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Catestatin attenuates endoplasmic 
reticulum induced cell apoptosis 
by activation type 2 muscarinic 
acetylcholine receptor in cardiac 
ischemia/reperfusion
Feng Liao1,*, Yang Zheng1,*, Junyan Cai1, Jinghui Fan1, Jing Wang1, Jichun Yang1,2, 
Qinghua Cui1,2, Guoheng Xu1, Chaoshu Tang1 & Bin Geng1,2

Catestatin (CST) is a catecholamine secretion inhibiting peptide as non-competitive inhibitor 
of nicotinic acetylcholine receptor. CST play a protective role in cardiac ischemia/reperfusion 
(I/R) but the molecular mechanism remains unclear. Cardiomyocytes endogenously produced 
CST and its expression was reduced after I/R. CST pretreatment decreased apoptosis especially 
endoplasmic reticulum (ER) stress response during I/R. The protection of CST was confirmed in H9c2 
cardiomyoblasts under Anoxia/reoxygenation (A/R). In contrast, siRNA-mediated knockdown of CST 
exaggerated ER stress induced apoptosis. The protective effects of CST were blocked by extracellular 
signal-regulated kinases 1/2 (ERK1/2) inhibitor PD90895 and phosphoinositide 3-kinase (PI3 K) 
inhibitor wortmannin. CST also increased ERK1/2 and protein kinase B (Akt) phosphorylation and 
which was blocked by atropine and selective type 2 muscarinic acetylcholine (M2) receptor, but not 
type 1 muscarinic acetylcholine (M1) receptor antagonist. Receptor binding assay revealed that CST 
competitively bound to the M2 receptor with a 50% inhibitory concentration of 25.7 nM. Accordingly, 
CST inhibited cellular cAMP stimulated by isoproterenol or forskolin, and which was blocked by 
selective M2 receptor antagonist. Our findings revealed that CST binds to M2 receptor, then activates 
ERK1/2 and PI3 K/Akt pathway to inhibit ER stress-induced cell apoptosis resulting in attenuation 
cardiac I/R injury.

Catestatin (CST) is a 21 amino acid-residue, hydrophobic neuroendocrine peptide derived from chro-
mogranin A (ChgA)1. It is co-stored in the secretory granule and co-released with catecholamine in 
adrenal chromaffin cells and adrenergic neurons as an endogenous noncompetitive antagonist of nico-
tine acetylcholine (nAch) receptor and inhibition catecholamine secretion in mammals2. CST stimulated 
histamine release from mast cells3,4. CST also regulated rostral ventrolateral medulla neuron activity and 
caused reduction sympathetic barosensitivity and parapheral chemoreflex5,6. Clearly, CST has a signifi-
cant anti-hypertensive effect7.

CST is also expressed and generated in the heart8. CST reduces isoproterenol and endothelin-1–
induced cardiac contractility9,10 through the PI3 K-Akt-endothelial nitric oxide synthase (eNOS) path-
way11. Many clinical trials have revealed an association between plasma CST level and cardiac diseases 
including acute myocardial infarction, heart failure and cardiac remodeling12–15. These studies suggest 
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that CST may play an essential role in the pathogenesis of ischemic heart diseases. More recently, Penna 
et al. found that CST post-conditioning or post-treatment decreased infarct area and diastolic left ven-
tricular (LV) pressure, and increased cardiomyocyte viability during cardiac ischemic-reperfusion (I/R)16. 
PI3 K and protein kinase Cε  inhibitors, mitochondrial KATP channel blocker and reactive oxygen spe-
cies (ROS) scavenger abolished the protective effects of CST in cardiac I/R17. Clearly, to investigate the 
protective mechanism of endogenous CST in cardiac diseases will be very useful and necessary for its 
potential clinical use.

It had been reported that activation of nAch (α 7nAchR)18 or type 2 muscarinic Ach receptor (M2 
receptor)19 reduced cardiac I/R injury. Because CST is a noncompetitive inhibitor of nAch receptor1, it 
is likely that nAch receptor is not involved in protective effect of CST. Interestingly, Gi/o protein partici-
pated in the cardiac negative inotropism of CST10,20. Gi/o protein is also an important intracellular target 
of M2 and M4 receptors21. Based on these previous findings, it is reasonably to speculate that M receptor 
may play essential roles in CST’s protective effects during cardiac I/R injury.

In the present study, we presented novel evidence that CST directly bound to and activated M2 recep-
tor to attenuate ER-stress linked apoptosis via activation of ERK1/2 and Akt pathways in cardiac I/R.

Results
CST pretreatment improved left ventricular (LV) function and decreased I/R injury.  Ischemia 
reperfusion procedure and CST pretreatment (CP) (CST supplementation for 15 min before I/R) were 
performed (Fig. 1a). After 30 min of ischemia and 1 h of reperfusion, cardiac endogenous ChgA mRNA 
(see supplementary Fig. S1 online) and protein expression were no changes, but CST fragments (21 kD 
and 7.5 kD) reduced comparison to control (Fig.  1b). Different dose of CST perfusion for 1 h did not 
induce lactate dehydrogenase (LDH) leakage (supplementary Fig. S2 online). CST (25 nM, 50 nM and 
100 nM) pretreatment decreased LDH leakage and cardiac troponin I (cTNI) level in perfusate at dif-
ferent reperfusion time point (supplementary Fig. S3 online), which indicated that CST pretreatment 
lowered the ischemia reperfusion (I/R) injury, especially CST at 100 nM exhibited well protection. So 
we selected 100 nM CST in following experiments. As Fig. 1c showed, I/R caused global cardiac infarc-
tion, and CP significantly reduced infarct size as compared with I/R alone (9.8 ±  4.2% vs 27.5 ±  8.2%, 
P =  0.0001).

We also assessed LV diastolic pressure (LVEDP), developed LV pressure (LV systolic pressure minus 
LVEDP, dLVP) and maximal rate of LV pressure development (LV ±  dp/dtmax) for LV function. The I/R 
rat heart showed greatly increased LVEDP and impaired dilation; CP lowered the LVEDP during each 
time point of reperfusion (All P <  0.05, Fig.  1d). CP also improved the dLVP recovery (All P <  0.05, 
Fig.  1e) and LV ±  dp/dtmax (All P <  0.05 Fig.  1f). Thus, CST pretreating improved cardiac function 
during I/R.

CST pretreatment inhibited I/R–induced cell apoptosis.  We used cleaved caspase-3 (a marker of 
cell apoptosis) antibody immunofluorescence staining to assess cell apoptosis. I/R increased the number 
of apoptotic cardiomyocytes, and CP significantly reduced the cell apoptosis (Fig. 2a,b). Consistently, I/R 
increased apoptosis markers (caspase-9, 7 and -3 cleavage, and poly (ADP-ribose) polymerase (PARP) 
cleaved into 89- and 24-kDa segments). CP lowered cleaved caspase-9, -7, -3 and PARP (Fig. 2c,e) for a 
role in reduced apoptosis.

I/R induced ER-stress response by assessing phosphorylated PERK and chaperone protein Grp78 
expression. ER stress-initiated apoptosis signals evaluated by caspase-12 cleavage, Chop protein expres-
sion and phosphorylated JNK. CP also lowered the protein expression of ER stress markers and ER 
stress-initiated apoptosis signals in cardiac I/R (Fig. 2d,e).

To confirm the CST regulatory role in ER stress-induced apoptosis, we used siRNA knockdown of the 
CST precursor ChgA in H9c2 cardiomyoblasts. Firstly, we measured the cell viability by CCK8 kit and 
found that different CST treatment or knockdown did not affect H9c2 cell viability (see supplementary 
Fig. S4a,S4b online). siRNA treatment for 48 h lowered CST precursor-ChgA protein expression in H9c2 
cells (Fig.  3a). In H9c2 cell with A/R, siRNA mediated knockdown of ChgA increased the number of 
apoptotic cells as compared with scramble siRNA (Fig.  3b). ChgA siRNA also upregulated ER stress 
response markers (phosphorylated PERK and JNK, Grp78 and Chop expression, and cleaved caspase-12) 
and an apoptosis marker (cleaved caspase-3) (Fig. 3c). Calcium overload is an important injury mech-
anism in I/R and an inducer of ER stress. Thapsigargin (calcium pump inhibitor induce intracellular 
calcium overload) is a typical ER stress inducer. Knockdown of CST also increased thapsigargin-induced 
cell apoptosis (Fig. 3d) and especially levels of the ER stress markers and cell apoptosis marker (Fig. 3e 
and supplementary Fig. S5 online). Above results suggest that endogenous CST may reduce ER stress in 
part with I/R injury.

ERK and PI3 K pathway is involved in the protective effect of CST.  To investigate the possible 
signals of CST protection, we treated H9c2 cells with specific inhibitors for 30 min to assess the blocking 
effects. Intriguingly, PD98059 and wortmannin reversed the CST protection on cell apoptosis (Fig. 4a,b) 
and ER-stress response (Fig.  4c,d). Knockdown CST also lowered the phosphorylation of ERK1/2 and 
Akt during A/R (see supplementary Fig. S6 online). These results indicate that ERK1/2 and PI3 K pathway 
involved in the protection of CST. In isolated heart, we also found CP significantly increased ERK1/2, 
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Akt and eNOS phosphorylation (Fig. 4e,f) compared with I/R, which confirmed ERK1/2 and PI3 K/Akt 
were partly activated by CST to reduce the ER-stress and increase cell survival.

To confirm these pathways involved in ER stress-induced cellular apoptosis by CST, we measured 
the effect of these inhibitors on DTT-, tunicamycin- and thapsigargin-induced cellular apoptosis. In situ 
staining of apoptotic cells with cleaved caspase-3 antibody revealed that CST reduced the number of 
apoptotic cells induced by DTT, tunicamycin and thapsigargin, and which also were blocked by PD98059 
and wortmannin (see supplementary Fig. S7–S9 online). Consistently, the major apoptosis pathway of 
ER stress—Chop expression, caspase-12 cleavage and JNK phosphorylation, ER stress response markers 
including phosphorylated PERK, Grp78 protein expression—were also lowered by CP while inducing 
by DTT (Fig. 5a, and supplementary Fig. S10 online), tunicamycin (Fig. 5b and supplementary Fig. S11 
online) and thapsigargin (Fig. 5c and supplementary Fig. S12 online), which were also reversed by two 
inhibitors. Therefore, CST inhibited apoptotic pathways of the unfolded protein response in part via ERK 
and PI3 K signaling pathways.

Figure 1.  Catestatin (CST) pretreatment (CP) reduced infarct size and maintained cardiac function after 
cardiac ischemia-reperfusion (I/R) injury in rats. (a) The procedure of global cardiac I/R (n =  18) and 
CP (n =  18) and original recording of left ventricular (LV) pressure. (b) The ChgA protein and its cleavage 
fragments expression were measured by western blot. (c) Heart tissue was stained with triphenyltetrazolium 
chloride and infarct size (white color) was measured by volume (n =  6 for each group). Evaluation of 
cardiac function including LV end diastolic pressure (LVEDP)(b), LV developed pressure (dLVP, LV systolic 
pressure–diastolic pressure) (d), and LV ±dp/dtmax (e) during I/R and CP (total 36 rats were recruited). Data 
are mean ±  SD. *P <  0.05, **P <  0.01 vs I/R group. #P <  0.05 vs parameters before ischemia.
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CST acts as an M2 receptor agonist.  CST might activate Gi/o protein20. In 5 subtypes (M1 to M5) 
muscarinic acetylcholine receptors, only M2 and M4 receptors bind with Gi/o protein21. Thus, muscarinic 
acetylcholine receptor signaling might be involved in the cardioprotective effect of CST. To verify this 
hypothesis, the nonspecific M receptor antagonist atropine, selective M1 receptor antagonist pirenzepine, 
and selective M2 receptor antagonist AF-DX116 were used. We found that carbamoylcholine lowered 
Grp78 and Chop protein expression and increased phosphorylated ERK1/2 and Akt levels effect which 
was similar to the CST (Fig. 6a). Atropine and AF-DX116 but not pirenzepine blocked the CST-altered 
level of these proteins (Fig.  6a). Therefore, M2 but not M1 receptor may mediate the CST action. To 
confirm this finding, we used another selective M2 receptor antagonist-methoctramine, and the selective 
M2/M4 receptor antagonist himbacine, which also blocked the effect of CST on the ER stress response 
and ERK1/2 and Akt phosphorylation during A/R (Fig. 6b). In isolated neonatal rat cardiomyocytes, CP 
also reduced cell apoptosis (PARP and caspase-3 cleavage), ER-stress response (Grp78 and Chop protein 
expression) by I/R, and increased phosphorylated ERK1/2 and Akt. The protection were also blocked 
with selective M2 receptor inhibitors (Fig. 6c,d). In isolated heart, AF-DX116 also blocked the protective 
effects of CP on infarct size, LDH leakage and cTNI level (supplementary Fig. S13a online). These data 
suggested that M2 receptor may be a target protein interacting with CST.

To investigate the interaction of CST with M2 receptor and as an endogenous ligand, we used radi-
oactive isotope [125-I]-labeled CST (0.4 μ M) as a ligand, and N-methylscopolamine (NMS:0.045 nM 
to 0.3 μ M) as a “cold” ligand were co-incubated with membrane protein (200 μ g) in H9c2 cardiomy-
blasts. Radioactivity of binding CST was assessed and the competitive inhibition curve is in Fig.  7a. 
The half-maximal inhibition (IC50) of binding occurred with 25.7 nM NMS (Fig. 7a). Scatchard analysis 
revealed a single binding site with KD 18.6 nM (Fig. 7b). To confirm the specific binding of CST to the 

Figure 2.  CST pretreatment reduced ER-stress and decreased apoptosis. (a) Cleaved caspase-3 
immunofluorescence staining and nuclear staining; apoptotic cells were stained in pink Scale bar =  100 μ M. 
(b) Apoptosis cell numbers were counted in five different field of vision. (c) Western blot analysis of effect 
of I/R and CP on apoptosis and caspase family members and PARP and (d) proteins related to the ER stress 
pathway. Relative protein expression was analyzed by band gray degree. β -actin is a normalization control 
(e). Six independent experiments were performed for above studies.
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M2 receptor, we added AF-DX116 (final concentration: 50 nM, IC50 50 nM for M2 receptors), and the IC50 
of binding was significantly increased to 36.0 nM (Fig. 7a); scatchard analysis revealed a KD of 45.8 nM 
(Fig. 7b). Therefore, CST specifically binds to the M2 receptor.

Activation M2 receptor can decrease intracellular cAMP level under catecholamine stimulation. 
To identify the biological function of CST binding to the M2 receptor, we measured cAMP level with 
carbamoylcholine as a positive control. CST and carbamoylcholine lowered cAMP level induced by 
isoproterenol in H9c2 cells (Fig.  7c). AF-DX116 and himbacine did not affect increased cAMP level 
with isoproterenol, but blocked the effect of CST. To distinguish the β -receptor inhibition, we used the 
adenylyl-cyclase activator forskolin to directly increase intracellular cAMP level. CST also lowered cAMP 

Figure 3.  siRNA knockdown of CST increased ER stress-induced apoptosis in H9c2 cardiomyoblasts 
during anoxia/reperfusion (A/R). (a) siRNA knockdown effect by CST precursor (ChgA) protein 
expression. Immunofluorescence staining by cleaved caspase-3 for cell apoptosis (b) and western blot 
analysis of ER stress-marker expression (c). Cells with CST siRNA knockdown were treated with 
thapsigargin; immunohistochemistry of apoptosis and (d) western blot analysis of ER stress-markers 
expression (e). Five independent experiments were performed for these studies. Scale bar =  100 μ M.
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Figure 4.  The role of ERK1/2 and PI3 K/Akt pathway in CST’s protective effects during A/R in 
cardiomyoblasts. H9c2 cardiomyoblasts were pretreated with ERK inhibitor PD98059 (20 μ M), PI3 K/Akt 
inhibitor wortmannin (10 nM) for 30 min, followed by treatment with CST (100 nM) for 30 min, then cells 
underwent A/R. (a) Apoptosis was assessed by cleaved caspase-3–positive cells (a) and counted (b). Scale 
bars =  50 μ M. Western blot analysis of ER stress-markers expression(c), and relative protein expression was 
analyzed (d). Six independent experiments were performed for above studies. (e) Western blot analyzed the 
changes of phosphorylated ERK1/2, Akt and eNOS during CP in isolated heart; and expressions analysis (f) 
was showed. Three independent experiments were done for it.
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level, which was blocked by AF-DX116 and himbacine but not pirenzepin (Fig. 7d). Thus, CST functions 
as an agonist of the M2 receptor.

Discussion
In the present study, we identify the CST is an endogenous ligand of the M2 receptor. CST pretreatment 
activates M2 receptor, thereby activates PI3 K and ERK1/2 pathway results in reducing ER stress-induced 
cell apoptosis and increasing cell survival (Fig.  8), thus lowers infarct size and recovers cardiac pump 
function under I/R.

Firstly we identified the endogenous CST reducing after I/R, but its precursor ChgA expression were 
no changes. That means increased enzymes (which catalyzed ChgA to generate CST) activity during I/R, 
although the enzymes were not identified until now. CST pretreatment compensated to endogenous CST 
decrease, thus lowered the infarct size and improved cardiac function in rats under I/R, which agreed 
with studies of CST post-conditioning16,17. However, human wild type CST (100 nM) treatment for 2 h 
during reperfusion phase increased, but Gly364Ser variant peptide lowered infarct size; because of lower 
inhibitory activity on nicotinic cholinergic receptor22. In our present study or CST post-conditioning, 
short-times supplementation reduced the inhibitory effects on nicotinic cholinergic receptor, which 
might partly explain the paradoxical effects of CST on cardiac I/R.

Apoptosis occurs in cardiomyocytes during I/R. Genetic or pharmacological inhibition of cell 
apoptosis reduced infarct size and improved cardiac function23. CST pretreatment similar with CST 
post-conditioning24, decreased apoptosis during I/R. In contrast, knockdown CST increased apoptosis. 

Figure 5.  CST protected against ER-stress induced apoptosis via ERK1/2 and PI3 K pathway in H9c2 
cardiomyoblast. Western blot analysis of protein expression of ER stress-marker proteins and apoptosis cell 
number with treatment with stress inducers dithiothreitol (DTT) (a), tunicamycin (b), and thapsigargin (c) 
after pretreatment with PD98059 or wortmannin. **P <  0.01 vs single ER-stress inducers, #P <  0.05 vs single 
catestatin treatment. Eight independent experiments were performed for above studies.
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ER stress induces apoptosis involved in regulation during I/R25. CST pretreatment lowered ER stress 
induced apoptosis during I/R, even directly stimulated by ER-stress inducers; oppositely, knockdown 
CST aggravated ER-stress induced apoptosis, suggesting endogenous CST stabilized ER-stress response 
to anti-apoptosis.

Next, we assessed the possible signal involved in the CST regulation. A PI3 K inhibitor blocked the 
Ca2+ transient inhibition of CST after β -adrenergic stimulation11 and cardiac function recovery with 

Figure 6.  The role of the muscarinic receptors in CST’s protective effect on apoptosis. (a) Western 
blot analysis of effect of non-selective M receptor antagonist atropine, selective M1 receptor antagonist 
pirenzepine and selective M2 receptor antagonist AF-DX116 on ER-stress markers expression and 
phosphorylation of ERK1/2 and Akt and (b) M2 receptor-specific blocking confirmed with methoctramine 
and himbacine. Quantitative analysis of protein expression was shown in the bottom of figure. *P <  0.05 
vs A/R treatment; #P <  0.01 vs A/R +  CP group. Six independent experiments were performed for above 
studies. In neonatal rat cardiomyocytes, we measured the apoptosis markers-PARP and caspase-3 cleavage, 
ER-stress markers-Grp78 and Chop expression, ERK1/2 and Akt phosphorylation; and the role of M2 
receptor using selective M2 receptor antagonists(c). Relative protein expression was performed (d). Three 
independent experiments were performed for it.
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Figure 7.  CST bound to M2 receptor and reduced cellular cAMP levels. (a) Competitive inhibitory 
receptor binding curve involved [125-I]-labeled CST (0.4 μ M) as a ligand, N-methylscopolamine (NMS, 
0.045 nM to 0.3 μ M) as “cold” ligand, and AF-DX116 as selective inhibitor. (b) Equilibrium dissociation 
constant (KD) values were counted by scatchard analysis. Selective M-receptor antagonist effect with CST on 
intracellular cAMP level after stimulation with isoproterenol (c) or forskolin (d). Data are mean ±  SD. (a) 
P <  0.05 vs untreated group; (b) P <  0.01 vs single treatment with isoproterenol (ISO) or drugs; (c) P <  0.01 
vs CST. Six independent experiments were performed for these studies.

Figure 8.  Proposed mechanism of CST’s protective effects in cardiac I/R injury. CST acts as an 
endogenous M2 receptor agonist, activates M2 receptor and causes inhibition of adenylyl cyclase (AC) 
activity via the α  subunit (α i) of Gi, thereby decreasing cAMP level while stimulating by isoproterenol or 
forskolin. During cardiac I/R, CST binds to M2 receptor and activates ERK1/2 and PI3 K/Akt signaling 
pathway to reduce ER-stress response and cell apoptosis.



www.nature.com/scientificreports/

1 0Scientific Reports | 5:16590 | DOI: 10.1038/srep16590

CST post-conditioning17. We found that wortmannin blocked the effect of CST on ER stress-linked 
apoptosis; and knockdown CST lowered phosphorylated Akt. Therefore, the PI3 K-Akt pathway is an 
important signal cascade of CST in cardiac diseases. The canonical mitogen-activated protein kinases 
(MAPKs) JNK, ERK1/2 and p38 are activated in response to ER stress, each with different roles. JNK 
is considered a downstream target of IRE1-dependent ER stress26. I/R–induced ROS leads to sustained 
calmodulin-dependent protein kinase II activation, which promotes JNK signaling27, thereby promoting 
apoptosis26. Here we found that CST inhibited JNK phosphorylation, and siRNA knockdown of CST acti-
vated JNK. Thus, the JNK signal is involved in inhibiting ER stress-induced apoptosis with CST. In gen-
eral, ERK1/2 activation is considered to promote cell survival. ER stress-promoted activation of ERK1/2 
is associated with increased cell proliferation and decreased apoptosis28. Pharmacological or genetic inhi-
bition of ERK1/2 promoted ER stress-induced apoptosis29. We found that PD98059-inhibited MAPK 
kinase reduced ERK1/2 activation and reversed the protection of CST on ER stress, so CST increase 
ERK1/2 phosphorylation to promote cell survival. These findings indicate that PI3 K and ERK1/2 path-
way involved in the protection of endogenous CST during I/R.

We asked how CST activates PI3 K and ERK1/2 signal and which the receptor of CST is. Here we 
showed CST was similar to carbamoylcholine, reduced ER-stress response and activated ERK1/2 and 
PI3 K signals. This effect was blocked by a selective M2 but not M1 receptor antagonist. Receptor bind-
ing assay showed that CST is a ligand of the M2 receptor. CST bound to M2 receptor activation directly 
activating Gi protein, thus reducing cAMP production while stimulated by isoproterenol30 or forskolin; 
and the effect was also blocked by M2 selective antagonism, suggesting CST functions as an M2 receptor 
agonist. M2 receptor activation increases the NOS/NO cGMP pathway31, which also explains in part the 
CST anti-adrenergic effect by NOS/NO cGMP11. All these findings demonstrate that endogenous CST 
as an agonist of M2 receptor to participate in pathogenesis of the cardiac I/R.

Muscarinic receptor expression is abundant in ventricular muscle. Acetylcholine has protective role 
in cardiac I/R in vitro, but it is non-selective ligand and activates all cholinergic receptor subtype, which 
limited its application due to enormous side effects. Here we identified that CST is a selective ligand of 
M2 receptor with high affinity and its intracellular signal (cAMP, PI3 K and ERK1/2) is consistent with 
M2 receptor agonist. Berberine also has potential binding ability to M2 receptor (KD values 5.4 μ M) and 
has protective effects in cardiac diseases32. These data indicate that M2 receptor might be a new target 
for cardiac I/R, but it should be confirmed in cardiomyocytes specific M2 receptor knockout mice in 
the future. Different amino acid variant in CST affected CST inhibitory activity on nicotinic cholinergic 
receptor33. Thus, we also increasing CST binding to M2 receptor by modification replacement amino 
acid, if the sites and model of CST binding to M2 receptor are clear. A synthesized small-molecule chem-
ical according to the pharmacophore model of CST lowered blood pressure in hypertensive animals34. 
According to the model, more selective and effective M2 agonist might be designed and synthesized for 
treating cardiac ischemic diseases.

Methods
Animals and materials.  All animal procedures complied with the Animal Management Rule of 
the Ministry of Health, People’s Republic of China (document No. 55, 2001) and the Care and Use of 
Laboratory Animals published by the US National Institutes of Health (NIH Publication No. 85-23, 
updated 2011). The care and use of the laboratory animals were approved by Laboratory Animal Ethics 
Committee of Peking University. Total 36 male Sprague–Dawley (SD) rats (180–200 g, 8 week) were sup-
plied by the Animal Center, Health Science Center, Peking University. H9c2 rat cardiomyoblasts were pur-
chased from the Stem Cell Bank, Chinese Academy of Sciences. The human wild-type CST, hChgA352–372 
(SSMKLSFRARGYGFRGPGPQL), was purchased from Phoenix Pharmaceuticals (Belmont, CA, USA). 
The extracellular signal-regulated kinase (ERK) inhibitor PD98059, PI3 K/Akt inhibitor wortmannin, 
selective M1 receptor antagonist pirenzepine, selective M2 receptor antagonists AF-DX116 (Otenzepad) 
and methoctramine, selective M2/M4 receptor antagonist himbacine, and non-specific M receptor antag-
onist atropine, carbamoylcholine, tunicamycin, dithiothreitol (DTT), and thapsigargin were from Sigma-
Aldrich (St. Louis, MO, USA). ChgA siRNA (sense: GAU GAU GAU GGU CAG UCG GdTdT, antisense: 
CCG ACU GAC CAU CAU CAU CdTdT) and scramble siRNA were synthesized by Sigma.

Langendorff perfusion procedure and experimental protocol.  Rats fed a standard diet were 
heparinized (200 IU) and anesthetized with sodium pentobarbital (50 mg/kg, intraperitoneally). Hearts 
were excised and rapidly moved to a Langendorff perfusion system as described35. After 30-min stabiliza-
tion, hearts underwent 30-min normoxia, zero-flow global ischemia for 30 min, followed by 60-min rep-
erfusion (I/R group). For the CP group, CST (100 nM) was infused for 15 min before ischemia (Fig. 1A). 
Cardiac function including left ventricular end diastolic pressure (LVEDP), LV systolic pressure (LVSP), 
and maximal and minimal LV pressure development (± dp/dtmax) were recorded.

At the end of reperfusion, hearts were frozen at − 20 °C, then cut into 2-mm thin slices, which were 
stained with 1% triphenyltetrazolium chloride (TTC) in phosphate buffer (pH 7.4) at 37 °C for 10 min, 
then fixed in 4% paraformaldehyde solution to enhance the contrast of the stain. Images in each slice 
were analyzed by image pro plus software. The volume of infarcted tissue (white) and the risk zone 
(total) was then calculated by each area plus slice thickness and summing the results. The infarct size 
was expressed as the percentage of the risk zone36. Total 12 rats were sacrificed for the infarct size assay. 



www.nature.com/scientificreports/

1 1Scientific Reports | 5:16590 | DOI: 10.1038/srep16590

Other rats, while finished I/R procedure, the apex of heart (about 100 mg) was quickly removed for 
western blot assay. The residual heart were cut about 5 mm high (from the site of apex), embedded with 
OCT then the frozen slice were prepared for apoptosis staining (Methods of western blot and apoptosis 
assay are available in the Supplementary methods online).

Anoxia/reoxygenation (A/R) and induced ER stress in H9c2 and neonatal cardiomyo-
cytes.  Ten two-day-old Sprague–Dawley rats were anesthetized with sodium pentobarbital (50 mg/kg, 
intraperitoneally), and then decapitated by heavy scissors. Their ventricles were excised and dissociated 
using trypsin digestion as described previously37. The isolated cells were pre-plated for 0.5 h in minimal 
essential medium with 10% fetal calf serum. Nonattached cells were re-plated in another plate in the 
same medium with 0.1 mM bromodeoxyuridine (BrDU) for 4 days and then were removed. The neonatal 
cardiomyocytes were used for experiments after a further 2 or 3 days.

H9c2 rat cardiomyoblasts or neonatal cardiomyocytes were cultured in DMEM with 10% fetal bovine 
serum (FBS) and 1% penicillin/streptomycin at 37 °C, 5% CO2. Medium was changed to fresh medium 
(serum-free), and cells were cultured under anoxia with 95% N2 and 5% CO2 for 12 h at 37 °C, then 
incubated in a standard incubator for 4 h (A/R)38.

Cells were pretreated with PD98059 (20 μ M), wortmannin (10 nM), atropine (10 nM), pirenzepine 
(1 μ M), AF-DX116 (100 nM), methoctramine (10 nM), or himbacine (1 μ M) for 30 min, then CST 
(100 nM) or carbamoylcholine (100 μ M) for 30 min, then underwent A/R or were treated with the ER 
stress inducers tunicamycin (5 μ g/mL, 8 h), dithiothreitol (5 mM, 4 h), or thapsigargin (5 μ M, 8 h).

Cells at 40% to 50% confluence were transfected with siRNA or scramble siRNA (50 pM) by use of 
Lipofectamine 2000 (Invitrogen), then incubated at 37 °C in a CO2 incubator for 48 h before A/R.

Competitive receptor binding assay.  Membranes were prepared from H9c2 cells as described39. 
Membrane protein was resuspended in HEPES buffer (20 mM HEPES, 1 mM MgCl2, pH 7.4). An amount 
of 200 μ g membrane protein was incubated in 1 mL HEPES buffer containing 0.4 μ M [125I]-labeled 
CST (200000 cpm) for 60 min at 37 °C. [125I]-labeled CST dissociation was initiated by the addition of 
N-methylscopolamine (NMS, 0.045 nM to 0.3 μ M) with and without AF-DX116 (50 nM). A control with 
nothing added was included in each experiment. Binding was terminated by rapid vacuum filtration 
onto Whatman GF/B filters. In all experiments, non-specific binding was determined with 1 μ M NMS. 
Filter-bound radioligand was measured by use of a scintillation counter (PerkinElmer, MA, USA). Data 
were analyzed by non-linear regression with Prism.

Statistical analysis.  Statistical analysis was performed by SPSS Statistics version 15.0 for windows. 
Data are presented as mean ±  SD. Differences among groups were analyzed by one-way ANOVA, then 
Student-Newman-Keuls test. Differences between 2 groups were analyzed by two-tail nonparametric t 
test.
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