48 hpi (Fig. 3b). In ASM plants, regardless of
inoculation status, a core group of 229 DEGs were detected
at all-time points after inoculation. Finally, 151 DEGs were
identified exclusively in non-inoculated ASM (Fig. 3b).
The hierarchical clustering analysis based on transcript

expression levels had grouped the DEGs in two main
clusters related to the acibenzolar-S-methyl treatment.
This result indicated that acibenzolar-S-methyl strongly
affected the plant response to Psa infection, suggesting
that this compound activated defensive responses which

were not induced in untreated plants (Fig. 3c). For the
validation of our transcriptomic data twenty DEGs
were selected for qRT-PCR analysis (Additional file 5:
Figure S2). Our qRT-PCR data strongly correlated with
the RNA-seq expression data.

Biochemical pathways analysis
The kiwifruit transcripts modulated in response to Psa
infection were analyzed by the KEGG orthology database.
Among the 4533 DEGs identified in the transcriptomic
analysis, 1331 were assigned to KEGG orthologs. Among
them, KEGG analyses identified several pathways, such as
plant hormone signal transduction, cysteine-methionine
metabolism and plant-pathogen interaction. These path-
ways were differentially modulated according to the
progression of Psa in the tissues and to presence/ab-
sence of acibenzolar-S-methyl treatment. In addition,
the visualization of the DEGs with MapMan analysis
highlighted the involvement of the hormonal signaling
and the modulation of the transcription factors during
the progression of Psa invasion and presence/absence
of acibenzolar-S-methyl treatment (Additional file 6:
Figure S3).

Pathogen recognition related genes
Perception of microbe-associated molecular patterns or
pathogen-associated molecular patterns (PAMPs/MAMPs)
via activation of cell-surface-resident pattern recognition
receptors (PRRs) initiates the PAMP-triggered immunity

Fig. 3 Panel a: Venn diagrams showing the overlapping of the DEGs modulated in response to Pseudomonas syringae pv. actinidiae (Psa)
infection at 3, 24 and 48 hpi in plants not treated with acibenzolar-S-methyl. Panel b: Venn diagrams showing the overlapping of the DEGs
modulated in response to Psa infection at 3, 24 and 48 hpi in plants untreated and treated with acibenzolar-S-methyl. Panel c: Hierarchical
clustering analysis made with Pearson correlation of Log2FC of all DEGs detected in the transcriptome analysis (4533; Additional file 4: Table S3).
Each row represents a transcript; each column represents a comparison. A dendrogram of the correlation among transcripts is shown on the left
of the heatmap. A clear separation between untreated and acibenzolar-S-methyl treated plants is evident from the upper cluster of the heatmap
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(PTI) [13]. In kiwifruit plants inoculated with Psa, 198
transcripts encoding putative Pathogen Recognition-Related
(PRR) proteins were found to be differentially expressed
(Fig. 4a, Additional file 7: Table S4). These PRRs are Recep-
tor Like Kinases (RLK) or Leucine-rich repeat receptor-like
protein kinases (LRR-RLKs).
The most significant up-regulation of RLK and LRR-

RLK transcripts was observed in inoculated, ASM plants
with an increase in the number of up-regulated tran-
scripts from 3 to 48 hpi. On the other hand, a different
set of PRR transcripts were found up-regulated almost
exclusively at 3 hpi in infected untreated kiwifruit plants
(Fig. 4a).
Transcripts homologous to FLAGELLING SENSING 2

(Ach_contig26439; Ach_contig38670, Ach_contig38671),
the receptor kinase for bacterial flagellin (flg22), were

up-regulated. Ach_contig26439 was up-regulated in
untreated plants only at 3 hpi, while Ach_contig38670
and Ach_contig38671 were up-regulated in ASM plants
regardless of infection. In other pathosystems, the activation
of flg22 leads to the accumulation of ET and SA [39–41].
Other transcripts associated with bacterial recognition were
up-regulated after infection by Psa. The bacterial elongation
factor Tu (EF-Tu) (Ach_contig7359), was up-regulated
at 3 hpi in untreated samples only. Instead, transcripts
belonging to the serine/threonine receptor kinase family,
containing the LysM domain [42], were up-regulated in
both acibenzolar-S-methyl-treated and untreated plants
at 3 hpi (Fig. 4a). LysM domains bind Peptidoglycans
(PGNs) of both Gram-positive and Gram-negative bac-
teria and are known to mediate resistance against bacterial
pathogens [43].

Fig. 4 Panel a: Heatmap of Differentially Expressed Genes (DEGs) encoding putative Pattern Recognition Receptors (PRRs). Panel b: Heatmap of
DEGs involved in the defense response against Psa. Up-regulated transcripts (Log2FC≥ 1) are in green, down-regulated transcripts (Log2FC≤ − 1)
are in red. Each row represents a transcript, each column a comparison. For the description of the gene names represented in the heatmaps
refers to Additional file 4: Table S3 and Additional file 8: Table S5
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Oligogalacturonidases (OGs) fragments, released from
plant cell walls, act as potent defense response elicitors
[44]. The WALL-ASSOCIATED KINASES (WAKs) work
as pathogen-related signals molecules, which are able to
detect the presence of OGs [45, 46].
In Arabidopsis, the increase of expression of some WAK

genes e.g. WAK2, [47] or WAKL10 and WAKL22 [48] was
found related to pathogen infection. Moreover, WAK1 has
been linked with both to P. syringae infection and exogen-
ous application of SA [49]. In rice, OsWAK25 transcript
accumulates after acibenzolar-S-methyl-treatment [50], and
in tomato and wheat, WAK genes have been found to be
related with pathogen infection [51, 52].
In the kiwifruit-Psa interaction, 10 DEGs belonging to

the WAK family (Ach_contig12264; Ach_contig3903;
Ach_contig11995; Ach_contig25885; Ach_contig25886;
Ach_contig35387; Ach_contig37852; Ach_contig35388;
Ach_contig15313) were up-regulated in untreated infected
plants at 3 hpi and as well as in ASM plants regardless of
sampling time (Fig. 4a and Additional file 7: Table S4).
Members of the RLK1 family are good indicators for cell

wall integrity. Among them, Theseus1 (THE1) and Feronia
(FER) were differentially expressed in kiwifruit-Psa inter-
action [53, 54]. Transcripts annotated as receptor-like
kinase FERONIA were up-regulated only in ASM
plants regardless of infection (Fig. 4a). Among them,
Ach_contig13965 was used to confirm these data by
qRT-PCR (Additional file 5: Figure S2). In response to
environmental stress and SA, FER receptor kinase may
negatively regulate the biosynthesis of S-adenosyl methio-
nine (SAM) which, in turn, down-regulates the SAM-
dependent pathways, such as the one leading to ET
biosynthesis [55].
BRASSINOSTEROID-INSENSITIVE ASSOCIATED

KINASE 1 (BAK1) is required for responses triggered
by the orphan PAMPs such as Peptidoglycans (PGNs)
and lipopolysaccharide (LPS) [56] Moreover, BAK1 is
essential for PRRs for the responses against different
bacterial and fungal pathogens [57]. Three transcripts
homologs to BAK1 were found differentially expressed
in kiwifruit after Psa interaction. Ach_contig24575
and Ach_contig24576 were up-regulated in infected
plants at 3 hpi only, while Ach_contig29878 was up-
regulated in acibenzolar-S-methyl-treated and inoculated
samples, at all-time points. The expression of the
BAK1-Ach_contig29878 reflects the ability of ASM plants
to activate the downstream immune response (Fig. 4a).
Moreover, overexpression of SUPPRESSOR OF BIR1
(SOBIR1) leads to a constitutive activation of disease-resis-
tance responses [58, 59]. Two transcripts homologs to
SOBIR1 (Ach_contig37485; Ach_contig37484) were
up-regulated only in ASM plants (Fig. 4a, Additional
file 7: Table S4). Transcriptome analysis of other plant-
pathogen interactions revealed that the SOBIR1 gene is

transcriptionally regulated by biotic stress [15]. In Sinapis
alba a SOBIR1 homologue was up-regulated after infec-
tion with Alternaria brassicicola [60]. Similarly, in Malus
domestica a homologue of AtSOBIR1 was up-regulated
in plants resistant to Erwinia amylovora [61]. In the
kiwifruit-Psa interaction, the SOBIR1 expression was
related to acibenzolar-S-methyl application, suggesting
a possible role for this gene in the SAR, as proposed for
Arabidopsis [62].
Despite the high number of genes coding for PRR

found in the A. chinensis var. chinensis genome [63] and
the up-regulation of many of them at 3 hpi in untreated
plants, this response is not sufficient to confer resistance
to Psa. Thus, without acibenzolar-S-methyl treatment,
kiwifruit is not capable of sustaining the activation of
effective defensive mechanisms against the pathogen.

Defense-related genes
Transcripts encoding several classes of chitinases (Ach_
contig8637, Ach_contig3262, Ach_contig27724, Ach_
contig24132, Ach_contig7693, Ach_contig25203), β-1,3-
glucanase (Ach_contig27175), endochitinase (Ach_con-
tig996, Ach_contig34595; Ach_contig6256) and A. chinen-
sis thaumatin-like proteins (Ach_contig10838, Ach_
contig19122) were up-regulated in ASM plants, indicating
that these transcripts are related to the enhanced resist-
ance response. The transcripts encoding PR1 homologs
(Ach_contig12206, Ach_contig14525) were up-regulated
in all infected samples with a higher expression in the
ASM plants. The expression profile of Ach_contig14525
was confirmed by qRT-PCR (Additional file 5: Figure S2).
Transcripts putatively encoding PR10 (Ach_contig15022;
Ach_contig7880; Ach_contig18265; Ach_contig18266)
were found up-regulated only in untreated plants at 3
hpi. OsPR10a and Pg1, PR10 orthologs, were up-regulated
in response to exogenous ethylene treatment, in rice [64]
and ginseng [65]. Moreover, two alfalfa PR10 genes,
MsPR10.1A and MsPR10.1B, were responsive to ethylene
and abscisic acid (ABA) treatment [65].
Actinidin 2d (Ach_contig26480; Ach_contig26479) is a

member of the papain-like cysteine proteases family
(PLCPs). Recent evidence indicates a key role for PLCPs
in plant immunity [66, 67]. In the kiwifruit-Psa inter-
action the transcripts homologs to Actinidin showed a
strong up-regulation in ASM plants with or without Psa
inoculation. On the other hand, the same transcripts
were down-regulated in untreated infected plants. This
finding supports the idea that the up-regulation of tran-
scripts coding for Actinidin enzymes is associated with
the increased resistance of ASM plants to Psa. Indeed, it
has been suggested that the presence of basic and acidic
isoforms of Actinidin are reminiscent of PR proteins, having
a role in defense against pathogens [68]. In addition, about
50 transcripts putatively annotated as disease resistance
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genes (homologues of TIR- and CC-NBS-LRR genes)
were DEGs in one or more samples (Fig. 4b, Additional
file 8: Table S5). Among them, three transcripts (Ach_
contig24825; Ach_contig17717; Ach_contig17718) belong-
ing to Resistance Gene Analogs RGA-like genes, and seven
(Ach_contig18842; Ach_contig13980; Ach_contig35140;
Ach_contig28816; Ach_contig35282; Ach_contig27985;
Ach_contig35141) belonging to cysteine-rich like protein
were induced in ASM plants upon inoculation.

ROS detoxification related genes
One of the earliest responses after pathogen recognition
is the oxidative burst achieved through the production
of ROS caused by nicotinamide adenine dinucleotide
phosphate (NADPH) oxidases and the respiratory burst
due to the oxidase homologues (RBOHs) multigenic
family [69]. Accordingly, the transcriptomic analysis of
the kiwifruit-Psa interaction has identified many DEGs

involved in ROS production and detoxification. Four tran-
scripts belonging to NADPH-oxidase (Ach_contig28941,
Ach_contig28940, Ach_contig28939, Ach_contig28930)
were up-regulated at 3 hpi in untreated plants, whereas
only Ach_contig37977 was up-regulated in the acibenzolar-
S-methyl-treated samples (Fig. 5). Moreover, antioxidant
enzymes including superoxide dismutase (Ach_con-
tig30858), catalase (Ach_contig25559, Ach_contig25558,
Ach_contig25560, Ach_contig25556, Ach_contig25561),
peroxidase (Ach_contig20101, Ach_contig10320, Ach_
contig6123, Ach_contig27264, Ach_contig17103, Ach_
contig18018, Ach_contig7182, Ach_contig18508, Ach_
contig3949, Ach_contig35730, Ach_contig10321), ascorbate-
oxidases (Ach_contig15094, Ach_contig26749), ascorbate
peroxidase (Ach_contig12730, Ach_contig19106) and
dehydroascorbate reductase (Ach_contig20425) were
differentially expressed in several conditions (Fig. 5,
Additional file 9: Table S6). Differential regulation of

Fig. 5 Heatmaps of Differentially Expressed Genes (DEGs) encoding putative Reactive Oxygen Species (ROS). Up-regulated transcripts (Log2FC≥ 1) are
in green, down-regulated transcripts (Log2FC≤− 1) are in red. Each row represents a transcript, each column a comparison. For the description of the
gene names represented in the heatmaps refer to Additional file 9: Table S6
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antioxidant enzymes, partially mediated by SA, may
contribute to the increases of ROS and to the activation
of defenses [70].
Hypersensitive Induced Response (HIR) proteins are a

group of proteins involved in Hypersensitive Response [71].
Although there are no reports about HIR genes induced
during SAR, the PR-1 gene expression was elevated in
transgenic Arabidopsis overexpressing the rice HR-induced
gene OsHIR-1 [72]. Interestingly, in ASM plants (both in-
fected and not infected), a robust activation of transcripts
encoding a protein related to HIR-1 (Ach_contig24151,
Ach_contig27830, Ach_contig24154, Ach_contig24153,
Ach_contig24161, Ach_contig24158) was found. Among
them, Ach_contig24153 was used to confirm these data by
qRT-PCR (Additional file 5: Figure S2). Besides, four
transcripts homologous to peroxidase 4 (Ach_contig14667,
Ach_contig14668, Ach_contig13292, Ach_contig13293)
and belonging to the PR9 protein subfamily [73] were
up-regulated in ASM plants regardless Psa inoculation.
Members of the PR9 family are able to catalyze the synthe-
sis of bioactive molecules that limit bacterial pathogen
spreading through the establishment of physical barriers or
the generation of toxic compounds, such as ROS [74].

Photosynthesis-related genes
The infection strongly down-regulated photosynthetic
related genes (Additional file 10: Table S7) as observed
in other plant-pathogen interactions [75–78]. Moreover,
in our experiment about 30 DEGs (Additional file 10:
Table S7) were annotated as cytochrome P450 (CYP450).
The cytochrome P450 (P450) superfamily is the largest
family of plant metabolic enzymes and plant P450 families
are highly divergent, reflecting diversification and neo-
functionalization [79, 80]. CYP450s are involved in SA-
dependent defense responses [81] such as lignin biosyn-
thesis, callose deposition and cell wall reinforcement [82].
Nonetheless, P450 gene expression was not found to be
consistently differentially expressed after acibenzolar-S-
methyl treatment, or infection.

Hormonal-pathway-related genes
Several pathovars of P. syringae are known to produce
compounds which manipulate the plant hormonal balance
[83]. A well-known example of hormone manipulation by
P. syringae involves the production of the phytotoxin
coronatine (COR), which mimics JA functions. Other P.
syringae pathovars, such as P. syringae pv. tomato (strain
DC3000), modulate ABA level in order to suppresses
stomata closure [84, 85]. Finally, some pathovars, such as
P. savastanoi pv. glycinea and P. savastanoi pv. phaseoli-
cola are capable of producing ET, which acts as a virulence
factor by impacting ET production by the host [86].
Among the five biovars of Psa, strains of biovar 1 produce
phaseolotoxin, a phytotoxin causing the halo blight disease,

and strains of biovar 2 produce coronatine. Strains of
biovar 3 do not produce any known toxin [7], and genes
coding for ET biosynthesis, such as 2-oxoglutarate-
dependent ethylene-forming enzyme (EFE), have not been
found either. However, production of ethylene by some
strains of Psa biovar 3 has been detected [12]. A subset
of DEGs involved in ET biosynthesis and ET-signaling
were found in kiwifruit plants upon Psa infection
(Fig. 6a, Additional file 11: Table S8). The transcripts
encoding homocysteine methyl transferase (HMT,
Ach_contig26132, Ach_contig16088, Ach_contig22185),
methionine synthase and S-adenosyl methionine-synthase
(SAMS; Ach_contig18109, Ach_contig18113, Ach_con-
tig17516, Ach_contig18112, Ach_contig18110, Ach_con-
tig20053, Ach_contig18114) were up-regulated at 3 hpi in
untreated plants only (Fig. 6a). The key enzymes of ET bio-
synthesis, 1-AMINO CYCLOPROPANE-1-CARBOXYLATE
SYNTHASE (ACS) and ACC OXIDASE (ACO), were also
detected following Psa infection (Fig. 6a). Two transcripts
encoding ACS enzymes were found significantly modulated
only in control plants at 3 hpi: Ach_contig15019, encoding
ACS2, was up-regulated, while Ach_contig23058, encoding
ACS5, known to be unresponsive to exogenous ET treat-
ment [87], was down-regulated.
Two transcripts homologous to ENHANCED DISEASE

RESISTANCE 1 (EDR1, Ach_contig3372; Ach_contig33724)
were found up-regulated at 3 hpi in untreated plants
(Fig. 6a). In Arabidopsis, EDR1 negatively regulates SA-
dependent defense responses, ABA signalling, and ET-
induced senescence [88]. EDR1 confers sensitivity to
various pathogens such as Erwinia cichoracearum in
cucurbits and P. syringae pv. tomato (strain DC3000) in
tomato. EDR1 is required for resistance to some hemi-
biotrophic/necrotrophic fungal pathogens through the
induction of plant defensin (PDF), probably interfering
with MYC2 function [89]. At 3 hpi in untreated plants,
transcripts (Ach_contig10181) belonging to the PDF
family were found to be up-regulated (Fig. 6a). More-
over, Constitutive Triple Response1 (CTR1; Ach_con-
tig33722, Ach_contig33724) and Ethylene Insensitive2
(EIN2; Ach_contig23335, Ach_contig23336), which are
key genes of the ET signaling pathway, were found to
be up-regulated. At 3 hpi, in both untreated and ASM
plants, transcripts encoding EIN3 BINDING F-BOX1
(EBF1) and EBF2 (Ach_contig34711, Ach_contig34712)
were up-regulated. In Arabidopsis, these genes were
up-regulated even in the absence of infection, and
EBF2 transcription was rapidly induced after exogenous
application of ET [90].
The expression of ETHYLENE INSENSITIVE2 (EIN2) is

supported by the activation of MYB44 [91] and, in turn,
activates the expression of downstream transcription fac-
tors such as ETHYLENE RESPONSE FACTOR (AP2/ERF)
[92]. Indeed, two MYB44 transcripts (Ach_contig27284
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and Ach_contig27287) and about 25 transcripts encoding
AP2/ERF transcription factors were up-regulated in re-
sponse to the Psa infection in untreated plants (Fig. 6a).
Genes involved in JA-mediated responses were differ-

entially expressed, mainly at 3 hpi in untreated plants
(Fig. 6b, Additional file 12: Table S9). Transcripts corre-
sponding to Allene Oxide Cyclase (AOC, Ach_contig13768)
and OPC 8:0 CoA Ligase1 (OPCL1, Ach_contig13768) [93],
two enzymes of the JA biosynthetic pathway, were all
up-regulated. In addition, the expression of JASMONATE-
ZIM DOMAIN (JAZ, Ach_contig31198, data confirmed by
qRT-PCR, Additional file 5: Figure S2) was also found to be
increased upon infection. JAZ proteins induce the expres-
sion of genes involved in the formation of the repressor
complexes consisting of MYC2, a βHLH-type transcriptional

regulator, NINJA adaptor-proteins and TOPLESS (TPL)
co-repressors [94–96]. In ASM plants, none of these
genes was modulated in relation to infection (Fig. 6b),
thus suggesting that acibenzolar-S-methyl might minimize
the hormonal imbalance caused by Psa to hijack plant
defenses [12].
Few DEGs related to SA biosynthesis and signaling

were detected in ASM plants regardless of Psa infection
(Fig. 6c; Additional file 13: Table S10). SA biosynthesis
occurs via the shikimic acid pathway, which involves the
conversion of chorismate to isochorismate by Isochorisma-
te-synthase (ICS) [91]. Control plants infected with Psa did
not show modulation of ICS, while in acibenzolar-S-
methyl-treated and infected plants, a transcript encoding
ICS1 (Ach_contig10145) was found down-regulated at 24

Fig. 6 Heatmap describing the modulation of Differentially Expressed Genes (DEGs) involved in the hormonal pathways. a Ethylene (ET), b Jasmonic
Acid (JA), c Salicylic Acid (SA) and d Abscisic acid (ABA). Up-regulated genes (Log2FC≥ 1) are in green, whereas down-regulated ones (Log2FC≤− 1)
are in red. The description of the genes represented in the heatmaps is reported in Additional file 11: Table S8, Additional file 12: Table S9, Additional
file 13: Table S10, Additional file 14: Table S11, respectively
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hpi. In Arabidopsis, ICS1 regulation is linked to calcium sig-
naling through the transcriptional regulation of Enhanced
Disease Susceptibility-1 (EDS1) [97, 98]. In the same model
plant, EDS1 works together with phytoalexin-deficient 4
(PAD4) to promote the hypersensitive response and SA
accumulation [93]. In response to Psa, in kiwifruit, the tran-
script coding for EDS1-like lipase (Ach_contig27833) was
up-regulated in all ASM samples. However, differently from
Arabidopsis, PAD4 was not up-regulated in ASM kiwifruit
plants. The up-regulation of PAD4 transcripts was instead
detected in untreated infected plants at 3 hpi. Interestingly,
in Arabidopsis, the up-regulation of PAD4 is essential for
boosting ET production after pathogen infection [99–101].
Thus, the induction of PAD4 in kiwifruit untreated infected
plants supports the role of ET as a positive regulator of host
susceptibility in this pathosystem.
In ASM plants, both at 24 hpi and 48 hpi, transcripts

coding for Nonexpresser of PR proteins NPR1 and NPR3
(Ach_contig14340 and Ach_contig32812, respectively)
[102] were up-regulated. NPR1 and NPR3 are the main
transcriptional regulators of the SA pathway [103]. The
expression profile of Ach_contig14340 was confirmed by
qRT-PCR (Additional file 5: Figure S2). The Arabidopsis
thaliana NPR1-proteins act in concert with NIM1-
INTERACTING 1 (NIMIN-1), NIMIN-2, and NIMIN-3
[104]. Accordingly, the transcripts encoding NIMIN2
(Ach_contig17288; Ach_contig17287) were also induced
in ASM plants (Fig. 6c; Additional file 13: Table S10):
data confirmed by qRT-PCR (Additional file 5: Figure S2).
These results confirm the priming effect of acibenzolar-S-
methyl on SA-dependent defensive responses. Moreover,
SA-dependent responses were activated by the infection
only in ASM, thus corroborating the findings that SA medi-
ates resistance against Psa in A. chinensis [12].
One of the first line of plant defenses against bacterial

pathogen is the modulation of stomata closure [105]. SA
induces stomatal closure in Vicia faba [106], Phaseolus
vulgaris [107] and Arabidopsis [108] when applied on
leaves. However, the effect of exogenous application of
SA on stomatal movements may vary according to the
plant species and the mode of application [109]. In this
view, ABA plays a role in early plant defenses by inducing
stomata closure upon recognition of pathogen-associated
patterns [82, 110]. However, in post-infection phases,
ABA generally exerts a negative role on plant immunity
[111–113]. For example, P. syringae effector AvrPtoB
stimulates ABA biosynthesis to weaken plant immune
responses [78, 114]. ABA effect on stomata is mediated
by cell turgor and Ca2+ balance in guard cells [115].
Indeed, Ca2+-independent protein kinase SNF1 Related
Kinase 2 (SNRK2) is a key regulator of the stomata closure
[116]. In our experiment, two transcripts (Ach_con-
tig20697 and Ach_contig15315) related with SNRK2 were
identified as DEGs. Ach_contig20697 was down-regulated

in untreated infected plants at 3 hpi, whereas Ach_
contig15315 was up-regulated both in response to
acibenzolar-S-methyl and to infection in treated sam-
ples at 24 hpi and 48 hpi (Fig. 6d; Additional file 14:
Table S11).
In the absence of ABA, the PROTEIN PHOSPHAT-

ASE 2C (PP2C) acts as an inhibitor of the ABA signaling
response by binding and blocking SNRK2 [117, 118]. In
untreated plants at 3 hpi, several PP2Cs of class A [119],
namely Ach_contig26540, Ach_contig9883, Ach_contig9880
and Ach_contig28395, were found to be down-regulated.
Moreover, in the same plants at 3 hpi, four transcripts
(Ach_contig20119, Ach_contig32298, Ach_contig20123,
Ach_contig20122 and Ach_contig20120) encoding a
class of intracellular ABA receptors (PYR/PYL/RCAR)
[116] known to interact with PP2Cs [120], were also
found to be up-regulated. In ASM plants at 24 hpi, the
same transcripts were instead down-regulated (Fig. 6d).
Arabidopsis plants are not able to close their stomata,
even in the presence of ABA, if they are exposed to ET,
confirming that ET represses ABA-dependent stomata
closure [121]. In untreated plants at 3 hpi, a transcript
related to ABA repressor 1 (ABR1, Ach_contig18951,
Fig. 8), which is a negative regulator of ABA signaling
[122], was found to be up-regulated. ABR1 upregulation
was followed by down regulation at 24 hpi and 48 hpi
(data confirmed by qRT-PCR; Additional file 5: Figure S2).
Furthermore, in the same plants and at the same time
points, transcripts encoding for the E3 ligase ARM
REPEAT PROTEIN INTERACTING with ABF2-like
(ARIA-like TFs; Ach_contig27093, Ach_contig27096)
were found to be up-regulated. ARIA-like TFs were in-
volved in the ubiquitination of ABF2, which controls
ABA-responsive gene expression [123]. Finally, in ASM
plants at 24 hpi, the bZIP transcription factor ABI5 (Ach_
contig26433, Ach_contig25391, Ach_contig25394), known
to be transcriptionally induced by ABA [124, 125], was
up-regulated (Fig. 6d).
All these findings suggest a possible role of ET as a

Psa virulence factor concurring in stomata opening by
repressing ABA-mediated signaling.

Transcription factors
Transcription factors (TFs) play a key role in the regula-
tion of plant responses to pathogens. In the kiwifruit
transcriptome, 3009 transcripts belonging to 53 families
of TFs and to 13 families of Chromatin Remodeling Factors
were detected (Additional file 15: Figure S4; Additional
file 16: Table S12). Concerning TFs, 367 transcripts
were DEGs in at least in one condition (Fig. 7a, Additional
file 17: Table S13). A total of 216 TFs were modulated at 3
hpi in untreated plants. Out of these, 199 TFs were modu-
lated only in this condition (Fig. 7b) with the most repre-
sented families corresponding to APETALA2/ETHYLENE
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RESPONSIVE FACTOR (AP2/ERF) and WRKY. In ASM
plants, 187 transcripts coding for TFs were modulated,
with 11 identified either in ASM plants without Psa or in
untreated plants at 3 hpi. Finally, 39 TFs were exclusively
modulated at either at 24 or 48 hpi (Fig. 7c).
AP2/ERF is a large family of plant TFs divided into

three subfamilies: AP2, RAV and ERF [126]. Individual
members of the ERF family have been shown to be either
positive or negative regulators of the defense response. A
total of 35 AP2/ERF were modulated in the kiwifruit-Psa
interaction (Fig. 8a). Among them, 23 AP2/ERF, mainly
related to ERF subfamily IX [127], were up-regulated in
untreated plants at 3 hpi, and only three of them were
also down-regulated in ASM samples inoculated with
Psa (Fig. 8a, Additional file 18: Table S14).
TFs belonging to ERF subfamily IX have been often

linked with response to pathogen infection in Arabidopsis,
rice and grape [126, 128]. In detail, in Arabidopsis, ERF1,
belonging to subfamily IX, is involved in both JA and ET
signaling. ERF1 over-expression increases resistance to
necrotrophic fungi and enhances susceptibility to the
hemibiotroph P. syringae pv. tomato [53]. Moreover,
Ach_contig21919; Ach_contig30206; Ach_contig30205;
Ach_contig21920; Ach_contig13845; Ach_contig13844,
belonging to family IX, were annotated as AdERF11,
AdERF12 and AdERF13. These ERF TFs of Actinidia
deliciosa are known to control the expression of other
ERF genes in response to ET and JA [127].

Two transcripts (Ach_contig5488; Ach_contig19387)
belonging to subfamily VIII were up-regulated at 3 hpi
in untreated plants (Additional file 16: Table S12). Inter-
estingly, the expression of genes of subfamily VIII can be
rapidly induced by ET and JA synergistically [128, 129].
Likewise, three transcripts (Ach_contig12383; Ach_con-
tig23443; Ach_contig12380), up-regulated at 3 hpi in
untreated plants, were identified as AdERF4 that, along
with AdERF5 (Ach_contig33797), belongs to subfamily
VII (Additional file 18: Table S14). The members of this
subfamily have been associated with the modulation of
ET during hypoxia and with grape resistance to the
necrotrophic pathogen Botrytis cinerea [130]. Finally,
the transcript corresponding to ABR1-like, belonging to
Subfamily X, was one of the most up-regulated genes as
reported in section “Hormonal Balance”.
Plants treated with acibenzolar-S-methyl showed a gen-

eral down-regulation of ERF genes with the exception of
transcript Ach_contig8529 which is an ortholog of Tobacco
stress-induced gene 1 (Tsi1) (Fig. 8a). Tsi1, which exhibits
characteristic features of group VI, is known to be respon-
sive to SA treatment [131]. Moreover, the over-expression
of Tsi1 in tobacco and pepper increased resistance to viral,
bacterial and oomycete pathogens [131, 132]. Therefore,
Tsi1 could be one of the main candidate genes involved in
increased defenses against Psa in ASM kiwifruit plants.
Additionally, to AP2/ERF-related transcripts, 20 con-

tigs belonging to the NAC TF family were identified

Fig. 7 Panel a: Heatmap showing differentially expressed transcription factors (TFs). Each row represents a transcript; each column represents a
library comparison. A dendrogram of the correlation among transcripts is shown on the left of the heatmap. The green color represents up-regulated
genes (Log2FC≥ 1) and red color represents down-regulated genes (Log2FC≤− 1). The description of the genes represented in the heatmap is
reported in Additional file 16: Table S12; Panel b: Venn diagram showing the overlapping of differentially expressed TFs modulated in infected plants
at 3, 24 and 48 hpi. Panel c: Venn diagram showing the overlapping of TFs modulated in acibenzolar-S-methyl treated plants inoculated with Psa at 3,
24 and 48 hpi
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(Fig. 8b). The NAC TF family, which include three
subfamilies, namely NAM, ATAF and CUC, regulates a
variety of plant processes, including the response to
biotic and abiotic stresses [133, 134]. Within this family,
in Arabidopsis, ATAF1/NAC2 is known to be a negative
regulator of ABA signalling and is related to ET signaling
[135, 136]. In our experiments, in untreated infected
plants at 3 hpi, an up-regulation of transcripts homologous
to ATAF1/NAC2 (Ach_contig25527; Ach_contig25525) was
recorded. Moreover, others transcripts (Ach_contig26632;
Ach_contig19753; Ach_contig31507; Ach_contig32980;

Ach_contig25010; Ach_contig25004; Ach_contig25007),
homologous to NAC TFs, were also up-regulated (Fig. 8b,
Additional file 19: Table S15).
Acibenzolar-S-methyl modulated a number of NAC

TFs (Fig. 8b). Some NAC TFs are positive regulators of
SA-mediated responses, such-as NAC090 [137] whose
transcript (Ach_contig20506) was up-regulated in all
ASM samples. The transcript Ach_contig20762, a homo-
log to ANAC100 (Arabidopsis NAC domain containing
protein 100), was down-regulated in all ASM samples.
Close homologs of ANAC100 are involved in ET

Fig. 8 Heatmaps showing transcription factors (TFs) differentially expressed in the kiwifruit-Psa interaction. Panel a: Ethylene responsive Factors (ERFs);
Panel b: NAC TFs; Panel c: WRKY TFs. The green color represents up-regulated genes (Log2FC≥ 1) and red color represents down-regulated genes
(Log2FC≤− 1). Panel d: Four-ways Venn diagram showing WRKY TFs comparison between early stages of Psa inoculation in kiwifruit untreated plants
against acibenzolar-S-methyl treated ones. For the description of the gene names represented in the heatmap refer to Additional file 18: Table S14,
Additional file 19: Table S15 and Additional file 20: Table S16, respectively
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signaling and biotic stress response [138]. Therefore, the
down-regulation of this transcript in ASM plants may
indicate a regulatory SA-dependent mechanism.
Finally, acibenzolar-S-methyl treatments also up-regulated

a transcript homologous to ANAC042, a TF involved in the
induction of camalexin biosynthesis, in Arabidopsis. Cama-
lexin, a phytoalexin, is accumulated in response to pathogen
infection through complex signaling networks, including
SA-, JA-, and ET-dependent pathways, as well as glutathione
status and ROS generation [139]. Phytoalexins are known to
have an antimicrobial activity [140, 141].
A total of 53 WRKY TFs [142] were listed as DEGs,

and among them, 23 were exclusively modulated in
untreated plants at 3 hpi (Fig. 8c and d), highlighting the
role of these TFs in the transcriptional reprogramming of
the kiwifruit plant during Psa infection (Fig. 8c, Additional
file 20: Table S16). Transcripts Ach_contig37648, Ach_
contig20598, Ach_contig20597, Ach_contig37652, Ach_
contig15612 and Ach_contig17244, related to the rapidly
pathogen induced AtWRKY33, were up-regulated in
untreated plants at 3 hpi. AtWRKY33 acts as a positive
regulator of resistance toward the necrotrophic fungi
Alternaria brassicicola and Botrytis cinerea [143]. In
addition, its expression does not require SA-dependent
signaling, but it is dependent on PAD4 [144, 145].
After P. syringae infection in Arabidopsis, WRKY33 is

released in the nucleus where it induces JA\ET-related
defense genes, repressing at the same time the genes
related to SA-dependent defense [146]. Ach_contig20597,
belonging to WRKY33, was used to confirm these data by
qRT-PCR (Additional file 5: Figure S2). Moreover, WRKY33
and WRKY22 are known to activate the PAMP signaling
cascade through MAPK cascade signal transduction path-
ways. WRKY22 activation is driven by the MAPK3/MAPK6
signal cascade and requires the cooperation of other WRKY
TFs for the induction of resistance to bacterial and fungal
pathogens [147]. In our experiments, Ach_contig16581 and
Ach_contig14586 were annotated as WRKY22. In addition,
Ach_contig22394, Ach_contig26220 Ach_contig26219,
annotated as MAPK3 and MAPK6 related to MAPK3/
MAPK6, were up-regulated at 3 hpi in untreated plants
(Additional file 21: Table S17).
AtWRKY18 is closely related to AtWRKY40 and

AtWRKY60. These three WRKY TFs interact in a com-
plex manner to regulate plant defensive responses [148].
A transcript related to AtWRKY18 (Ach_contig11697)
was identified as a DEG in ASM plants at 24 hpi and 48
hpi. Moreover, eight transcripts putatively encoding
AtWRKY40 (Ach_contig15900; Ach_contig15903; Ach_
contig6471; Ach_contig6470; Ach_contig7044; Ach_
contig5585; Ach_contig10300; Ach_contig19510) were
up-regulated at several time points following Psa inocula-
tion in both control and ASM plants. In transgenic Arabi-
dopsis, where AtWRKY18 was constitutively expressed, an

increased resistance to P. syringae was observed. On the
other hand, its co-expression with WRKY40 and WRKY60
has a redundant function and negatively regulates the
resistance to P. syringae [149].
The acibenzolar-S-methyl treatment acts on a class of

WRKY TFs more related to SAR response, modulating
distinct transcripts from those observed in infected un-
treated plants. In detail, five transcripts (Ach_contig20526;
Ach_contig20525; Ach_contig22553; Ach_contig22554;
Ach_contig16016), related to AtWRKY70 (Additional
file 5: Figure S2 and Additional file 20: Table S16), were
reported as DEGs and up-regulated specifically after
acibenzolar-S-methyl treatment (Fig. 8c). Among them,
Ach_contig20526 was used to confirm these data by
qRT-PCR (Additional file 5: Figure S2). AtWRKY70,
similarly to WRKY51 and WRKY50, acts as a positive
regulator of SA-dependent responses and as a negative
regulator of JA-dependent responses [150, 151]. More-
over, AtWRKY70, together with its closely related
AtWRKY53, plays a key role in the regulation of SAR
and innate immunity in Arabidopsis [137]. Recent evi-
dence suggests that AtWRKY70, and other WRKY TFs,
are the targets of Nonexpresser of PR proteins NPR1, a
key regulator of SA-dependent defenses and SAR [152].
In the kiwifruit plant-Psa interaction, three transcripts
(Ach_contig16947; Ach_contig20013; Ach_contig20015),
related to WRKY50 and WRKY51, were observed as
DEGs and their expressions were preferentially linked to
acibenzolar-S-methyl treatment (Fig. 8c). In this view, our
results suggest that WRKY TF may be involved in the
defense response to Psa and may be associated with ET
and JA signaling in kiwifruit plants.

Network analysis WGCNA
Another perspective on this transcriptomic analysis was
given by weighted gene co-expression network analysis
(WGCNA). WGCNA allows to get a better understanding
of which genes within this plant-pathogen interaction signal-
ling networks, were the most connected hubs. Twenty-one
modules were detected, assigned colour names and corre-
lated to Psa inoculation and ASM treatment effects over the
time points.
The kME (module eigengene-based connectivity) measure

was calculated for each gene to every twenty-one modules
with the score ranging between 1 (perfectly positively corre-
lated) to − 1 (perfectly negatively correlated). kME scores
were computed for each module in order to detect genes
which can act as a hub in more than one network. The most
interesting module detected in our analysis was “darkor-
ange2” which is highly correlated (0.98; Pval 5e-12) with the
ASM treatment (Additional file 22: Figure S5). Moreover,
“darkorange2” shown positive correlation along the time
course of inoculated ASM plants but negative correlation
with Psa inoculated untreated plants.
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The top hub of “darkorange2” network was an inactive
leucine-rich repeat receptor-like protein kinase; several
other leucine-rich repeat receptor-like were detected in
this module indicating the importance of these classes of
genes in the defense response [153]. About 222 hubs
transcripts involved in the defense response with a kME
score greater than 0.90 were detected in this module
(Additional file 23: Table S18). About 179 of them were
identified as DEGs in several of the comparisons discussed
above. Among them, Ach_contig19122, which encoded
thaumatin-like protein, was differentially expressed in
ASM plants along the time course and was positively cor-
related with “darkorange2”. In contrast, Ach_contig19122
was negatively correlated with the “skyblue2” network
which represents a module preferentially associated with
the Psa infection in untreated plants (Additional file 22:
Figure S5). Also Ach_contig26479, encoding actinidin
act2d, and Ach_contig7693, encoding a class I chitinase,
corroborated this observation (Additional file 23: Table S18).
WGCNA also confirmed a clear separation by treatment
and infection (Additional file 22: Figure S5).

Conclusions
In this study, we characterized the transcriptome of A.
chinensis var. chinensis and identified genes differentially
expressed after infection with Psa in plants treated and
not treated with acibenzolar-S-methyl. Inoculation by
Psa led to a large plant response in the initial phase with
1596 genes being over expressed and 1152 being repressed
at 3 hpi. Nevertheless, this response was much reduced at
24 hpi and 48 hpi when the number of DEGs was only
272 and 341 respectively. Thus, while endophytic popula-
tions of Psa increased rapidly, the plants’ reactions were
relatively muted. It is interesting to speculate whether this
limited reaction to Psa infection is a consequence or a
cause of Psa invading the plant tissues.
Some clues for answering this question might be

found comparing gene expression in plants treated or
not treated with acibenzolar-S-methyl prior to inoculation.
In non-infected plants acibenzolar-S-methyl modulated
the expression of 475 genes including an up-regulation of
several PRRs, defense-related genes (e.g. NBS-LRR genes
and Actinidin) and genes involved in the SA pathway (e.g.
NIMIN2 and EDS1). The expression of genes involved in
the JA/ET pathways was mostly unchanged: these results
were expected since acibenzolar-S-methyl is known to
elicit the SA pathway. In ASM plants the initial reaction
(3 hpi) was not as pronounced as in the acibenzolar-
S-methyl-untreated ones but it grew stronger with time
(from 510 DEGs at 3 hpi to 1374 and 1252 DEGs at 24
hpi and 48 hpi, respectively). Notwithstanding, at 24
hpi or 48 hpi the DEGs in the ASM plants were largely
different from those found in the acibenzolar-S-methyl-
untreated ones with only 46 DEGs in common between

acibenzolar-S-methyl-untreated (24 hpi or 48 hpi)
and -treated without inoculation. A larger overlap was
found in ASM plants before and after inoculation (aciben-
zolar-S-methyl-treated vs. -treated and inoculated at 24
hpi or 48 hpi 282 DEGs). Among the genes induced by
acibenzolar-S-methyl, we found PRR genes and those in-
volved in ROS detoxification (e.g. catalase and superoxide
dismutase) or in the SA elicitation pathway (e.g. EDR1 and
AP2/ERF). In addition, none of the genes involved in JA
(e.g. AOC, JAZ proteins) or ET (e.g. EDR1, ACS3, SAMS,
HMT) elicitation pathways that were up-regulated at 3 hpi
in acibenzolar-S-methyl-untreated plants, were found to be
DEGs in acibenzolar-S-methyl-treated samples.
A number of the genes up-regulated after acibenzolar-S-

methyl treatment, that were involved in or contributed to
the SA elicitation pathway, were further up-regulated after
inoculation (e.g. EDS1, NIMIN2). A similar profile was
found for several TFs such as WRKY40 and WRKY70.
These findings suggest that the expression of these genes
is primed by the acibenzolar-S-methyl treatment.
Genes involved in the ET pathway (e.g. AdERF11–14,

HMT and SAMS) as well as genes involved in the JA
pathway (e.g. AOC and OPCL1) were up-regulated in
acibenzolar-S-methyl-untreated plants at 3 hpi. Since
the JA and the ET pathways are antagonistic to the SA
pathway, which is known to limit Psa infection [12], the
induction of SA by acibenzolar-S-methyl treatment
might contribute to the resistant phenotype. Inoculation
of untreated plants also leads to increased expression of
ERF genes also involved in the ET pathway. In contrast,
inoculation of ASM plants leads to over-expression of
genes involved in the SA pathway but not those involved
in the ET or JA pathway.
The consistent picture emerging from this study suggests

that the host response is partly dictated by the pathogen,
which reduces the defense capacity of the plant, as long as
within 24 hpi the affected cells are unable to prevent
bacterial multiplication and therefore disease. In contrast, in
ASM plants a different molecular response primed by
acibenzolar-S-methyl treatment blocks Psa multiplication,
thus preventing the disease symptoms. Moreover, these
results elucidate and confirm the mechanisms of Psa control
strategies in open field based on acibenzolar-S-methyl.
Some cultivars of A. chinensis var. deliciosa, e.g. ‘Hayward’,

are reported to show a stronger reaction to acibenzolar-S-
methyl treatment than the cultivar used in this study [12]; it
would be interesting to compare gene expression of such
cultivar with that presented in this study.
This study not only gave us a better understanding of

the early interaction between Psa and its host, but it also
indicates new avenues for the selection of novel elicitors
and selection of kiwifruit genotypes which will respond
well to those elicitors or selection of kiwifruit genotypes
which will not respond to Psa manipulation.
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Additional files

Additional file 1: Table S1. List of primers used for qRT-PCR of selected
differentially expressed genes (DEGs). (XLSX 13 kb)

Additional file 2: Table S2. Summary of annotations of the Actinidia
chinensis var. chinensis transcriptome. (DOC 66 kb)

Additional file 3: Figure S1. Main characteristics of the annotation of
the Actinidia chinensis var. chinensis reference transcriptome. Panel A: contig
distribution by length. Panel B: contigs distribution by E-value. Panel
C: contig distribution by similarity. Panel D The contigs of the A. chinensis
var. chinensis reference transcriptome have been classified in Clusters of
Orthologous Groups (COGs) functional annotations and organized into 24
function categories. Panel E Most relevant functional categories of the
Groups of Orthologs obtained with the A. chinensis var. chinensis
transcriptome. Venn diagrams illustrating the distribution of similarity
search results made with the A. chinensis var. chinensis transcriptome. In
panel F, the BLAST results against NR protein, NR nucleotide, RefSeq
and SwissProt databases are reported. The total number of annotations
obtained from these databases was 29,583 (74.73% of total contigs). In
panel G are shown the annotation results obtained from COGs,
InterProScan and KEGG. The number of contigs showing a hit against
these databases was 26,353 (66.57% of total contigs). Panel H reports
the intersection among the annotations presented in A and B with the
results obtained from the BLASTx search against the Kiwifruit Genome
protein database. Summarizing the results obtained from all the
queried databases, a total of 34,039 contigs (85.99% of total contigs)
were annotated. (TIF 2577 kb)

Additional file 4: Table S3. List of all differentially expressed genes
(DEGs) of Actinidia chinensis var. chinensis modulated in response to
Pseudomonas syringae pv. actinidiae inoculation both in acibenzolar-S-methyl
treated and untreated plants. (XLSX 1256 kb)

Additional file 5: Figure S2. qRT-PCR analysis was employed to validate
the expression of twenty differentially expressed genes (DEGs).
Ach_contigs and primers used are reported in Additional file: Table ST1,
the PCR conditions are described in Material and Methods. Gene expression
expressed as fold change and time course is indicated in the X axis.
Standard errors are indicated. Results of quantitative PCRs were in
agreement with RNA-seq experiment. (TIF 1088 kb)

Additional file 6: Figure S3. The MapMan figure of the “Biotic stress”
was obtained by running the Mercator tool (http://mapman.gabipd.org/
web/guest/mercator) with default parameters to assign MapMan bins to
Actinidia chinensis var. chinensis transcripts. (TIF 3354 kb)

Additional file 7: Table S4. List of subset of differentially expressed
genes (DEGs) related with PRRs genes. (XLSX 505 kb)

Additional file 8: Table S5. List of subset of differentially expressed
genes (DEGs) related with defense genes. (XLSX 484 kb)

Additional file 9: Table S6. List of subset of differentially expressed
genes (DEGs) related to ROS detoxification. (XLSX 470 kb)

Additional file 10: Table S7. List of subset of differentially expressed
genes (DEGs) related to photosynthesis. (XLSX 43 kb)

Additional file 11: Table S8. List of subset of differentially expressed
genes (DEGs) involved in ethylene biosynthesis and signalling. (XLSX 467 kb)

Additional file 12: Table S9. List of subset of differentially expressed
genes (DEGs) involved in jasmonic acid-mediated response. (XLSX 462 kb)

Additional file 13: Table S10. List of subset of differentially expressed
genes (DEGs) involved in salicylic acid biosynthesis and signalling. (XLSX 464 kb)

Additional file 14: Table S11. List of subset of differentially expressed
genes (DEGs) involved in abscisic acid biosynthesis and signalling.
(XLSX 463 kb)

Additional file 15: Figure S4. Distribution of transcription factors (TFs)
in Actinidia chinensis var. chinensis transcriptome based on BLASTx against
plantTFDBcat (http://plantgrn.noble.org/PlantTFcat). Chromatin
remodelling factors and families of TF with less than 5 transcripts are not
shown. C2C2 family harbours: CO-like Dof, GATA, LSD and YABBY TFs.
AP2/ERF includes the AP2, ERF and RAV classes of TFs. ARF and B3 classes

belong to B3 superfamily of TFs. HD-ZIP, TALE, WOX, HB-PHD, and HB-other
were grouped in the HB class. GARB family of TFs consists of ARR and
G2-like classes. Others category consists of FHA-SMAD, GAGA-Binding-like,
GeBP, HSF-type-DNA-binding, Nin-like, PAZ-Argonaute, PLATZ, Znf-B,
Znf-LSD, SAP, SBP, TCP, TUBBY, FAR, CG1-CAMTA, E2F-DP, STY-LRP1,
CW-Zn. Numbers of transcripts for each family were summarized in the
figure and are detailed in Additional file: Table S12. (TIF 750 kb)

Additional file 16: Table S12. Distribution of transcription factors (TFs)
in Actinidia chinensis var. chinensis transcriptome. (XLSX 357 kb)

Additional file 17: Table S13. List of subset of differentially expressed
genes (DEGs) related to transcription factors. (XLSX 545 kb)

Additional file 18: Table S14. List of subset of differentially expressed
genes (DEGs) related to AP2/ERF transcription factors. (XLSX 463 kb)

Additional file 19: Table S15. List of subset of differentially expressed
genes (DEGs) related to NAC transcription factors. (XLSX 458 kb)

Additional file 20: Table S16. List of subset of differentially expressed
genes (DEGs) related to WRKY transcription factors. (XLSX 463 kb)

Additional file 21: Table S17. List of subset of differentially expressed
genes (DEGs) related to MAPK cascade signal transduction. (XLSX 458 kb)

Additional file 22: Figure S5. Heatmap of the correlation of WGCNA
modules with traits (ASM treatment and Psa inoculation). 21 modules
were detected and named with colour names. The grey category is not a
real module: it collect all the leftover genes not enough correlated with
one of the other significant coloured modules. In each square the upper
value is kME (module eigengene-based connectivity) while the lower
value is the P-value of the correlation. (TIF 1752 kb)

Additional file 23: Table S18. List of the genes obtained by WGCNA
and the kMEs for each module. (XLSX 9185 kb)
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